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ABSTRACT  

Although the role of complete gene inactivation by two loss-of-function mutations 

inherited in trans is well-established in recessive Mendelian diseases, we have not yet explored 

how such gene knockouts (KOs) could influence complex human phenotypes. Here, we 

developed a statistical framework to test the association between gene KOs and quantitative 

human traits. Our method is flexible, publicly available, and compatible with common genotype 

format files (e.g. PLINK and vcf). We characterized gene KOs in 4,498 participants from the 

NHLBI Exome Sequence Project (ESP) sequenced at high coverage (>100X), 1,976 French 

Canadians from the Montreal Heart Institute Biobank sequenced at low coverage (5.7X), and 

>100,000 participants from the GIANT Consortium genotyped on an exome array. We tested 

associations between gene KOs and three anthropometric traits: body mass index (BMI), height 

and BMI-adjusted waist-to-hip ratio (WHR). Despite our large sample size and multiple datasets 

available, we could not detect robust associations between specific gene KOs and quantitative 

anthropometric traits. Our results highlight several limitations and challenges for future gene KO 

studies in humans, in particular when there is no prior knowledge on the phenotypes that might 

be affected by the tested gene KOs. They also suggest that gene KOs identified with current DNA 

sequencing methodologies probably do not strongly influence normal variation in BMI, height, 

and WHR in the general human population. 
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INTRODUCTION 

 The identification of complete loss-of-function (LoF) alleles (i.e. genetic null or amorphic 

alleles) is a powerful strategy to characterize gene functions through random (e.g. chemical 

mutagenesis) or targeted (e.g. knockout (KO) methodology in the mouse, RNAi) genetic 

experiments. In contrast to model organisms, humans are not amenable to such genetic 

manipulations. Yet, there is tremendous biomedical interest in understanding how the complete 

disruption of both copies of a gene may impact human biology (1). Our complex physiology, 

interactions with our environment, and gene redundancy within our genome are only few of the 

reasons highlighting the importance of describing the phenotypic consequences of gene 

inactivation in humans. From a drug development perspective, the identification of humans with 

gene KOs also offers naturally occurring genetic experiments to assess the potential pleiotropic 

effects of candidate target genes (2).  

 

 Mendelian diseases, such as sickle cell anemia [MIM 603903] and cystic fibrosis [MIM 

219700], offer an entry point into the study of gene functions in humans. Indeed, the study of 

these conditions continues to yield important insights into human biology in health and disease 

(3). But only a limited number of genes have been implicated in Mendelian diseases: as of 

October 13 2015, there were 4,651 genes in the Online Mendelian Inheritance in Man (OMIM) 

database with phenotype-causing mutations. Furthermore, these mutations are often rare such that 

it is difficult to assemble sufficiently large cohorts of patients to study their pleiotropic effects. 

Gene KOs can have strong phenotypic effects on anthropometric traits in the context of 

Mendelian disorders or syndromes, as evident by mutations causing early-onset morbid obesity 

(PCSK1, LEPR) or dwarfism (GH1 GHR, ATR) (4-6). These mutations are rare (often private) 

and unlikely to be involved in anthropometric trait variation in the general population. However, 
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the possibility that gene KOs of more subtle effect might influence normal variation in 

anthropometric traits remains to be investigated.  

 

Large-scale whole-exome and -genome sequencing projects are beginning to 

systematically catalogue coding genetic variation in the human genome, including predicted LoF 

variants (7-11). On average, there are ~100-200 LoF variants per individual, resulting in ~20 

genes that are inactivated through homozygosity or compound heterozygosity (12). These 

numbers include mostly common variants, which are more likely to be phenotypically neutral 

given the effect of purifying selection (13). Limiting to variants with a minor allele frequency 

(MAF) <0.5%, the 1000 Genomes Project estimated that there are 10-20 LoF variants per 

individual (8). LoF variants are usually defined as variants that truncate protein sequences 

(nonsense and frameshift insertion-deletion (indel)) or that abrogate splice sites or stop codons 

(stop-loss) (12). Using this definition of LoF variant, and limiting their analyses to variants with a 

MAF <2%, Sulem et al. found that ~8% of 104,220 Icelanders carry at least one complete gene 

KO, and that most gene KOs are seen in <5 individuals (14).  

 

Recently, several studies have explored the link between gene KOs and human complex 

phenotypes, such as chronic diseases (12, 15-17) and autism (18). As mentioned above, it is well-

established that rare gene inactivation can cause extreme anthropometric phenotypes in several 

human recessive disorders. The goal of our study is to extend this observation and determine 

whether gene KOs of modest phenotypic effect also contribute to anthropometric trait variation in 

the general human population. We developed a statistical method to test for association between 

predicted gene KOs and quantitative human phenotypes and characterized the distribution of 

predicted gene KOs in 2,772 European Americans and 1,726 African Americans from the 

 at H
elm

holtz Z
entrum

 M
uenchen on M

arch 3, 2016
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


6 

National Heart, Lung, and Blood Institute (NHLBI) Exome Sequence Project (ESP). We then 

applied our method to detect associations between gene KOs and three quantitative 

anthropometric traits (body mass index (BMI), adult height, and BMI-adjusted waist-to-hip ratio 

(WHR)) using high coverage whole-exome sequence (WES) data from 4,498 ESP participants, 

low coverage whole-genome sequence (WGS) data from 1,969 French Canadians, and >100,000 

participants from the GIANT Consortium genotyped on an exome array.  

 

RESULTS 

Number and distribution of predicted gene KOs in ESP  

 We identified 18,137 and 21,935 LoF variants in 1,726 African Americans and 2,772 

European Americans from ESP, respectively (Table 1, Table S1). These LoF variants included 

protein truncating (nonsense, frameshift indel), stop-loss and splice site variants. On average, we 

found 65 and 39 rare or low-frequency LoF variants (MAF <5%) per African-American and 

European-American ESP participant, respectively (Table 1). These numbers are higher than 

some of the previous estimates (12, 16, 18), mostly because we included frameshift indels in our 

analyses. When excluding frameshift indels, we found on average 26 and 16 LoF variants with 

MAF <5% per ESP African American and European American, respectively. Descriptive 

statistics on the number of LoF variants in ESP after excluding frameshift indels are available in 

Table S2. We screened the ESP dataset for individuals who are homozygous or compound 

heterozygous for LoF variants, and are therefore predicted KOs for a given gene. To detect 

compound heterozygosity, we used phased genotype information generated with the software 

Beagle to distinguish between LoF variants inherited in cis or trans (Table 1) (19). The 

identification of LoF variants depends on the gene annotation used. To address this concern, we 

re-analyzed the ESP WES data using the GENCODE basic transcripts annotation instead of 
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RefSeq, and only considered variants that fell within all transcripts for a given gene. We obtained 

very similar association results between the two annotation software (Figure S1). We present 

below results generated with the RefSeq annotation.  

 

Common LoF variants are responsible for most predicted gene KOs (Figure 1, and 

Figure S2 for distributions without frameshift indels). For instance, in ESP African Americans, 

we found on average 25.9 and 2.5 predicted gene KOs per individual when analyzing all or 

rare/low-frequency LoF variants, respectively (Table 1). The corresponding numbers in 

European Americans are 23.2 and 1.1 for all and rare/low-frequency LoF variants (Table 1). 

While this article was under review, the Exome Aggregation Consortium (ExAC) reported an 

average of 35 homozygous protein-truncating variants per individual. This number is higher than 

the average number of homozygous LoF variants that we found in ESP (~21-23/participant, 

Table 1) (20). This difference might simply reflect increased power in ExAC to discover rare 

mutations owing to its larger sample size (N=60,706 vs N=4,498 for ESP). Because common LoF 

are more likely to be phenotypically neutral (13), we focused all subsequent analyses on LoF 

with MAF <5% within ethnic group or sub-study. In the ESP dataset, we found 2,071 and 1,433 

genes with both alleles inactivated by such LoF variants in at least one African American or one 

European American, respectively (Table 1). The higher number of predicted gene KOs in 

African Americans has been previously observed and is consistent with increased genetic 

diversity in African-ancestry populations (12). Overall, very few individuals shared the same 

gene KOs, most of them being found in only one individual (Figure 1). Homozygosity of LoF 

variants is responsible for the majority of these KO events as we only found (after taking phase 

information into account) compound heterozygous individuals for ~8% of the genes with at least 
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one gene KO (Table 1). Stop-loss variants might not be as detrimental as other categories of LoF 

variants, but they are implicated in less than 0.9% of all gene KOs identified in ESP. 

 

Predicted gene KO associated with anthropometric traits in ESP  

We tested our newly developed method (Figure 2) on three anthropometric traits (BMI, 

height, and WHR) that are available in a large number of ESP participants. We stratified our 

analyses by ethnicity and meta-analyzed association results (Figure 3). Assuming that most 

genes are independent and given the number of genes for which we could find at least one 

predicted knocked out individual, we used the following Bonferroni-corrected significance 

threshold to declare significance: α=2x10-5. No single genes reached this significance threshold 

for any of the three tested anthropometric traits after meta-analysis (Table S3).  

 

To increase statistical power, we attempted to replicate genes with a nominal P<0.05 in 

the ESP dataset using the WGS data from the MHI Biobank (N=1,976). We limited our analysis 

to genes with at least two KO individuals. Although the MHI Biobank dataset results from low-

pass WGS, the number of identified LoF variants and gene KOs was similar to the number 

observed in ESP (Table S1), suggesting that the data is sufficiently comprehensive to support 

these analyses. We found that 30-40% of gene KOs in ESP were also knocked out in the MHI 

Biobank, highlighting the challenge to replicate such studies in humans. This might particularly 

be true for gene KOs observed only in ESP African Americans given that the MHI Biobank 

includes individuals of European ancestry. We combined the ESP and MHI Biobank results but 

we did not observe any significant associations with quantitative anthropometric traits (Table S3). 

We report results with a meta-analysis P<0.005 in Table 2. The most promising gene KO 

association that we found is between PKHD1L1 and lower BMI:  we found 20 KO individuals for 
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this gene who have on average a BMI that is 0.8 standard deviation (SD) below the population 

mean (corresponding to ~-3.6 kg/m2). PKHD1L1 may play a role in immunity (21).  

 

While examining the top candidate genes, we noticed that PKHD1L1 is a large gene (78 

exons, coding sequence is ~14 kilobases), raising the possibility that our method could favor 

longer genes. In the ESP dataset, we found, as expected, that the number of LoF variants in a 

given gene is strongly correlated with the length of the coding sequence or the number of exons 

(all P<1x10-67). However, the number of individuals who carry a rare gene KO is not correlated 

with the length of the coding sequence or the number of exons of the gene (all P>0.2), except for 

a weak correlation observed in ESP African Americans with the length of the coding sequence 

(Pearson’s r=0.066, P=0.003). To exclude the possibility that gene length may influence our 

results, we tested correlations with association results from the ESP and MHI Biobank combined 

analyses. With one exception (among 12 correlation tests performed), we found no significant 

correlations between the length of the coding sequence or the number of exons and association P-

values for BMI, height, and WHR (all P>0.25). In ESP African Americans, there was a weak 

correlation between the length of the coding sequence and the BMI P-values (Pearson’s r=0.069, 

P=0.002), but it was in the opposite direction from our expectations (shorter genes have slightly 

more significant P-values). Together, these analyses suggest that our method to test association 

between gene KOs and human quantitative traits is largely insensitive to gene length. 

 

Gene KO identification and association testing using exome array data 

 Recognizing that the main limitation of our analysis is sample size, we contacted studies 

that are involved in the GIANT Consortium. Although WES or WGS data is not readily available 

for most of these studies, they all have genotyped their participants using an exome array that 
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targets 250,000 – mostly coding – variants. We reasoned that the large sample size offered by the 

GIANT Consortium could compensate for the limited number of variants present on the exome 

array. We recruited 22 studies, totaling >102,000 individuals (BMI and height available for all, 

WHR available for >62,000 individuals). Each study ran the method locally, stratifying all 

analyses by ethnicity, and we then combined results using meta-analysis methodology (22). The 

frequency of KO events was similar in ESP and the GIANT studies. However, there were more 

singletons (genes with a single KO individual) observed in European-ancestry individuals from 

the GIANT studies because of the very large sample size (Figure S3).  

 

We present the BMI, height, and WHR meta-analysis results for the GIANT studies in 

Figure 3. As reported above for the WES sequence datasets, and despite a sample size that is 

>10-times larger, we could not detect significant associations between gene KOs and quantitative 

anthropometric traits after accounting for the number of tests performed (Table 3 and Table S4). 

The most interesting finding pertains to the association between height and inactivation of 

GRHPH: autosomal recessive Mendelian mutations in this gene cause primary hyperoxaluria type 

2 [MIM 260000](23). Primary hyperoxaluria type 1 [MIM 259900], a more severe form of the 

disease caused by mutations in AGXT, is characterized by very severe growth failure (24). 

However, the connection between primary hyperoxaluria type 2 caused by recessive mutations in 

GRHPH and growth in humans has not been as clearly documented, although there is one case 

report of a child with this disease and short stature (25). 

 

Prioritizing gene KOs using a candidate-gene approach 

We next asked whether we would increase power to detect associations between gene KO 

and anthropometric traits by restricting our analyses to strong candidate genes. We focused on 
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subsets of genes that are associated with any phenotypes in OMIM, or genes that are intolerant to 

LoF mutations based on the Residual Variation Intolerance Score (RVIS) or the probability of 

being LoF Intolerant (pLI) score (20, 26). We observed several genes that deviate from the null 

when restricting our analyses to these candidate genes, especially for the OMIM genes in the 

larger GIANT datasets for BMI and WHR (Figure 4). We also reasoned that the Mouse Genome 

Informatics (MGI) database might be a good source of candidate genes for our human KO 

experiment. We retrieved the human homologues of genes from 30 MGI phenotype categories, 

and tested them against anthropometric traits (Figure S5). Again, we observed inflation of the 

KO association results when compared to the null distribution, suggesting that some of these 

genes might influence anthropometric traits when completely inactivated. The most noticeable 

result was the distribution of test statistics in the GIANT BMI analysis for genes related to taste 

and olfaction (Figure S5). Genes related to this category were significantly enriched for genes 

with a BMI P-value<0.05 in GIANT (Fisher’s exact test P=0.008). 

 

DISCUSSION 

We developed a simple statistical method to test the association between predicted gene 

KOs and human quantitative traits. We tested our method on three quantitative anthropometric 

traits (BMI, height, and WHR) in large DNA sequencing (ESP and MHI Biobank, >6,400 

individuals) and genotyping (22 participating GIANT studies, >102,000 individuals) datasets. 

Despite this large sample size, we did not identify significant genetic associations with predicted 

gene KOs, although the association between PKHD1L1 and BMI or GRHPH and height are 

interesting and should be tested for replication. Within the limitations of our study design (sample 

size, incomplete catalogue of LoF variants), our results suggest that there are no predicted gene 

KOs with modest-to-large effect size on anthropometric trait variation in the general population. 
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This conclusion is largely consistent with results from a recent study of homozygous LoF 

variants in 1,432 individuals (17).  

 

Importantly, our approach and results can guide future gene KO studies in humans. First, 

our method assumes that all LoF alleles for a given gene will shift the phenotypic mean in the 

same direction. Although it is a sensitive approach in this first large-scale gene KO experiment 

for quantitative traits, alternative methods could explore effect on phenotypic variance. Second, 

in order to maximize our sample size, we combined datasets from different technologies (WES, 

WGS, exome array). Although we accounted for this technical heterogeneity – gene KO statistics 

were similar across datasets – this approach could have introduced unanticipated biases. Ideally, 

high coverage WGS data would be available for gene KO studies. Third, haplotype phasing of 

DNA sequence data from unrelated individuals (ESP and MHI Biobank), and the lack of phase 

information for the GIANT ExomeChip studies, has limited our ability to identify compound 

heterozygous individuals. This could impact our results as nearly 20% of all gene KOs identified 

in this study were due to compound heterozygosity. We note, however, that excluding compound 

heterozygotes from the ESP analyses had very limited impact on our results (Figure S6). Fourth, 

we only considered nonsense, splice site, stop-loss and frameshift indels as LoF variants to 

identify gene KOs. Some of these variants are likely neutral: for instance, genes are more tolerant 

to non-synonymous variants at the 3’ end of a gene, and nearby variants can rescue the effect of 

LoF alleles (12). Furthermore, we excluded missense variants from our analyses, although 

functional characterization can lead to the identification of missense alleles with strong 

phenotypic effect on human complex phenotypes (27, 28).  
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The main limiting factors of gene KO studies in humans are the sample size and the depth 

of genetic information available. We have shown that even when the sample size is very large, 

most gene KOs are identified in single individuals (Figure S3). To be successful, we will need to 

develop tools to prioritize genes or increase the number of gene KOs. One possibility may be to 

consider only genes expressed in a tissue that is relevant for the phenotype of interest (e.g. genes 

expressed in growth plates for height). Another promising solution may be to consider KOs in 

biological pathways instead of single genes as the testing unit. For instance, a researcher 

interested in blood lipid genetics could pool together all individuals that carry a gene KO in any 

of the enzymes or transporters implicated in lipid metabolism. We illustrated this candidate-gene 

approach by prioritizing OMIM disease-causing genes, genes intolerant to LoF mutations, and 

genes with relevant mouse KO phenotypes. In particular for the BMI analysis, the enrichment of 

genes with mouse homologues that disrupt taste or olfaction when inactivated is of interest 

(Figure S5). Reverse genetic strategies – finding a function to a gene by first disrupting it – have 

been very successful in model organisms. Despite early challenges, the large-scale identification 

of LoF variants and characterization of gene KOs promise to also yield interesting insights into 

human biology.  

 

MATERIALS AND METHODS 

 

Ethics statement 

 This project was approved by the Ethics Committee of the Montreal Heart Institute (#11-

1333, #2013-297, #2013-1438). 
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NHLBI Exome Sequence Project (ESP) 

We conducted our initial analysis on the final whole-exome ESP dataset, which is 

described elsewhere (9). This dataset was generated from high coverage WES (median depth 

>100X)(9). All study participants in each of the component studies provided written informed 

consent for the use of their DNA in studies aimed at identifying genetic risk variants for disease 

and for broad data sharing. Institutional certification was obtained for each sample to allow 

deposition of phenotype and genotype data in dbGaP and BAM files in the short-read archive. 

We excluded individuals based on sex mismatch between clinical database and genotype-inferred 

sex (N=13), high homozygosity (N=1), high genotyping missing rate (>10%)(N=1), if they 

appear as population outliers in principal component analyses (N=30), low concordance to 

genome-wide association study data (N=4), or unresolved participant identifiers (N=4). Moreover, 

we randomly excluded one member of each pair of duplicates (N=16), and of first- and second-

degree relatives (N=108). We also removed individuals with chronic obstructive pulmonary 

disease or asthma, as these conditions could influence anthropometric traits (N=688). Finally, we 

removed participants from the CARDIA (N=201) and MESA (N=406) studies, as requested by 

investigators from these studies. We kept individuals aged between 21 and 80 years old, height 

between 125 and 240 cm, BMI <75 kg/m2, and WHR <1.5. In total, we analyzed anthropometric 

traits in 1,726 African Americans and 2,772 European Americans (Table S1).  

 

Variant quality-control and annotation 

We phased variants in the ESP dataset using Beagle 4.0 and the default parameters (19). 

We define LoF variants as variants that create or remove stop codons (nonsense and stop-loss) 

that disrupt essential splice sites (two intronic bases at exon-intron boundaries), or that change the 

reading frame (frameshift indel). We annotated single-base pair variants using in-house custom 
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scripts and build 37.1 of the human genome reference sequence. We annotated frameshift indels 

using SeattleSeq (hg19, v.9.03, http://snp.gs.washington.edu/SeattleSeqAnnotation138/). We 

included in our analyses only frameshift indel variants that fall within validated RefSeq genes 

(release 69). After filtering out variants with a call rate <95% or a Hardy-Weinberg P<1x10-6, we 

retained in our analyses 18,137 and 21,935 LoF variants in African- and European-ancestry 

individuals, respectively (Table S1). For comparison, we also annotated ESP variants using 

Ensembl’s Variant Effect Predictor (VEP) module and basic transcripts from GENCODE. We 

obtained very similar results (Figure S1). 

  

Replication cohorts with WGS or WES data available 

We used low-pass WGS data (mean coverage 5.7X) from 2,002 French-Canadian 

participants recruited by the Montreal Heart Institute (MHI) Biobank. Genotypes were imputed 

and phased using Beagle 4.0 using the default parameters (19). Individuals were removed due to 

low or high inbreeding coefficient (N=4). Variants with Hardy-Weinberg P<1x10-8 were 

excluded. In total, 1,976 MHI Biobank participants with anthropometric traits available were 

included in the replication analyses (Table S1).  

 

GIANT Consortium ExomeChip datasets 

We analyzed Illumina ExomeChip genotype data from 22 studies that are members of the 

Genetic Investigation of ANthropometric Traits (GIANT) Consortium (Table S1). In total, 

103,838, 102,775, and 62,355 individuals were included in the BMI, height and BMI-adjusted 

WHR analyses, respectively. Individuals were from European- (N=90,927; 19 studies), African- 

(N=7,576; 2 studies), and Hispanic-ancestry (N=5,335; 1 study). To increase the number of LoF 

variants available on the ExomeChip, we broaden our definition of splice-site variants to include 
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variants located two base pairs on either side of exon-intron boundaries. This is the splice-site 

definition implemented by dbNSFP (29) and used by GIANT across the Consortium’s 

ExomeChip effort. Using the most severe annotation from ENSEMBL’s VEP tool, we found that 

17.8% (797/4483) of these splice site-variants disrupt a canonical splice-site, 46.7% (2094/4483) 

are missense variants, and 31.6% (1419/4483) affect a nucleotide around the splice-site (1-3 

bases within exon or 3-8 bases within intron). Phasing information was not available for the 

GIANT exome array data. Because we focused on rare variants, we assumed that when two rare 

LoF variants were observed in the same gene in the same individual, they were inherited in trans 

to create a compound heterozygous gene KO.  

 

Statistical analyses 

We developed a flexible method to determine if the complete inactivation of genes by 

LoF variants is associated with human quantitative traits (Figure 2). For each gene, our method 

searches for individuals that are either homozygotes or compound heterozygotes for LoF 

variants; we refer to these individuals as predicted KOs. For X-linked markers that fall outside of 

the pseudoautosomal regions, we consider predicted gene KOs in men if they carry a single LoF 

variant. For compound heterozygosity, we use phase information to distinguish LoF variants that 

segregate on the same haplotype (in cis) or on different haplotypes (in trans). When phasing 

information is not available (e.g. GIANT ExomeChip data), we assume that rare LoF variants 

segregate on different haplotypes. The method then calculates for each gene the phenotypic mean 

in predicted KO individuals. Finally, it computes statistical significance using phenotype 

permutations, as follows: 
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, 

 

where  is the indicator function, m is the observed mean phenotype in predicted KO individuals, 

mi is the ith permuted mean, n is the number of permutations, Pleft and Pright are the left- and right-

tail P-values, and Pfinal is the reported two-tailed P-value. Using simulated null phenotypes and 

the ESP dataset, we showed that the test is well-calibrated (Figure S4). This method assumes that 

gene inactivation results in the same phenotypic effect (increase or decrease trait value) in all 

predicted KO individuals for a given gene. The current implementation of our method also 

currently assumes that tested individuals are unrelated and that the phenotypic distributions are 

symmetrical. It is compatible with standard genotype file formats (e.g. PLINK, vcf). The scripts 

to run our method are publicly available at: http://www.mhi-humangenetics.org/en/resources.  

 

Association of rare predicted gene KOs with anthropometric traits 

We analyzed BMI, adult height and BMI-adjusted WHR. We stratified all our analyses by 

ethnic group, and we only considered rare or low-frequency LoF variants with MAF <5%. We 

used 10,000 permutations to assess statistical significance. For genes with an empirical P<2x10-4 

(i.e. permuted means were never higher (or lower) than the observed mean among 10,000 

permutations), we re-ran the analysis using 100,000 permutations: only two genes fell in that 

category (BRPF1 Pheight=1.8x10-4; SPZ1 PWHR=2.2x10-4). For ESP samples, we corrected 

anthropometric traits for sex, age, ESP phenotype groups, exon capture reagents and the first 

three principal components, as recommended by the ESP investigators. We then applied inverse 

normal transformation on the residuals from the previous correction. For the MHI Biobank, and 
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the GIANT studies, each anthropometric trait was corrected for sex, age, age-squared and the first 

ten principal components, and we normalized the resulting residuals using inverse normal 

transformation. Taking into account the direction of the effect, we combined results across 

studies using a weighted Z-score meta-analysis method implemented in the software METAL, 

where the weight is the sample size of the corresponding study (22). To estimate statistical power 

of our approach, we modeled the effect of a recessive LoF variant on a normally distributed 

quantitative trait, as previously described (30).  This is a simplistic model as we ignore the 

presence of additional LoF variants in the same gene, which are considered in our method 

because they can lead to additional individuals that have a predicted gene KO. We assume that 

the variant has a MAF=5%, explains 1% of the genetic variance, and used a sample size of 

N=4,500 (corresponding to ESP), α=2x10-5 (Bonferroni correction for the number of genes with 

KOs), and 5,000 simulations to perform power calculations. Under this scenario, our gene KO 

approach would have 95% power to detect the association. Alternatively, testing the association 

while assuming that the variant has an additive effect would result in only 3% power. Using the 

same assumptions, we estimated 64% and 1% power for a variant that explains 0.5% of the 

variance when tested using our gene KO methodology or a simple additive model, respectively. 

 

Candidate-gene enrichment analyses 

We explored whether prioritizing gene KOs into different categories could increase the 

chance to reveal an association. First, we investigated whether the gene was an OMIM disease-

causing gene, as defined elsewhere (26). Next, we considered whether the genes were LoF 

intolerant by either having a Residual Variation Intolerance Score (RVIS) < 15% of the RVIS 

scores for all genes in the human genome (release 0.3) or a probability of being LoF intolerant 

(pLI) score > 0.9 (20, 26). We looked for enrichment by overlapping the QQ-plots of genes 
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belonging to these different categories separately on the QQ-plot containing all genes. We also 

created subsets of genes based on 30 phenotype categories from the Mouse Genome Informatics 

(MGI) Database (31). We tested the enrichment using Fisher’s exact test.  
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FIGURE LEGENDS 

Figure 1. Distributions of the number of NHLBI Exome Sequence Project (ESP) participants 

with predicted gene knockouts (KOs). We present distributions in African Americans (A and B) 

and European Americans (C and D). We include all loss-of-function (LoF: nonsense, stop-loss, 

splice site, frameshift indel) variants in A and C, whereas only rare/low-frequency LoF variants 

(minor allele frequency <5%) are included in B and D. Homo., gene KO due to homozygosity; 

Comp. het., gene KO due to compound heterozygosity; Both, genes with homozygous and 

compound heterozygous LoF variants.  

 

Figure 2. Schematic representation of the method to detect association between gene knockouts 

(KOs) and human quantitative variation. This example depicts a fictive gene with three exons 

(GENE1) that contains several SNPs. Our analytical framework only considers loss-of-function 

(LoF) variants (shown in red). GENE1 KOs are individuals who are either compound 

heterozygous of homozygous for LoF variants (individual 1 and 2). The histogram shows the 

distribution of a normalized human quantitative trait. Our method tests whether individuals that 

are KOs for a given gene (red arrows) have on average more extreme phenotypes than the rest of 

the individuals.  

 

Figure 3. Quantile-quantile (QQ) plots of association results between predicted gene knockouts 

(KOs) and anthropometric traits in the (A-C) NHLBI Exome Sequence Project (ESP) and (D-F) 

GIANT ExomeChip datasets. In these datasets, we only considered loss of function (LoF) 

variants (nonsense, stop-loss, splice site, frameshift indels (ESP only)) with a minor allele 

frequency (MAF) <5%. We analyzed three anthropometric traits: (A) body mass index (BMI) 
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(Nparticipants=4,475), (B) height (Nparticipants=4,423), and (C) waist-to-hip ratio (WHR) 

(Nparticipants=2,973). We performed these analyses stratified by ethnicity, and then combined the 

European American and African American results using meta-analysis methodology. We 

analyzed the same traits in the GIANT dataset: (D) BMI (Nparticipants=103,838), (E) height 

(Nparticipants=102,775), and (F) WHR (Nparticipants=62,355). Results are not corrected for the 

genomic inflation factor. The dash lines correspond to the 95% confidence interval. λGC, genomic 

inflation factor; Ngene, number of genes with at least one participant that carries two LoF alleles.   

 

Figure 4. Quantile-quantile (QQ) plots of association results between predicted gene knockouts 

(KOs) in candidate-genes and anthropometric traits. We restricted these analyses to OMIM 

disease-causing genes (green), genes with Residual Variation Intolerance Score (RVIS) score < 

15% of RVIS scores for all genes in the human genome (red), or genes with a probability of 

being loss-of-function intolerant (pLI) score > 0.9 (blue). We report results for three 

anthropometric traits in the NHLBI Exome Sequence Project (ESP): (A) body mass index (BMI) 

(Nparticipants=4,475), (B) height (Nparticipants=4,423), and (C) waist-to-hip ratio (WHR) 

(Nparticipants=2,973). We also report results for the same traits in the GIANT ExomeChip datasets: 

(D) BMI (Nparticipants=103,838), (E) height (Nparticipants=102,775), and (F) WHR 

(Nparticipants=62,355). Results are not corrected for the genomic inflation factor. The dash lines 

correspond to the 95% confidence interval. λGC, genomic inflation factor; Ngene, number of genes 

with at least one participant that carries two LoF alleles.   
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TABLES 

 

Table 1. Number and frequency of predicted gene knockouts (KO) in 1,727 African 

Americans and 2,772 European Americans from the NHLBI Exome Sequence Project 

(ESP). For this loss-of-function (LoF) variant analysis, we consider autosomal nonsense, stop-

loss and splice site variants, as well as frameshift insertion-deletions (indels). Rare LoF variants 

have a minor allele frequency <5%. In the absence of phasing information, we assume that rare 

LoF are inherited in trans. As expected, considering phased genotype information significantly 

impacts the number of gene KOs that we can detect due to compound heterozygosity. 

     NOT PHASED PHASED 

   Variants 

/individuals 

Variants 

/gene 

Gene KOs 

/individuals 

Number 

of KO 

genes 

Gene KOs 

/individuals 

Number 

of KO 

genes 

African 

Americans 

All LoF 

(N=18,137) 

 

237 0.92 33.7 2,530 25.9 2,429 

 Homozygotes   23.2 2,384 23.2 2,384 

 Compound 

heterozygotes   10.4 601 2.6 334 

Rare LoF 

(N=17,446) 

 

65 0.89 4.2 2,174 2.5 2,071 

 Homozygotes   2.3 2,028 2.3 2,028 

 Compound 

heterozygotes   1.9 381 0.2 155 

European 

Americans 

All LoF 

(N=21,935) 

 

197 1.12 28.8 1,844 23.2 1,741 

 Homozygotes   21.3 1,694 21.3 1,694 

 Compound 

heterozygotes   7.6 487 1.9 247 

Rare LoF  39 1.09 1.8 1,538 1.1 1,433 
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(N=21,351) 

 Homozygotes   1 1,390 1.01 1,390 

 Compound 

heterozygotes  

 

0.8 318 0.09 124 
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Table 2.  Association of gene knockouts (KOs) with anthropometric traits in the Exome 

Sequence Project (ESP) and Montreal Heart Institute (MHI) Biobank DNA sequencing 

datasets. We attempted to replicate gene KO associations from the ESP whole-exome DNA 

sequencing dataset in the MHI Biobank whole-genome DNA sequencing dataset. We tested for 

replication genes with P<0.05 and at least two KO individuals in the ESP dataset. We report 

genes with a combined P<0.005. We provide the mean gene KO effect size in standard deviation 

(SD) and metric units, assuming that 1 SD corresponds to 4.5 kg/m2, 6.4 cm, and 0.07 for BMI, 

height, and WHR respectively. NKO: number of individuals that are KO for the given gene. EA: 

European-ancestry; AA: African-ancestry. 

  ESP MHI Combined 

Trait Gene 

Mean EA 

(real 

units) 

NKO 

EA 

Mean AA 

(real 

units) 

NKO 

AA 

P 

Mean 

(real 

units) 

NKO P 

Weighted 

average 

(real 

units) 

P 

BMI 

PKHD1L1 

0.7 

(+3.2 

kg/m2) 

11 

0.5 

(+2.3 

kg/m2) 

6 0.009 

1.6 

(+7.2 

kg/m2) 

3 0.009 

0.8 

(+3.6 

kg/m2) 

0.0002 

PLIN4 

2.7 

(+12.2 

kg/m2) 

1 

3.1 

(+14.0 

kg/m2) 

1 

5x10-

5 

-0.2 

(-0.9 

kg/m2) 

2 0.67 

1.4 

(+6.3 

kg/m2) 

0.002 

Height 

RMDN2 NA 0 

-1.1 

(-7.0 cm) 

4 0.03 

-1.6 

(-10.2 

cm) 

2 0.02 

-1.3 

(-8.3 cm) 

0.002 

ASIC4 

3.6 

(23.0 cm) 

1 

1.5 

(9.6 cm) 

2 

5x10-

5 

-0.4 

(-2.6 cm) 

2 0.56 

1.2 

(+7.7 cm) 

0.002 

SH2B2 -1.6 2 NA 0 0.02 -1.9 1 0.06 -1.7 0.003 
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(-10.2 cm) (-12.2 

cm) 

(-10.9 cm) 

WHR C1QTNF5 0.6 (+0.04) 1 1.8 (+0.13) 2 0.04 

1.5 

(+0.11) 

2 0.03 1.4 (0.10) 0.003 
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Table 3. Top association results between anthropometric traits and predicted gene 

knockouts (KOs) identified using ExomeChip data from 22 studies participating in the 

GIANT Consortium. We only report genes with P<0.005 and at least two KO individuals. The 

weighted mean corresponds to the average phenotype (in standard deviation units) of individuals 

that are KO for this gene. NKO: number of individuals with a KO gene; Nstudy: number of studies 

with at least one KO individual for a given gene. 

Trait Gene NKO Nstudy Weighted 

mean (SD) 

P 

BMI CYP20A1 100 15 -0.35 0.001 

ME2 2 2 -1.90 0.002 

KIAA1024 7 5 -0.75 0.002 

TBC1D5 4 3 1.05 0.003 

LRRC39 147 16 0.23 0.003 

TAS1R1 191 6 0.15 0.004 

LAMA3 9 2 -1.02 0.004 

KIAA0391 3 2 -1.64 0.004 

TAS2R60 2 2 -2.04 0.005 

Height GRHPR 2 2 -2.28 0.0001 

ABCB7 365 10 -0.12 0.0003 

ZDHHC14 3 2 -2.01 0.0003 

ZFPM1 21 3 -0.60 0.0008 

DHX57 2 2 -2.04 0.0009 

CD8A 2 2 2.35 0.001 

CDC42BPA 4 2 1.70 0.001 

NSUN4 13 3 -0.78 0.002 
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ARPC5L 6 2 -1.25 0.002 

CCDC125 45 9 0.35 0.002 

BOK 27 4 0.61 0.003 

NSRP1 9 1 -1.00 0.003 

TEX13A 2 1 2.00 0.004 

RPGRIP1 10 4 -0.72 0.004 

SCGN 6 5 -0.96 0.005 

WHR C18orf56 7 1 1.39 0.0002 

AARS2 3 2 -1.78 0.001 

C18orf34 6 3 1.27 0.002 

CCDC68 13 1 0.83 0.002 

HRG 3 2 -1.52 0.004 

SPTA1 2 2 1.86 0.004 

SPTBN5 191 11 0.15 0.005 
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ABBREVIATIONS 

BMI: Body mass index 

ESP: Exome Sequence Project 

GIANT: Genetic Investigation of ANthropometric Traits 

KO: Knockout 

LoF: Loss-of-function 

MAF: Minor allele frequency 

MHI: Montreal Heart Institute 

WES: Whole-exome DNA sequencing 

WGS: Whole-genome DNA sequencing 

WHR: Waist-to-hip ratio 
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