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Insight

Flavonoid biosynthesis and Arabidopsis genetics:  
more good music
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In this issue of Journal of Experimental Botany (pages 
1505–1517), Ishihara et  al. report the identification 
of a gene responsible for the production of flavonol 
3-O-gentiobioside 7-O-rhamnosides by elegantly tick-
ling the ivories of Arabidopsis genetics and genetic 
resources combined with straightforward metabolite 
analysis: it is a model case of functional evaluation.

Flavonoids are secondary metabolites derived from the phe-
nylpropanoid biosynthetic pathway that occur in a huge num-
ber and variety in plants. They have been implicated in diverse 
processes, including pigmentation, redox and UV protection, 
plant–microbe interactions, development and regulation of 
auxin transport (Winkel-Shirley, 2006; Yonekura-Sakakibara 
et al., 2008; Kuhn et al., 2011; Peer et al., 2011; Grunewald 
et al., 2012; Buer et al., 2013; Emiliani et al., 2013; Saito et al., 
2013; Yin et al., 2014; Ishihara et al., 2016).

Genetics and flavonoid biosynthesis were already suc-
cessfully engaged on the verge of  Arabidopsis becoming the 
plant model organism. The transparent testa (tt) mutant loci, 
which affect the biosynthesis of  flavonoids, defined easily 
scorable genetic markers due to the loss of  seed coat pig-
mentation. Their molecular identification established many 
crucial steps in the biosynthesis of  the flavonoid core struc-
ture (Koornneef  et  al., 1983; Shirley et  al., 1995; Winkel-
Shirley, 2006; Saito et  al., 2013). This core is formed by a 
phenyl ring condensed with an oxygen-containing heterocy-
cle in different oxidation states which is further substituted 
at different positions with another phenyl side group. These 
variable cores constitute different flavonoid classes occurring 

in plants and within a given plant species. However, only the 
decoration of  these aglycones with various carbohydrate side 
chains and further chemical modification provides the full 
flavonoid range.

Again, genetics in combination with biochemistry, metabo-
lite analyses and, in particular, gene co-expression patterns led 
to the identification of several UDP-carbohydrate-dependent 
glycosyltransferases (UGTs) conjugating flavonoids with dif-
ferent carbohydrates at different positions (Jones et al., 2003; 
Yonekura-Sakakibara et al., 2008, 2012). Nevertheless, there 
are still unresolved cases, one of them being the production of 
the Arabidopsis accession-specific flavonol 3-O-gentiobioside 
7-O-rhamnosides (F3GG7Rs), comprising the flavonols 
kaempferol, quercetin or isorhamnetin with the specific 
carbohydrate decoration 3GG7R, which are most probably 
derived through glucosylation from flavonol 3-O-glucoside 
7-O-rhamnoside (F3G7R) precursors.

A novel flavonol glucosyltransferase

Ishihara et al. (2016) have now identified a gene responsible 
for this final step in the production of  F3GG7Rs. Previous 
reports that the accessions Ler and Nö-0, but not Col-0 and 
Cvi, contain F3GG7Rs were extended to a collection of  81 
accessions, of  which just half  were F3GG7R-producers. 
The Ler F3GG7R trait was inherited in a dominant man-
ner in a cross with the F3GG7R-lacking Col-0. Linkage 
analysis using an F3GG7R-metabotyped, 95-member-
sized Ler × Col recombinant inbred (RI) population as 
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well as recombination events within the originally identi-
fied interval using a further 200 additional RI lines eventu-
ally revealed the locus responsible in a small 87 kb region 
on chromosome 1. No obvious candidate, such as a UGT 
gene, was located in that interval; however, genome-wide 
association mapping of  the F3GG7R metabotype of  the 
81 accessions confirmed the RI linkage mapping and even-
tually identified a single-nucleotide polymorphism leading 
to a premature stop codon in the Col-0 allele of  BETA 
GLUCOSIDASE 6 (BGLU6). In contrast, Ler contains a 
fully functional BGLU6 gene and F3GG7R production 
was generally associated with functional BGLU6 alleles.

Transcriptional co-expression analysis has been shown to 
be a valuable tool in the study of flavonol biosynthesis (see 
above); thus, the association of BGLU6 with this pathway fur-
ther supported its likely involvement in F3GG7R biosynthe-
sis. Nevertheless, this finding is remarkable at first sight, since 
the underlying expression data were primarily derived from 
the F3GG7R-deficient Col-0 harbouring only the BGLU6 
pseudogene. However, the promoter sequences of the Ler and 
Col-0 alleles are highly similar and thus transcriptional co-
regulation was not affected by either functional (Ler) or non-
functional (Col) gene transcripts. On the other hand, Ishihara 
et al. (2016) point out based on published RNA-Seq data that 
the expression level of functional BGLU6 alleles was about 
twofold higher than the transcription from BGLU6 alleles 
leading to transcripts harbouring the premature stop codon. 
The reason for this negative impact on the abundance of the 
non-functional transcript (either transcription or stability of 
the mRNA) is not clear, but it may be an interesting future 
issue in relation to the pseudogenization of gene copies.

After this genetic free-form jazz, the scales were still com-
pleted successfully: luckily, BGLU6-targeting insertion lines 
in two F3GG7R-accumulating accessions, Ler and Ws-4, 
were available and both led to the loss of F3GG7R produc-
tion. Conversely, the F3GG7R-deficient Col-0 gained the 
ability to synthesize F3GG7R after genetic transformation 
with a functional Ler BGLU6 gene fragment.

Genetics leading the way

Biochemical proof by an in vitro enzymatic activity test could 
not be provided by Ishihara et al. (2016), since expression of 
the recombinant BGLU6 protein failed in several systems. 
However, genetics has provided overwhelming evidence that 
BGLU6 is indeed responsible for F3GG7R formation. This 
not only adds another piece of information about the com-
plex formation of flavonol glycosides in Arabidopsis, but also 
provides strong evidence that acyl-carbohydrates utilized as 
sugar donors by beta-glucosidases, such as the putative beta-
glucosidase BGLU6, are involved in flavonol glycosylation in 
addition to the well-known UDP-carbohydrate donors used 
by UGTs. This extends recent reports on beta-glycosidases 
being involved in Arabidopsis anthocyanin glycosylation 
(Miyahara et al., 2013).

Nevertheless, the identification of this new molecular 
player being responsible for producing the accession-specific 
F3GG7R flavonol glycosides could not provide clues to a 

specific physiological or ecological role. The same is mostly 
true for the plethora of specifically decorated flavonoids. 
Most probably, only genetics will be able to lead the way to 
unraveling such functional relations between specific flavo-
noid glycosides and particular processes and functions (Yin 
et al., 2014). More music expected.

Key words:  Arabidopsis thaliana, flavonoid, flavonol glucosyltransferase, 
glycoside hydrolase-type, natural variation, whole-genome association 
mapping.
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