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ABSTRACT
Motivation: Sequence similarity searches are of great importance
in bioinformatics. Exhaustive searches for homologous proteins in
databases are computationally expensive and can be replaced by a
database of pre-calculated homologies in many cases. Retrieving sim-
ilarities from an incrementally updated database instead of repeatedly
recalculating them should provide homologs much faster and frees
computational resources for other purposes.
Results: We have implemented SIMAP—a database containing the
similarity space formed by almost all amino acid sequences from public
databases and completely sequenced genomes. The database is cap-
able of handling very large datasets and allows incremental updates.
We have implemented a powerful backbone for similarity computation,
which is based on FASTA heuristics. By providing WWW interfaces
as well as web services, we make our data accessible to the world-
wide community. We have also adapted procedures to detect putative
orthologs as example applications.
Availability: The SIMAP portal page providing links to SIMAP
services is publicly available: http://mips.gsf.de/services/analysis/
simap/. The web services can be accessed under http://mips.gsf.de/
proj/hobitws/services/RPCSimapService?wsdl and http://mips.gsf.de/
proj/hobitws/services/DocSimapService?wsdl
Contact: t.rattei@wzw.tum.de

1 INTRODUCTION
Sequence similarity searches such as BLAST (Altschul et al., 1990)
or FASTA (Pearson, 2000) are a basic tool for the in silico analysis of
uncharacterized protein sequences since a high degree of similarity
implies homology of a pair of sequences. These similarity searches
are especially meaningful on protein sequences, since for functional
genes the conservation is much higher on the level of the protein
primary sequence than on the underlying DNA level (Gojobori et al.,
1982).

Sequence similarity is represented as either a local or global
pairwise sequence alignment depending on the mathematical optim-
ization model employed (Smith and Waterman, 1981; Needleman
and Wunsch, 1970). These sequence alignment and the database
search algorithms to detect significant pairwise relationships in a
large dataset are the basic tools in many bioinformatics tasks: in
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the process of annotating protein sequences, homology is used to
infer knowledge from known to unknown sequences (Wilson et al.,
2000; Mewes et al., 1997). The representation of protein families by
a multiple alignment needs all pairwise comparisons in the first step
(Higgins and Sharp, 1988) and in consequence, even the creation of
sequence profiles and hidden Markov models is based on pairwise
alignments (Eddy, 1998).

The potential increases when exhaustive all-against-all comparis-
ons of a meaningful dataset are employed. These exhaustive searches
result in the accumulation of knowledge of all detectable evolution-
ary relationships in a dataset and we refer to this as the ‘protein
similarity space’, which can be subjected to a clustering analysis in
order to get protein families and superfamilies in a sufficiently large
dataset (Krause et al., 2002). With a pair of completely sequenced
genomes, approaches can be used to detect ortholog and paralog rela-
tionships (O’Brien et al., 2005). With even more complete genomes,
the creation of orthologous groups (Li et al., 2003) and methods for
functional prediction such as phylogenetic profiling (Pellegrini et al.,
1999), the Rosetta stone method (Marcotte and Marcotte, 2002) or
the principle of conserved gene neighborhood (Rogozin et al., 2002)
are applicable to the protein space.

A pairwise alignment is parameterized by its underlying substitu-
tion matrix, which models the exchange probabilities of the amino
acids as the BLOSUM50 matrix (Henikoff and Henikoff, 1992), the
costs of opening and extending gaps and the boundary condition
whether the alignment should be optimized locally or globally.

The optimal solution for the local case is the Smith–Waterman
algorithm (Smith and Waterman, 1981). A straightforward way to
build up the similarity space would be to compute for each pair of pro-
teins the Smith–Waterman alignment and to keep high-scoring hits
for further processing. Although efficient implementations (Rognes
and Seeberg, 2000) exist, the computational costs (i.e. the CPU time
needed) are still high. So a number of heuristic approaches have
been introduced, such as BLAST (Altschul et al., 1990) or FASTA
(Pearson, 2000). These heuristics speed up the search for biologically
meaningful hits in a database significantly and are therefore widely
used by bioinformaticians and biologists alike.

The result sets returned by database searches are typically filtered
and sorted according to their biological relevance using statistics.
The methods commonly applied are Z-score statistics (Bastien et al.,
2004) and the statistics for high-scoring segment pairs relying on
the extreme value distribution (Altschul and Gish, 1996), which is
commonly used as an approximation for local alignment statistics.
The expectation value (E-value) describes how many hits would be
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formed randomly given a sequence of a certain length and a database
to search against. According to the extreme value distribution model,
it is computed by the well-known formula

E = mn 2−S′
(1)

It is parameterized by the query sequence length m and the length of
the database n. This means that searches between differently sized
databases result in different E-values.

The normalized bit-score S ′ represents the distance between the
two sequences and is computed using the parameters K and λ by the
following formula:

S ′ = λS − ln(K)/(ln 2) (2)

The two values K and λ rely on the database composition and the
substitution matrix. They can be either estimated with each database
search, as is the case for modern versions of the FASTA package
(Pearson, 2000) or fixed estimates for an average database, and each
substitution matrix can be used as in BLAST (Altschul et al., 1990)
in order to gain speed.

Another widely used measurement to detect strongly related pro-
teins is the overall sequence identity. There is a vivid discussion
concerning the maximum thresholds at which annotation transfer
can be done automatically (Wilson et al., 2000).

As described, similarity searches are a core application in com-
putational biology. Furthermore, many analyses rely on exhaustive
all-against-all comparisons. Typically, these comparisons are redone
again and again since the available datasets change over time. In many
analyses such as the detection of orthologous relationship (O’Brien
et al., 2005), this re-computation is the most time-consuming step
and makes the analysis intractable for large or many datasets. There-
fore, a pre-calculated all-against-all matrix that stores the similarity
space in a database and allows very rapid access to significant hits
of interest becomes desirable.

Such a database should avoid redundancy and provide useful
interfaces which allow for extraction of different subsets and the
application of different cut-offs. It should be regularly updated
and the saved values should therefore be independent of the data-
base’s size and composition in order to ensure compatibility between
different versions.

The time complexity for an all-against-all comparison to produce
a sequence similarity space is O(n2) in respect of the number of
individual sequences since every protein must be compared with
every other protein. In a good approximation, the alignments and the
alignment raw scores are symmetrical (i.e. the score for an alignment
formed by sequence A with sequence B is the same as that for B
with A). This property has already been used to halve the amount
of computation required (Dumontier and Hogue, 2002) and it also
implies an incremental update process: every new sequence has to
be computed against itself and against all sequences already in the
database. The result is saved for the new sequence and the result lists
of the old sequences can be updated without re-computation. As an
implemented solution, we present SIMAP, the Similarity Matrix of
Proteins.

2 METHODS
The central component of the SIMAP concept is the algorithm that pre-
computes the sequence similarities. As it was evaluated to be the best
compromise between computational speed and sensitivity (Pearson, 1991)

we have chosen FASTA (Pearson, 2000) for finding all putative hits. The
FASTA parameter ktup = 1 and BLOSUM50 substitution matrix are used to
adjust the calculations to optimal sensitivity. Before FASTA calculations, all
low-complexity regions in the sequences are masked by seg (Wootton, 1994).
In order to store exact alignment coordinates and scores in the hit database,
every FASTA hit is recalculated without low-complexity filtering using the
Smith–Waterman algorithm and BLOSUM50 substitution matrix. If the final
Smith–Waterman-score is ≥80 the hit is accepted and stored. This score is
independent of the query and database lengths, as is necessary in a growing
database such as SIMAP. The score threshold of 80 is an optimal compromise
between sensitivity and the amount of data to be handled.

3 IMPLEMENTATION

3.1 Import of data
SIMAP represents proteomes and sequence collections from very
different data sources. For that reason we have implemented a flexible
input layer which is based on the data access object (DAO) design
pattern. DAO classes are available for files using multiple FASTA
format and EMBL format, databases such as PEDANT (Riley et al.,
2005) and web services as provided by the mips plantsDB and GenRE
projects (Schoof et al., 2004). The imported data are separated into
three entities:

• Proteome/project (describes the context of the proteins)

• Protein (describes a certain protein entry and references to
proteome/project and sequence)

• Sequence (contains the non-redundant protein sequences,
checksums and selfscores)

As all similarity calculations rely only on the pure sequences, the
separation of protein and sequence information is necessary to avoid
redundant calculations. All protein sequences are preprocessed for
validation and low-complexity filtering. In order to avoid loss of
information, low-complexity regions are not masked by ‘X’ but
converted into lowercase letters.

New proteome/project entries are added manually because some
additional information, such as the taxonomy node ID, is required.
The protein import and update procedures run fully automatically and
very efficiently. They can be scheduled in advance or run manually.
New sequences are tagged and need to be processed by the calculation
module.

3.2 Similarity calculation
The SIMAP calculation module was designed to run both in
standalone mode and in grid environments. It is based on the
FASTA source code and performs the two-step computational
process as mentioned above: first it compares low-complexity
masked proteins using FASTA heuristics and then it recalculates
found hits using non-masked sequences and the Smith–Waterman
algorithm.

The calculation client runs as a command-line program, e.g. in
Sun Gridengine clusters (http://gridengine.sunsource.net), and also
contains the BOINC core client to be used in BOINC-based grid
systems (http://boinc.berkeley.edu). The results are validated by the
SIMAP server and encoded into the binary hit format. Every hit
consumes 19 bytes and contains

• Sequence IDs

• Smith–Waterman score
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Fig. 1. Schematic data flow and data structure in SIMAP

• Identity

• Gapped Identity

• Overlap

• Start and stop coordinates of the alignment in both proteins

To provide retrieval-optimized data structures, all hits are sorted des-
cending by score and organized in a hash-like structure that is stored
in one binary hitfile per sequence:

• The key (sequence ID) is encoded by pathname and filename.

• The value (sorted list of hit data blocks as described above) is
stored within the file content.

This approach trades time for disk space, so every hit is stored
redundantly in two hitfiles according to the two sequences of the
pair. Nevertheless, this turned out to be the only implementation that
provides the necessary retrieval speed.

The whole SIMAP data can be exported using filtering condi-
tions into custom ‘mini-SIMAPs’, which contain data from selected
organisms, for example, or hits down to a specified score. The
data flow and data structure in SIMAP are shown schematically in
Figure 1.

3.3 Data access and retrieval
The most important use for SIMAP is the retrieval of homologs for
a given protein according to a user-defined search space and fil-
tering. We have implemented a flexible and fast infrastructure to
get data out of SIMAP in order to realize this and other usages
as well.

First, a PERL package has been implemented for integrating
SIMAP into other bioinformatics applications. The package allows
the programmer to specify the search space and filtering conditions
and then to retrieve the homologs from SIMAP.

Additionally, we have implemented a server-based retrieval layer
using Enterprise Java Beans (EJB). It serves as a database abstrac-
tion layer and hides the internal structure of SIMAP from users.
Several EJBs have been implemented that represent the different
SIMAP classes such as sequence, protein, organism and taxonomy.
The EJBs are server-side components designed for distributed access
and information management. They allow easy integration of SIMAP
into any kind of application within the mips Genome Research
Environment (GenRE) (http://mips.gsf.de/genre/proj/genre) used for
our various genome and protein interaction databases. However,

we the programmatic access is not restricted to internal applica-
tions but offers the same functionality also for web-wide external
access. Therefore we developed additionally a HOBIT service layer
(http://hobit.gsf.de) based on the web service technology to share
SIMAP in a programming language independent and web-wide way
with the public domain.

Users who want to retrieve SIMAP data directly can use a
command-line client for the EJBs or the SIMAP web server. This
public server offers three entry points for users:

(1) ProtInfo (protein information system)

(2) SimpleSIMAP (simple SIMAP retrieval using a predefined set
of parameters)

(3) AdvancedSIMAP (flexible SIMAP retrieval that provides
a wide variety of parameters, sorting and filtering
capabilities)

The ProtInfo system allows searching for sequences and proteins
in SIMAP by sequence fragments and keywords. The query
sequences are searched within the SIMAP sequences using an
indexing structure that allows fast searches for similar or par-
tial sequences in large databases. Keyword queries are evalu-
ated using GISE (http://mips.gsf.de/genre/proj/gise). Each ProtInfo
query yields a result list of the identical, containing, contained
and most similar SIMAP sequences and their related protein
entries. Using ProtInfo SIMAP can serve as a huge protein
information system that provides very quickly all proteins that
share the same or very similar sequences. Links to the Simple-
SIMAP and AdvancedSIMAP systems are provided for every
sequence.

SimpleSIMAP and AdvancedSIMAP retrieve homologs for given
protein sequences that need to be contained in the SIMAP data-
base. Whereas SimpleSIMAP provides only selected parameters and
preconfigured search spaces, AdvancedSIMAP allows the user to
specify search space, filtering and sorting parameters in a flexible
manner. Both types of query result in lists of homologs that are
linked in turn to their homologs. So the web interfaces allow users to
explore the protein world by homology, starting with a user-defined
protein sequence.

4 APPLICATIONS

4.1 Integration into genome databases
SIMAP is already integrated into several genome databases such
as the Comprehensive Yeast Genome Database (CYGD) (Guldener
et al., 2005) and the genome database of the Parachlamydia-related
symbiont UWE25 (Horn et al., 2004). Here, it serves as a substitute
for pre-calculated BLAST searches. The user can choose subsets
of interest by taxonomy and can, for example, display only hits in
other chlamydiae. In CYGD, SIMAP is also used to display yeast
homologs which exist exclusively in certain taxa.

4.2 Speeding up ortholog detection
In order to gain knowledge rapidly using the SIMAP data and
to show the increase in performance we adapted some standard
applications into the SIMAP system. In these standard applica-
tions, the main focus is the detection of orthologous sequences
between different species. We implemented a pipeline for the
exhaustive detection of bidirectional best hits (BBHs), which is
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a standard approach to detecting putative orthologs in prokaryotic
genomes.

We have implemented a data repository of these BBHs which is
automatically updated whenever a proteome set changes. We provide
web service access to these data.

4.3 SIMAP-integrated Inparanoid
Another widely used approach is the Inparanoid procedure (O’Brien
et al., 2005), which detects orthologs and inparalogs in a pairwise
comparison between two genome datasets. We adapted the ori-
ginal program to use SIMAP instead of BLAST searches. Since the
BLAST queries are the costly step in this analysis, this adaptation
brings down the computation time from ∼42 to ∼3 h when making a
comparison between Drosophila melanogaster and Caenorhabditis
elegans, for example. This makes an all-against-all approach tract-
able, and we provide a couple of comparisons on the SIMAP website.
The computation is based on the same system as the BBH tool, so
updates in the genome data are instantly taken into account and the
data are updated automatically.

4.4 Phylogenetic profiling
Phylogenetic profiling is a well-established method for predicting
functional relationships and physical interactions between proteins.
Classical phylogenetic profiling computes occurrence profiles from
orthologous relationships between proteins and is computationally
expensive (Pellegrini et al., 1999). For a recent comparison between
the newly developed profiling method DIMA and classical profiling,
SIMAP was used (Pagel et al., 2004) to speed up the ortholog detec-
tion step.

5 RESULTS
Data from important public protein databases and completely
sequences genomes have been imported into SIMAP over the past
two years. At the moment SIMAP contains the recent version of
these databases:

• UNIPROT TrEMBL

• UNIPROT SwissProt

• mips nonredH

• PFAM

• PDB

• All genomes from http://pedant.gsf.de

• All genome databases at mips, e.g. CYGD and MatDB

• Many project-specific databases

The total number of ∼7 million protein entries corresponds to
∼3.5 million non-redundant protein sequences. The hit files contain
∼10 billion single hits.

Most of the databases (UNIPROT, PFAM, PDB and PEDANT) are
checked weekly for updated entries. The updates are performed using
a fully automated procedure that also triggers the FASTA calculations
for new sequences.

Comparing the speed of the FASTA binary and SIMAP we were
able to demonstrate the enormous advantage of SIMAP, which is
up to 800 times faster than FASTA calculations, depending on the
lengths of query and database sequences (Table 1).

Table 1. Benchmark results for the FASTA binary and SIMAP (Intel Pen-
tium 4 CPU, 2.4 GHz) for searching the 20 best hits for sample UNIPROT
sequences in UNIPROT-TrEMBL

Query ID Query
length

FASTA run
time

SIMAP retrieval
time (s)

Speed gain by
SIMAP

AB020210_1 100 3 min 15.5 s 0.6 325
AB037127_1 200 5 min 07.5 s 0.7 440
AB035325_4 300 7 min 01.8 s 0.9 469
AB026669_3 400 8 min 49.7 s 0.8 662
AB016537_3 500 10 min 50.4 s 0.8 812
CCA6246_1 600 11 min 51.9 s 0.9 791

6 CONCLUSION
We have implemented SIMAP, a database containing the simil-
arity space formed by ∼3.5 million amino acid sequences from
>400 organisms by exhaustive similarity searches using the Fasta34
algorithm. The database is capable of handling very large data-
sets and contains >10 billion data points at the moment. We have
implemented a powerful backbone for computation, which employs
standard Grid systems as well as BOINC clients. This backbone,
in addition to the FASTA heuristic and the incremental update pro-
cess, enables us to keep up with the ever increasing amount of data
by using our in-house hardware in an efficient way. By providing
WWW interfaces as well as web services, we make our data access-
ible to the worldwide community. We have also adapted procedures to
detect putative orthologs as example applications. SIMAP is a short-
cut whenever all-against-all comparisons of protein sequences are
needed and therefore speeds up many analysis steps used in genome
projects.
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