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Abstract

Primary biological organic aerosols (PBOA) représanmajor component of the coarse
organic matter (OMoarss aerodynamic diameter >2u8). Although this fraction affects
human health and climate, its quantification anéncical characterization currently remain
elusive. We present the first quantification of grgire PBOAoarse mass and its main sources
by analyzing size-segregated filter samples cabkbcturing summer and winter at the rural site
of Payerne (Switzerland), representing a contindati@ope background environment. The size-
segregated water soluble OM was analyzed by a neleleloped offline aerosol mass
spectrometric technique (AMS). Collected spectraewanalyzed by 3-dimensional positive
matrix factorization (3D-PMF), showing that PBOApresented the main QMarse source
during summer and its contribution to PMwvas comparable to that of secondary organic
aerosol. We found substantial cellulose contrimgito OMcoarss Which in combination with
gas chromatography mass spectrometry molecular er&ariuantification, underlined the

predominance of plant debris. Quantitative polyrserahain reaction (QPCR) analysis instead
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revealed that the sum of bacterial and fungal spaorass represented only a minor gJwkse
fraction (<0.1%). X-ray photoelectron spectroscdpiPS) analysis of C and N binding energies
throughout the size fractions revealed an organitdiease in the P)\ compared to PM

consistent with AMS observations.

Introduction

Primary biological organic aerosol (PBOA) is a niggource of coarse aerosol organic matter
(OM). The detection of these particles has beensthigect of studies for one and a half
centuries-® Studie have related single PBOA components to adverséhheéfects® and
revealed their important role as ice and cloud eosdtion nuclei’® Emissions of primary
biological particles (PBAP) are estimated to be aghthe largest contributors of pre-industrial
organic aerosolS, therefore a precise estimate of their sourceslss @mportant for the
development of accurate climate modelsNevertheless, PBOA characterization and
guantification has received less attention thammtipes of aerosol sources and processes (e.g.
traffic, mineral dust, sulfate, wood combustion aedondary organic aerosol), possibly because
of technical limitations hindering the understamgdiof the sources and composition of this
fraction.

Traditional analytical techniques for the PBOA @werization include optical microscopy,
cultivation of specific viable bacteria, fungi amdlyjae and fluorescence microscopy for the
quantification of functionalized or autoflorescepiecific componentsMore recent approaches
are classified into molecular techniques (e.g. dbaintracers determination, nucleic acids
extraction and amplification), optical techniquésqrescent and Raman spectroscopy), and non-

optical techniques. Fluorescence techniques argaoficular relevance because biological
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materials contain fluorophoré$*® Non-optical approaches include different typesnudss
spectrometers; among these, we note the recent use of onlinesalenoass spectrometry (AMS)
for the study of the submicron fractiGh'®

Despite the vast literature focusing on the quimatifon of individual PBOA components, the
guantification of the total PBOA mass and the n@ocesses by which this fraction enters the
atmosphere remains elusive. As a consequence,nteendtional Panel on Climate Change
2013”7 reported the global terrestrial PBOA emission aoge between 50 and 1000 Tg/yr,
highlighting the large gap in our knowledge abdus ffraction. Within this fraction, 28 Tg/yr
were estimated to comprise fungal spore emissisirgtarabitol and mannitol as trac&tshe
use of these compounds as specific fungal spoeeers is still subject of discussion in the
scientific community”? and there is a general indispensable need fordétermination of
PBOA concentrations and major emission processesigh size-resolved field observations
against which the global models can be evaluated.

In this study, we present the first quantificatiohthe total water-soluble PBOA (WSPBOA)
mass using an offline Aerodyne Time-of-Flight Aeb$lass Spectrometer (ToF-AMS). The
analysis was performed on RPMPM,s and PM, (particulate matter with an aerodynamic
diameter < 1, 2.5 and 1@m) filter samples collected concomitantly at theatsite of Payerne,
Switzerland. WSPBOA quantification was achieved Bydimensional positive matrix
factorization analysis (3D-PMF) of water soluble O#ass spectra, following the recently
developed methodology described by Daellenfad¢h.comparison with previous PBOA online
AMS observations?**® the filter samples water extraction step enabledessing the
WSOMcoarse fraction. For the characterization of the main PB8&burces, the dataset was

complemented with an unprecedented combination ehsmrements, including enzymatic
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cellulose determination, quantification of bacteréand fungal spore DNA via quantitative
polymerase chain reaction (QPCR), and gas chromegithy mass spectrometry analysis (GC-
MS) of organic molecular markers. In this study, discuss the quantification of the total PBOA
mass via 3D-PMF, the quantification of its majommmnents and their possible usage as PBOA
tracers including bacteria and fungal spores measuia qPCR, plant debris estimate from

alkanes measurements, and carbohydrates.

Material and Methods

Sample collection. We collected in total 87 24h-integrated aerosol gam (Batch A) on

quartz fiber filters at the rural background sitePayerne during June-July 2012 and January-
February 2013. Batch A included RMPM, 5, and PMo samples collected in parallel using three
High-Volume samplers (Digitel DA-80H equipped wiBM;, PM,s and PMo size-selective
inlets) operating at 500 L niMm In total 45 samples were collected during sum¢tBrsamples
per size fraction), and 42 during winter (14 sammgler size fraction). Additionally, PMfilters
were collected every fourth day throughout 201®feing the same procedure (Batch B). In the
following, the subscriptcoarse will denote for a generic aerosol component, thection

contained between 2.5 and [10.
Aerosol characterization. An overview of the auxiliary analytical measuretsenan be

found in Table 1, Table S2, and in the Supplemgnbaformation (SlI). In this section only
offline-AMS, qPCR, and x-ray photoelectron speatogs/ (XPS) will be discussed in details.

Table 1. Supporting measurements

Measured variable Batch A Batch B

ACS Paragon Plus Environment
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PM Gravimetry All filters -
WSOM mass spectral - ghine Apg?? All filters All filters
fingerprint
Thermal Optical
Transmittance using a ,
EC/OC Sunset Lab Analyz& All filters -
(EUSAAR2F®
ions lon Chromatography All filters -
Water extraction Thermal
Decomposition ND-IR :
WSOC determination using TOC Al filters i
analyzer (Sl)
Cellulose enzymatic 32 filters (9 summer
conversion to D)-/ lucose T Muofilters, 4 winter
Cellulose g PMjg, 5 summer -

and photometric

determinatiof’ PMzs, 9 summer Pl

and 5 summer PM

In-Situ Derivatization 40 samples (15
Thermal Desorption Gas summer PM, 15

molecular markers Chromatography Time-of- ~ summer PMo, 5 -

(Table S2) Flight Mass Spectrometry winter PM, 5 winter
(IDTD-GC-MSY® PM0)
Cls, N1s Binding X-Ray Photoelectron 6 samples (3 summer )
energies Spectroscopy PMyg, 3 summer Ply)

— 58 samples (all
Quantitative Polymerase PM, PM, 5,

Chain Reaction genetic _ i
analysig”?® and PMy, all winter

PM; and PMy)

bacterial and fungal
spore DNA

IC coupled to a Pulsed
Amperometric Detector All samples -
(IC-PAD)?®

Carbohydrates (Table
S2)

106
107 Offline-AMS.The Offline-AMS analysis entails an extractionteb 16 mm diameter punches
108 per sample in 10 mL of ultrapure water (18.22bn, Total Organic Carbon < 5 ppb) via ultra-

109 sonication for 20 min at 30°C. Liquid extracts wsrtdsequently homogenized for 40 s using a
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vortex mixer and then filtered through 0.48 nylon membrane syringe filters. Filtered extracts
were aerosolized and the generated particles wezd dsing a silica gel diffusion drier before
measurement by HR-ToF-AM®.0n average 10 mass spectra (60 s each) of theVBSIRM
were collected per extract. Before each sample mneagent, 5 blank mass spectra were
collected by nebulizing ultrapure water, and tla@ierage was subtracted from the corresponding
individual sample mass spectra. The signal of figathk samples measured following the same
procedure was statistically not different from thgapure water mass spectra.

XPS XPS analysis enabled monitoring the binding elesr¢BE) of C, S and N, providing
insight into their oxidation state (typically highBE are related to higher oxidation numbers),
and thereby quantifying the organic Nyl mass through the size fractions. The same asalysi
was conducted on 3 field blanks and on N-contairsngogate standards deposited on blank
quartz fiber filters. Tested standards included Naldnd (NH,).SO, for the characterization of
the most abundant forms of inorganic N, while hadesh peroxidase and chloroperoxidase
from caldariomyces fumagaere used as surrogates for amine and amide oorggiroteins in
PBOA. Signal identification and integration proceeédas follows. The obtained spectra were
first aligned with a two-point BE calibration usitige Sj, and the G peaks deriving from the
quartz fiber filters as reference points. We estadaan energy accuracy of 0.3 eV, and an
average fitting error of 1.4% by fitting the sigmabf replicate measurements of standard
compounds and blanks and assuming a single Gaussanfor each atom. These parameters
were then used for the fitting of the blank-sultiedcG, and Ns signals in environmental
samples, which consisted of several peaks fronemifit chemical components. The number of
these peaks was determined such that fitting ratgd(iraction of signal) equaled the fitting

errors determined from the fitting of single compds. The Ns peak widths were constrained to
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be equal to the one derived from (N}$O, standard, while the €peak width was determined
from blank filters. From the analysis of standaxdHg),SOs we derived an average; §&,, ratio

of 0.80£0.02, which was used to estimate theddntribution from (NH).SO; (N15nh,),s0,)-

This contribution was fixed in proportion of that $,, using the aforementioned.#&;, ratio

and Ns peak width. This estimate neglected the contrdsufrom organic or non-(NpLSO,
sulfate. The uncertainty on ttnu,),s0, area was estimated based on the integration of the
Szp peak. Nsfitting sensitivity analysis was performed by viag/theN,gny,),s0, P€ak position
and area within our uncertainties. Only fittings Nfsnu,),so0,With residuals lower than our
errors were retained.

gPCR.We performed a qPCR analysis in order to quantifgl bacterial and fungal spore DNA.
DNA extraction was conducted following the procedpresented in the SI and specific
universal primers (Table S3) were selected forl totdA quantification of bacterial and fungal
spores. The extracted DNA was amplified using tfCH technique described in Lang-
Yona?"?® The total number of bacterial cells and fungalrepavas estimated assuming a DNA
content of 4.74.0° pg per bacterial cell and1®? pg per fungal spore respectively, based on the
Escherichia coliand Aspergillus fumigatugenome lengths (4,639,221 bp and 29,384,958 bp,
respectively}’ Total bacterial mass was estimated for;Pavd PM, samples assuming as a
reference the dry and wet coli cell weights (3L0™ and 110*? g, respectivelyj* while total

fungal spores mass was based onithimigatusspore weight of 2:90%? g3

3D-PMF

OA mass spectra collected by offline-AMS were apatl/using 3D-PMF to apportion the time-

dependent size-segregated (RPNMPM.s, PMo) contributions of the water soluble organic
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sources’ We adopted a vector-matrix approdtlalso known as “Tuckerl” approa€lin which
we assumed constant mass spectra throughout teefrsictions. The 3D-PMF algorithm
describes the variability of the multivariate datatrix () as the linear combination of static
factor profiles f) and their corresponding time and size-dependamtributions ¢), such that
Xijje = Dpe1 Gijz " fok T €ijk 1)

Here, x; ;, denotes an element of the data matrix, while sifisd, j andk represent time,
size and organic ions (250 fitted organic ionshe tangem/z 12 to 115) respectively. The
subscriptg andz indicate the total number of factors selectedHgyuser, and a discrete factor
number (1< z< p) respectively, while ;x represents an element of the residual matrix.

PMF was solved using the multi-linear engine altyoni (ME-2)*"*® (using the source finder,
SoFiy® which enabled an efficient exploration of the timaal ambiguity by directing the
solution toward environmentally relevant rotatiof$is was achieved by a-priori constraining
f2x and/org; ; , elements, and allowing the constrained elementsity within a predetermined
range defined by a scalaysuch that the returng@l,’ or g; ; . values satisfy eq 2.

foi=fonta (2)

Here we constrained thfematrix elements for only one factor, related tadwgarbon-like

organic aerosol (HOA) from traffic (S).
PMF data and error input matrices &nd s) were constructed including ten mass spectral
repetitions per filter sample. Data and error neasiwere rescaled to WSQWNM order to
compare source apportionment results with extetreters. WSOM concentrations were
estimated from the WSQGneasurements multiplied by the OM/Oi@tios determined from

offline-AMS HR analysis (measured OM/@distribution ' quartile 1.89, % quartile 2.01¥° In

ACS Paragon Plus Environment
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total, the 3D-PMF input matrices comprised 87 samporresponding to 29 filters per size
fractions.

The error matrix elements;g were determined according to eq 3 by propagatey tlank
standard deviatiorg;jx and the signal erro;jx accounting for electronic noise, ion-to-ion

variability at the detector, and ion counting stids**

2
Si,j,k = /Si,j,k + Glz,j,k (3)

The optimization of the 3D-PMF results is thoroygptesented in the Sl. Briefly, to improve
the factor separation we up-weighted selected bimsa dividing their corresponding
uncertainties by a scalar(>1)* The sensitivity of model outputs tcanda-values was assessed
and only solutions matching selected criteria wetained (Sl). The variability of the results
amongst the selected solutions was consideredestirelstimate of model errors.

PMF factor contributions to total OM were estimaséer PMF analysis as:

WSZO0A;
Ry

ZOA = (4)

Here, WSZOA and [ZOA] denote for a generig source the concentration of the ambient water
soluble organic aerosol and the total organic a¢mespectively, whild, indicates the recovery
efficiency for that source. In total, 5 OA factongere separated including HOA, summer
oxygenated OA (S-OOA), winter oxygenated OA (W-OQOBipmass burning OA (BBOA), and
primary biological OA (PBOA). ThdR, meq determined by Daellenbathwere applied to all
factors except for PBOA, whose recovery was novipusly estimated. Accordingly, we shall
report hereafter the concentration of WSPBOA anidnese the PBOA water solubility.

Source apportionment errorss(a. zj) were estimated according to eq 5, which accofont&;

and rotational uncertaintyféurrzi), measurement repeatabilitygep ), and WSOM uncertainty

(owsoc,)-

ACS Paragon Plus Environment
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201 0sA,Zi = \/ O-}%MF,RZ,L' + UI%EP,Z,;‘ + zz,i ) Oﬁ/SOM,i )
202 Heref; denotes the relative contribution of the geneactdr Z to WSOM. owsow i includes
203 WSOC blank variability and measurement repeatgbilfthe ogpvrrzi term includes the
204  variability of the rescaled PMF solutions and reprgs our best estimate of recovery errors and
205 rotational ambiguity. Theogrep zi term was considered as our best estimate of expatal
206 repeatability/errors and represents the variabiliy PMF results for the measurements

207 repetitions.

208

209 Results and Discussion

210 PM major components

211 A complete overview of the size-segregated chendoaiposition of winter and summer PM
212 components is presented in Figure la. In the foligwaverage and median values are indicated

213 with the subscriptavgandmed respectively.
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Figure 1. 1la) Seasonal PM chemical composition of the differsize fractions. The OM
estimate was calculated from Q@easurements multiplied by the corresponding OM/OC
retrieved from offline-AMS HR analysis. 1b) Averageasonal aerosol sources contributions to
OM in the different size fractions. White are catsnt with our estimate of the water insoluble
PBOA fractions (Figure S8)Jlc) Summer OMoarse major components. 1d) WSPBOA high
resolution AMS mass spectrum.

OM represented a major component of PM during sumand winter. While during winter
large part of the OM (87%) was comprised in the BMfraction, during summer this fraction
represented only 58%. In contrast, during summesrsgary inorganic species ($QNH,", and
NO3) did not manifest a comparable increase incBMse (85% of the mass comprised in the
PM, 5 fraction) suggesting a small contribution of amshtl secondary aerosols in the coarse
fraction. Overall OMoarse accounted for 3ug m“’*a\,g during summer, and as will be shown in
the following, large part of this fraction constiéd of PBOA (Figure S13).

Similarly to OM, dust likely from resuspensfSnwas enhanced in the coarse fraction
especially during summer. The upper limit for therganic dusgioarse concentration was
estimated as the difference between inorganigoPdvd inorganic PMs (PMcoarse,inord, and
accounted for 31%g during summer and 5%g during winter, although this estimate can include
small sea salt contributions (SI). The obtainedztn?aﬂ)COARSE,inorgvalue of 4.2%eq (1 quartile
3.2%, 3 quartile 7.7%) was consistent with the ratios regmbby Chow? for 20 different dust
profiles (3.5+0.5%), and with values reported by amin Ziirich*® As a comparison, the total

OMcoarse concentration represented 36§®f PMcoarse (8.4 g m?), compared to the 62%

for dustoarse,inorg

Size resolved OA source apportionment

ACS Paragon Plus Environment
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In this section we present the validation of theBIAF factors (HOA, BBOA, W-OOA, S-OO0A,

and WSPBOA) which enabled the quantification of VBSIA. Average source apportionment

results are presented in Figure 1b and Figure 2.
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Figure 2. 3D-PMF source apportionment results. 2a) Sizetibbaal time series of PMF factors,
corresponding tracers, and temperature. Error tegmesent source apportionment uncertainty.
2b) Size fractional increase (R¥PM;) time series of PMF factors, and correspondingetrs
3D-PMF factors were associated to aerosol sourcgsraresses according to mass spectral
features, seasonal contributions, size fractiooatrdoutions, and correlation with tracers (Figure
2). Given the lack of widely accepted methodologgesstimate the uncertainty of PMF results,
in this work we consideredsa ki (Methodology section) as our source apportionment
uncertainty, while the statistical significancetloé factor contributions for each size fraction was
based on our best error estimation £ x; Table S4).
HOA and BBOA contributions represented the onlyhaempogenic primary sources resolved in
Payerne. In particular, HOA correlated with hopapessent in lubricant oils with@=0.54 (SI).
This correlation is also supported by the summeDAHEC)eq ratio (0.639 being consistent
with other European studies reported by El Haddad mferences therefi.BBOA instead
correlated with levoglucosan produced by cellulpgmlysis =0.94). A levoglucosan/BBOC
ratio of 0.18.qwas found, consistent with values reported (Huand references theréfh for
ambient BBOA observations. Both HOA and BBOA showsthtistically significant
contributions (>8) only in the submicron fractions. The seasonaldrehthese anthropogenic
factors was also significantly different: while tRHEOA (traffic) contribution was relatively stable
and small across the year, BBOA showed a strongpsedity, rising from 6%,y of OM; during
summer to 73%g during winter.

Two OOA factors characterized by high £€@ontributions were separated according to their
different seasonal trends. While W-OOA showed angjrcorrelation with N@ (R=0.94), S-
OOA showed a positive non-linear correlation widmperature, following the behavior of

biogenic volatile organic compounds emissiéh§he relative contribution of W-OOA to OM
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rose from 5%, during summer to 22%, during winter, while the S-OOA contribution to QM
decreased from 59%% during summer to 4%, during winter. W-OOA was the only factor
significantly contributing (within 8) to OM in the size range 1-28n (48%,4 of the W-OOA
mass in winter), while the W-OQ#@arse contribution was never statistically significant.
NHsNO; behaved similarly with 31%@, of the mass in winter comprised in R&¥PM,;. During
summer instead S-OOA showed a different behavighenthree size fractions: its contribution
was significant for PM but not in the size range 1-2in. The overall S-OO#s fraction
accounted for 82+2%, of the mass, while the remaining 18+gJawas included in OMoarse
Considering the sum of both OOA factors, the OOA/NJ; ratio for PM, was 2.1, consistent
with values reported by Crippfsfor 25 different European rural stations, suggesthat Payerne
can be representative of typical European rurairenments.

The last PMF factor showed an unusual size fraation with 96%,4 of its mass comprised in
the PMcoarse during summer (0.54+0.0@g m®), corresponding to 49% of the WSQWirse
(or 19%,4 of the OMcoarse. This factor was ascribed to water soluble primbiological
organic aerosol, given its striking mass spectegsemblance to biological carbohydrates and
plant debris extracts with high contribution frorsHzO,", C;HsO," and GHs0," (Figure 1d, S3,
S10), its enhancement in QMhrse especially during summer, and its correlationshwit
biological aerosol components such as arabitol, nitan glucose-??°>*°2 cellulose, total
bacteria, and fungal spores. The detection of dackor was unprecedented in the AMS
literature given the limited transmission efficignaf the AMS aerodynamic lens for the coarse
fraction?® although Schneid&t proposed the use of some of the PBOA fragmenectigt here

to assess the contribution of PBOA to Pfdm online AMS measurements in the Amazon.
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291 Also during winter WSPBOA showed a smaller butl ssilgnificant contribution to the
292  OMcoarse (30% of WSOMoarse Or 8% of OMeoarse With 68%4 Of the mass comprised in
293 the coarse fraction. This result was corroboratgd ab minor but statistically significant
294 enhancement in the coarse fraction (in comparisaéh WM,z of biological carbohydrates
295 (monosaccharidgg: Z(glucose, mannose, arabitol and mannitol)), cedej@and fungal spores.
296 The chemical characteristics and origin of thiscticen will be thoroughly discussed in the

297 following sections.
298 Composition of OMcoarsk.

299 This section presents a detailed characterizatfod®@Mcoarss Of which 91%,4 of the mass
300 was ascribed to PBOA.

301 Water soluble and insoluble Qdarse Figure 1c displays the relative chemical compositi
302 of OMcoarse during summer. The major part of QWhrse could be ascribed to cellulose
303 (50+20%,9 and WSOMoarse (38%ug. Given the low cellulose water solubility, and
304 consequently its negligible contribution to WSOMegttwo fractions together accounted for
305 88%g Of the OMcoarse Regarding the origin of the WSQMarse fraction, 3D-PMF results
306 revealed that only WSPBOA and WSS-OOA contributigdiBcantly to WSOM:oarse during
307 summer, explaining respectively 53%and 49%,q of the WSOMoarse mass. Assuming the
308 water insoluble OMoarse fraction not ascribed to S-OOA to be entirely tethto PBOA, we
309 calculated @Rpsoalowest estimate of 0.%8q (1™ quartile 0.15, % quartile 0.25) according to eq
310 S2, S3 and S4. This assumption was corroboratekedlyigh cellulose contributions to the water
311 insoluble OM:oarsefraction (82%,.¢ and by the good correlation of WSPBOA with QdArse
312 S-OOAcoarse (R=0.54), especially considering that the water Bl OM:oarse fraction

313 represented 623 of the total OMoarse
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Contribution of carbohydrates toPBOA and OMcoarse Measured carbohydrates
(carbohydratesas X (monosaccharidesgio, mannosan, levoglucosan, and galactosan))
represented 3% of Odbarse (8% of WSOMoarsg, Of which 93%,, was related to
monosaccharidgg. This fraction, albeit minor, was highly correldteith PBOA =0.73) and
cellulose R=0.85), showing a size fractionation similar to V& especially during summer
with 96%,,g Of the mass included in the QMhrse A similar behavior was noted in winter, with
29%,g Of the carbohydratgsas, coarseconsisting of monosacchariges suggesting a minor, but
statistically significant contribution of primarydbogical emissions, consistent with WSPBOA
from 3D-PMF results (figure 2). Also other biologiccomponents, such as cellulose and fungal
spores showed a small but significant contributiominter (respectively 0.0fg m®and 210
sporesn® detected on the $1of January 2013 PM filter sample). However, the overall
correlation of single monosacchariggswith each other and with other PBOA components was
relatively poor, indicating a high variability ilmé molecular composition of the carbohydrates.
Such variability highlighted the diversity of bigieal processes producing these sugars, clearly
hindering their use as single tracers for reliabtimating PBOA concentrations in our
conditions.

By ascribing all the monosaccharidesoarse to WSPBOA we estimated a contribution of
monosaccharidgs to WSPBOA of 15%,, Consistently, the WSPBOA average mass spectrum
(Figure 1d), similarly to BBOA, showed a typicahdierprint deriving from carbohydrate
fragmentatiof® as evidenced by strong contributions frorsHED,", CHsO," and CsHsO,"
fragments (Figure 1b, S3, S4, S10). We estimatatbtB9% of the remaining WSPBOA fraction
could be related to water soluble polysaccharidedter{ the subtraction of the

monosaccharidgg mass spectrum using D-mannitol and D-glucose asogates). This
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estimate was based on the non-monosacchged6SPBOA mass spectrum, assuming
C,H.0,", GHs0," and GHsO," as specific carbohydrates fragmentation tracdfEgure S4),
and using amylopectin and starch (Figure S10) a®gates for polysaccharides. This result,
together with the high cellulose contribution to @\rsg indicated that the majority of PBOA
consisted of carbohydrates.

Part of the remaining WSPBOA fraction instead wé#sibaited to N, 3D-PMF results
showed that WSPBOA explained great part of theabdity of minor N-containing fragments
(C3H9N™, CeHgN™, GsH12N™), consistent with XPS observations of an increasgg signal in
PMcoarse The WSPBOA spectrum as expected showed a high@rrétio (0.061) than other
factors. Overall both the carbohydrate signatun@ the increased N/C content were consistent
with the interpretation of our factor as WSPBOA.

Quantification of OM related to particulate abrasi@roducts from leaf surfaces (GM.9
using n-alkanesn-alkanes (C18-C39) measured via gas chromatogramss spectrometry
(IDTD-GC-MS) showed distinct signatures during thiéerent seasons and particle sizes. While
during winter most of the alkane mass was contaméain PM; (90% for alkanes with an odd
number of C; 97% for alkanes with an even numbeCpfduring summer only 50%g and
70%4 Of the odd and even alkanes were contained wiiWh. The summer-time signatures
were consistent with Roggé&*sobservations of alkane emissions from §Ms dominated by
odd alkanes with the highest contributions fromthacontane (C31) followed by nonacosane
(C29) and tritriacontane (C33) (Figure S9). By cast, in winter we observed a higher
contribution of smaller alkanes (C19-C24), withautclear odd/even predominance pattern,
which was consistent with winter urban observafiop®ssibly related to temperature-driven

partitioning of combustion emissions, and consistéth vehicular fuel combustion profilé5>°
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This was corroborated by a slight increase in therage HOA concentration during winter
compared to summer (Figure 2). We estimated thdribotion of OMebapLs by applying a
chemical mass balance approach (SI) usingitakanes/OMap. s ratios reported by Roggé>’
Assuming either green or dead leaves, and a pesgM/OC)een,dead leave§@nge between 1.2
and 2.2, the total estimated range for £Ms coarse Spanned from 0.5 to jug m'3avg,
corresponding to 16-32% of the OMcoarse This result, together with high cellulose
contributions, indicated that plant debris wasdbminating source of Obbarse
Fungal sporesFungal spores measured by qPCR represented a comgronent of OM. During
summer, their contribution was above the detedtrit only in the coarse fraction, representing
just 0.01%,, of the OM:oarse Mass (corresponding to 0.4 ng®mor 210° sporesn®).
Nevertheless, the measured fungal spotedamcentration during summer was consistent with
ranges reported in other studi@During winter, only one PhM sample showed concentrations
above the detection limits. The summer arabitoffin spore (807 pg/sporg,y and
mannitol/fungal spore (807 pg/sporg,g ratios were noticeably variable and higher thamse
reported by Bauét (1.2 pg arabitol/fungal spore, 1.7 pg mannitoléfahspore), suggesting that
these compounds are not unique fungal spore traoetrgiven the high levels of cellulose and
OMpapLs could be related to plant debris, as already megdby other studies.
Bacteria.Likewise, total bacterial mass estimated by qgP&Reasented a minor contributor to
OMcoarse Assuming dry or wek. coli cellular weights (SI), the total PlMbacterial mass
during summer was estimated as 1.320.7 riggor 420.2 ng rit., corresponding to-20°
cells my, This is consistent with the ranges reported iheotstudies®™® especially
considering that low concentrations are commoniseoked at remote and rural locatihdhe

bacterial size fractionation seasonality was simitathe other biological components: while
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383  69%,q Of the bacterial mass was comprised between thg BMI PM fraction during summer,
384 all bacterial mass (20° cells m>,,y) was detected in the submicron fraction duringtesin

385 Surface chemical composition from XPS analysisother approach to look at the entire
386 aerosol is to study the chemical composition of dtsface. This was performed by XPS
387 measurements, whicknabled monitoring the evolution of thes@nd Ns BE throughout the
388 different size fractions and thus providing cherhiodormation also about the water insoluble
389 fraction. Although XPS sensitivity was limited tioet particle surface (7 nm thickness) and low
390 volatility compounds (XPS technique operates uighn vacuum at I¢ torr), results showed a
391 significant increase of §; in the PMoarse We resolved both an inorganic and organig N
392 peak, with NsorgOccurring at a lower BE (397.7+0.3 eV, Figure 8gn that ofN;su,),s0,
393 and NaNQ (400.0+0.8 eV and 407.7+0.4 eV respectively). llge, tested by surrogates
394 (horseradish peroxidase and chloroperoxidase tralshariomyces fumagshowed the N peak
395 occurring at similar BE (398.7+0.3 eV) corroborgtiour interpretation of the N peak position.
396 Overall we observed a substantial increase of thg $ignal in PMg in comparison to PM
397 (Figure 3a) reflected by anolyCis ratio increase from 0.022+0.001 in Pkd 0.027+0.005 in
398 PM;io. From the N/Cis ratio and from the bulk total C measurements (TC+8Ckynser WE
399 estimated the b1 and Nygioconcentrations to be 0.05+0.08 m’,, and 0.13+0.01ug M,
400 respectively. This estimate assumeglyb follow the TC intra-particle concentration gierat.
401 While a crude assumption, this is the best and amyhodology providing an estimate of the
402  Ngg total mass.

403 Figure 3b displays the ;€peak fitting for a PM and a PMy filter sample. We report an
404 increase of the less oxidizeds@raction (Gspeak at lower BE) in PM, which was qualitatively

405 consistent with the odd-alkanes size fractionatiowerall, in all size fractions, the dominani;C
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contribution did not derive from the most oxidiz€lls peak (Figure 3b), but from the

intermediate oxidized C peak, which could be relatealcohols, ketones, and aldehydes. This

result, although relative only to the surface andthe less volatile fractions, seemed in

agreement with other studis.

XPS: 3a) and 3b)

blank subtracted signal
— organic Ny fitting (fitting sensitivity)**

]

1
i
~
o
IS]
S

1 I

— Ny, fitting from (NH,),SO, (fitting sensitivity)**
C; fitting

| Reference standards

* Horseradish Peroxidase and

3b) ,
’ /\ Chloroperoxidase from C. Fumago
/ — ** Multiple iterations of the same fit

280 285 290 295
/\ -PMl
S
T T T T
280 285 290 295

Binding energy [eV]

Figure 3. 3a) XPS measurementsidyeak fitting (PM and PMo sample from 04/07/2012). 3b)
XPS measurements;{peak fitting (PM and PMy sample from 04/07/2012).

Yearly estimate of PBOA relative contribution to OM1o

From 3D-PMF analysis we identified a set of AMSgireents as potential PBOA tracers (figure

S4). Among these fragments we selectesH, 0, and GHsO," to estimate the PBOA

contribution for the entire year 2013 (batch B)egivtheir relatively high signal to noise, and

because they are commonly fitted in HR analysisthBwagments showed a contribution

statistically higher than 0 withinalonly to the BBOA, PBOA, and HOA factors. However,

given the low HOA concentration at the rural skgy(re 2a), and given the low contribution of
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the two fragments to the HOA profile (0.02% and39@respectively) we neglected the HOA
contribution to GH4O," and GHsO,". Therefore the water soluble,lsO," and GH4O,"

fractional contribution to WSOMSfC,HsO,"; andWSfC,H40,%) could be expressed as:

+ N WSPBOA N WSBBOA
WSfCoHsO,'i = fCoHs0x wspeoa =i + fCoHs02 wsssoa™ =, ———i (6)
+ N WSPBOA N WSBBOA
WSfCaHOs'i = fCoHaOz wspeoa =i + fCoHaOz wssBsoA™ = ——i (7)

Where fC,Hs02 peoa, fC2Ha02 peoa, fC2H502"8BOA, fC2H402 BBOA deEnote the gHsO,", and
C,H40," fractional contributions to the WSPBOA and WSBBOMass spectra.
(WSPBOA/WSOM) values could be derived by solving the two lineguation system. This
approach will be referred to as “60/61 methodologythe following. We assessed the accuracy
of the 60/61 methodology by comparing the (WSPBOAWM®W) values obtained from 3D-PMF
with the values predicted from the 60/61 methodplégy the Batch A PM filter samples.
During summer the (WSPBOA/WSOM,3p-pmé(WSPBOA/WSOMed 60/61 methodologhatio was
0.98, while during winter 0.85. The winter discrepga was likely due to non-negligible
contributions of W-OOA or other sources to,fGO," and fGHsO,". However the two
methodologies yielded highly correlated time sel|@s0.81) and agreed within 15%, with
much better agreement during summer.

From the 60/61 methodology we estimated a WSPBOAN®f 20%,gin summer, and 6%

in winter. Assuming aRpgoa Of 0.18neq (SI), the average PBOA contribution to @Mwvas

estimated as 37%, with higher values during summer (6Q%t/s. 19%yq4in winter).

Overall, these results revealed that the contioioutf PBOA to OM,, mainly from plant debris,
may be as high as SOA contribution during summerPayerne. While Payerne can be
considered as representative of typical Europeeal amvironment® and therefore results here

may be extended to other sites, other field obsemnsare indeed required. This work represents
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444  a benchmark for future field studies providing atimoelology for the thorough determination of
445 PBOA mass and origin, and one of the first sizeeggfed datasets necessary to constrain

446 PBOA in global models.

40

w
o

Average daily temperature [°C]
-3D-PMF (Batch A):

—— BOXES: WSPBOA / WSOM median, 1%, 3" quartile
-60/61 method (Batch B):
—— estimated WSPBOA/WSOM %
—— estimated WSPBOA / WSOM % error from
f60.02 and 61.03 source apportionment uncertainty
and measurements repetitions
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447
448

449 Figure 4. 2013 yearly WSPBO# relative contribution to WSOM estimated from the 60/61
450 methodology (Batch B). Red boxes denote WSPBOAivelaontribution (median,$land &
451 quartiles) to WSOy during June-July 2012 and January-February 20i8rdened by 3D-
452 PMF analysis (Batch A). The uncertainty relative rreeasurements repetitions and to the
453 apportionment of fgH,O," and fGHsO," can be interpreted as a precision estimate, vthide
454  sensitivity analysis comparing 3D-PMF and 60/61hudblogy results, shows an underestimate
455  of the WSPBOA/WSOM ratio calculated with the 60f6&thodology of 2% during summer and
456  15% during winter.

457
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459 Supporting Information. Detailed methodology dgstoons of WSOC, gqPCR, XPS, and
460 IDTD-GC-ToF-MS measurements; Qs determination; source apportionment optimization.
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