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ABSTRACT
Background: High birth weight is associated with adult body mass
index (BMI). We hypothesized that birth weight and BMI may
partly share a common genetic background.
Objective: The objective was to examine the associations of 12
established BMI variants in or near the NEGR1, SEC16B, TMEM18,
ETV5, GNPDA2, BDNF, MTCH2, BCDIN3D, SH2B1, FTO, MC4R,
and KCTD15 genes and their additive score with birth weight.
Design: A meta-analysis was conducted with the use of 1) the
European Prospective Investigation into Cancer and Nutrition
(EPIC)–Norfolk, Hertfordshire, Fenland, and European Youth Heart
Study cohorts (nmax = 14,060); 2) data extracted from the Early
Growth Genetics Consortium meta-analysis of 6 genome-wide as-
sociation studies for birth weight (nmax = 10,623); and 3) all pub-
lished data (nmax = 14,837).
Results: Only the MTCH2 and FTO loci showed a nominally sig-
nificant association with birth weight. The BMI-increasing allele of
the MTCH2 variant (rs10838738) was associated with a lower birth
weight (b 6 SE: 213 6 5 g/allele; P = 0.012; n = 23,680), and the
BMI-increasing allele of the FTO variant (rs1121980) was associ-
ated with a higher birth weight (b 6 SE: 11 6 4 g/allele; P = 0.013;
n = 28,219). These results were not significant after correction for
multiple testing.
Conclusions: Obesity-susceptibility loci have a small or no effect
on weight at birth. Some evidence of an association was found for
the MTCH2 and FTO loci, ie, lower and higher birth weight, re-
spectively. These findings may provide new insights into the un-
derlying mechanisms by which these loci confer an increased risk of
obesity. Am J Clin Nutr 2011;93:851–60.

INTRODUCTION

Birth weight shows a positive, although weak, association with
body mass index (BMI) in adulthood (1, 2). The mechanisms
underlying the association are not fully understood. Whereas the
intrauterine environment is postulated to play a role in associ-
ations between birth weight and adult BMI (3), some (4–6), but
not all (7–9), studies suggest that birth weight and adult BMI may
partly share a common genetic background. Genetic factors
contribute to variation in both traits, and heritability estimates
from family and twin studies range between 10% and 40% for
birth weight (10, 11) and between 40% and 70% for BMI (12).
However, it is currently unknown whether the same genetic

factors that increase adult BMI also increase birth weight and
contribute to the relation between birth weight and BMI.

During the past 3 y, genome-wide association (GWA) studies
have discovered multiple new susceptibility loci for BMI. The
first identified locus in the fat mass and obesity associated (FTO)
gene was discovered in 2007 (13, 14). A year later, the first
genome-wide meta-analysis of the GIANT (Genomic In-
vestigation of Anthropometric Traits) consortium led to the
identification of a locus near the melanocortin 4 receptor
(MC4R) gene (15). Ten more BMI loci were identified by the
second meta-analysis of the GIANT consortium (16) and the
genome-wide meta-analysis of deCODE Genetics in 2009 (17).
Of the 12 BMI-increasing loci discovered in GWA studies, only
the near-TMEM18, near-ETV5, near-BDNF, FTO, and near-
MC4R loci have been examined for associations with birth
weight. No significant association for the near-TMEM18 locus
with birth weight was reported among 500 obese children (18).
No association was found between the near-ETV5 and near-
BDNF loci and birth weight among 7146 children from the Avon
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Longitudinal Study of Parents and Children (ALSPAC) (19). Six
individual studies (13, 20–24) and the Early Growth Genetics
(EGG) Consortium meta-analysis of 6 GWA studies among
10,623 white European individuals (25) found no significant
association between the FTO locus and birth weight, whereas
a positive association between FTO and BMI at birth was re-
ported among 4693 Finnish newborns (23). Four studies have
examined the association of the rs17782313 single nucleotide
polymorphism (SNP) near MC4R with birth weight, which
found no significant association (15, 23, 24, 26). Taken together,
the present literature suggests that the adult BMI loci may not be
associated with birth weight. Previous studies of BMI loci may,
however, have been too small and thus underpowered to detect
modest associations with birth weight. Furthermore, the asso-
ciations of most established BMI loci with birth weight have not
yet been examined.

To study whether all loci identified in GWA studies for adult
BMI affect birth weight in a sufficiently powered population
sample, we tested the associations of 12 variants in or near the
NEGR1, SEC16B, TMEM18, ETV5, GNPDA2, BDNF, MTCH2,
SH2B1, BCDIN3D, FTO, MC4R, and KCTD15 genes (13–17)
with birth weight in a meta-analysis of the European Prospective
Investigation into Cancer and Nutrition (EPIC)–Norfolk, Hert-
fordshire, Fenland, and European Youth Heart Study (EYHS)
cohorts (nmax = 14,060); data from the EGG Consortium (nmax =
10,623) (25); and all published data (nmax = 14,837).

SUBJECTS AND METHODS

Cohorts

Association analyses between the BMI variants and birth
weight were first carried out separately in the 5 participating
cohorts, of which 2 are cohorts of children and adolescents
(EYHS Danish and EYHS Estonian) and 3 are cohorts of adults
(EPIC-Norfolk, Hertfordshire, and Fenland). Descriptive char-
acteristics for these 5 cohorts are reported in Table 1. Individuals
whose birth weight at term was not within the 1–8-kg range
were excluded from analyses. Low birth weight was defined as
a birth weight of ,2500 g (27) and high birth weight as a birth
weight .4500 g (28).

Summary statistics from the EPIC-Norfolk, Hertfordshire,
Fenland, EYHS Danish, and EYHS Estonian cohorts were
subsequently meta-analyzed with summary statistics extracted
from the EGG Consortium meta-analysis of 6 GWA studies for
birth weight (25) and with all published data (see Statistical
analyses below).

EPIC-Norfolk

EPIC-Norfolk is a population-based study of 25,663 men and
women aged 40–79 y, resident in the county of Norfolk, United
Kingdom, in 1993–1997 (29). The present analyses include 9002
individuals (3734 men and 5275 women) for whom birth weight
and genotype data were available. We excluded 35 individuals
who had a birth weight ,1 kg. All participants attended a
clinical examination that included standard anthropometric
measurements. Height and weight were measured while the
participants were dressed in lightweight clothing and no shoes.
Birth weight was self-reported in pounds and ounces by the
study participants at the time of the clinical examination andT
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was converted to metric units for the present analyses. The study
protocol was approved by the Norfolk and Norwich Hospital
Ethics Committee, and informed consent was obtained from all
participants.

The Hertfordshire Cohort Study

The Hertfordshire Cohort Study comprises 2997 men and
women born in the English county of Hertfordshire between 1931
and 1939 and who were still resident in Hertfordshire during the
follow-up of the study (age 60–75 y) (30). The present analyses
include 2196 individuals (1225 men and 971 women) for whom
birth weight and genotype data were available. We excluded one
individual who had birth weight,1 kg. All participants attended
a clinical examination at the age of 60–75 y. Height and weight
were measured while the participants were wearing lightweight
clothing and no shoes. A midwife attended the mothers during
childbirth and recorded the birth weight of their offspring on
a card, which was subsequently transcribed into ledgers at the
Hertfordshire county office. Birth weight was measured in
pounds and ounces, which was converted to metric units for the
present analyses. The study protocol was approved by the
Hertfordshire and Bedfordshire Local Research Ethics Com-
mittee, and all participants gave written informed consent.

The Fenland Study

The Fenland Study is an ongoing cross-sectional population-
based study of adults born between 1950 and 1975 and registered
with general practitioners in the East Cambridgeshire area. The
present analyses include 931 individuals (366 men, 565 women)
for whom genotype and birth weight data were available. We
excluded 3 individuals who had a birth weight ,1 kg. All
participants attended a clinical examination that included stan-
dard anthropometric measurements. Height and weight were
measured while the participants were dressed in lightweight
clothing and no shoes. Birth weight was self-reported in pounds
and ounces by the study participants at the time of the clinical
examination and was converted to metric units for the present
analyses. The study protocol was approved by the Cambridge
Local Research Ethics Committee and informed consent was
obtained from all participants.

The European Youth Heart Study

The EYHS is a longitudinal population-based study of the
associations between lifestyle and risk factors for cardiovascular
disease in children. The study design and measurements were
described in detail previously (31, 32). The present analyses
included 1095 children and adolescents (508 boys, 587 girls)
from the Danish city of Odense and 877 (412 boys, 465 girls)
from the Estonian city and county of Tartu subcohorts of the
EYHS for whom birth weight and genotype data were available.
We excluded one individual from the Danish and one individual
from the Estonian subcohort who had a birth weight ,1 kg. A
random sample of boys and girls aged 9–11 and 14–16 y from
both countries underwent a physical examination between 1997
and 1999. The height and weight were measured while the
participants were wearing light clothing and no shoes. Birth
weight was reported by the mothers of the participating children.
The study was approved by the local scientific ethics commit-

tees. All parents gave written informed consent, and all children
gave verbal consent.

Genotyping

SNPs rs2815752, rs10913469, rs6548238, rs7647305,
rs10938397, rs925946, rs10838738, rs7138803, rs8055138,
rs1121980, rs17782313, and rs11084753 were genotyped in the
Hertfordshire, Fenland, and EYHS cohorts and represent the
obesity susceptibility loci in or near the NEGR1, SEC16B,
TMEM18, ETV5, GNPDA2, BDNF, MTCH2, BCDIN3D, SH2B1,
FTO, MC4R, and KCTD15 genes, respectively (13–17). In the
EPIC-Norfolk cohort, SNPs rs3101336, rs7498665, rs7132908,
and rs368794 were genotyped as proxies for rs2815752 (r2 = 1.0
in HapMap CEU), rs8055138 (r2 = 0.92), rs7138803 (r2 = 0.91),
and rs11084753 (r2 = 1.0), respectively, whereas the 8 other
genotyped SNPs were the same as in the Hertfordshire, Fen-
land, and EYHS cohorts. Genotyping information and quality-
control statistics for the 12 variants are provided elsewhere
(see the Supplementary Note under “Supplemental data” in
the online issue) and Table 2. All variants passed the quality-
control criteria (call rate: .94%; duplicate concordance rate:
.97%; Hardy-Weinberg equilibrium: P � 0.01), except for
rs10913469 (SEC16B) in the Hertfordshire cohort (call rate:
84%; duplicate concordance rate: 0.966), which was excluded
from all analyses.

Statistical analyses

We tested for the association between each of the 12 SNPs with
birth weight as a continuous trait by using generalized linear
models and with the odds of having a low birth weight (,2500 g)
and the odds of having a high birth weight (.4500 g) using
logistic regression. All analyses were adjusted for birth year and
sex and assumed an additive effect of the BMI-increasing al-
lele, where the BMI-increasing allele was defined according to
previous GWA studies (13–17). The inverse variance fixed-
effects method was used to meta-analyze b coefficients and SEs
from individual studies. Heterogeneity was estimated with the I2

statistic.

FIGURE 1. Per allele effect on birth weight that can be detected in
a pooled meta-analysis of the European Youth Heart Study, Fenland,
European Prospective Investigation into Cancer and Nutrition (EPIC)–
Norfolk, and Hertfordshire cohorts (n = 14,060) and Early Growth Genetics
Consortium data (n = 10,623) (25) with 80% power at a significance level
of 0.05.
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To investigate the joint contribution of all obesity loci with
birth weight, we calculated a genetic predisposition score by
summing the total number of BMI-increasing risk alleles of the
12 SNPs for each individual in the EPIC-Norfolk, Hertfordshire,
Fenland, EYHS Danish, and EYHS Estonian cohorts, as pre-
viously described (16). For this score, risk alleles were not
weighted by their individual effect sizes because no well-
accepted effect sizes were available for these SNPs in the context
of birth weight associations and because it has been shown that
the weighting of risk alleles may have none or only a limited
effect on the score (33). Similar to the individual SNP analyses,
we tested for the association between the genetic predisposition
score and birth weight as well as the odds of having a low or high
birth weight using linear and logistic regression models, re-
spectively, assuming an additive effect of each BMI-increasing

allele, while adjusting for birth year and sex. Cohort-specific
association analyses were performed with SAS 9.1 (SAS In-
stitute, Cary, NC). Meta-analyses were carried out by using Stata
10.1 (Stata Corp LP, College Station, TX).

We extended our meta-analysis by including summary sta-
tistics extracted from the EGG Consortium meta-analysis of 6
birth weight GWA studies (25) and all published data (before 4
June 2010) on the association of the 12 BMI susceptibility loci
with birth weight in populations of white European descent (13,
15, 18, 19, 21, 22, 24, 26). We excluded results from the Northern
Finland Birth Cohort 1986 (NFBC86) because BMI at birth
instead of birth weight had been reported (23). For the near-
MC4R, near-ETV5, and near-BDNF loci, we excluded the results
from 7146 children in the ALSPAC cohort (15, 19) because the
results overlapped with the EGG Consortium data (25). For the

FIGURE 2. Forest plot of the association of rs10838738 in MTCH2 with birth weight in a pooled analysis of the cohorts included in the present study and
the Early Growth Genetics (EGG) Consortium meta-analysis of 6 genome-wide association studies for birth weight (25). Effect sizes are indicated as grams of
birth weight per allele. Data on gestational age were not available for the 5 cohorts of the present study, whereas data for all individuals born before 36 full
weeks of gestation in the EGG Consortium were excluded, and the analyses were adjusted for gestational age. The meta-analysis was carried out by using the
fixed-effects inverse variance method. Phet, P value for heterogeneity. EYHS, European Youth Heart Study; EPIC, European Prospective Investigation into
Cancer and Nutrition.

FIGURE 3. Forest plot of the association of rs1121980 in FTO with birth weight for the cohorts in the present study and for all published data (13, 15, 21,
24). Effect sizes are indicated as grams of birth weight per allele. For the Medical Research Council National Survey of Health and Development (MRC
NSHD) cohort, in which the effect size was not reported in an absolute birth weight value (24), the absolute effect size was estimated from the z score, with the
assumption of an SD of 0.5 kg for birth weight. In the Avon Longitudinal Study of Parents and Children (ALSPAC) and Northern Finland Birth Cohort 1966
(NFBC66) cohorts, individuals born before 36 full weeks of gestation were excluded, and the analyses were adjusted for gestational age (13). In the cohort of
Spanish newborns, only newborns with gestational ages between 37 and 42 wk were included in the analyses (22). In other cohorts, data on gestational age
were not used in the analyses. The meta-analysis was carried out by using the fixed-effects inverse variance method. Phet, P value for heterogeneity. EYHS,
European Youth Heart Study; EPIC, European Prospective Investigation into Cancer and Nutrition.
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FTO gene, the results from the EGG Consortium were excluded
because the EGG meta-analysis included 1518 individuals from
the ALSPAC cohort and 4763 individuals from the NFBC66
cohort, which overlapped published individual cohort data (13),
and because our sample size was larger by including the in-
dividual cohort results rather than the pooled GWA meta-analysis
results.

We had no data on gestational age in the EPIC-Norfolk,
Hertfordshire, Fenland, or EYHS cohorts. In the EGG Consor-
tium meta-analysis (25) and in the ALSPAC (13, 15, 19) and
NFBC66 (13) cohorts, individuals born before 36 full weeks of
gestation were excluded and the analyses were adjusted for
gestational age. In the cohort of Spanish newborns, only new-
borns with gestational ages between 37 and 42 wk were included
in the analyses (22, 26). In other published data (18, 21, 24), data
on gestational age were not used in the birth weight analyses.

Associations were considered nominally significant when the
2-sided P value was ,0.05. Assuming 12 independent tests of
association, a P value of 0.004 corresponds to an a-level of 0.05
when adjusting for multiple testing with the use of Bonferroni
correction.

Power calculations were performed by using Quanto software
(http://hydra.usc.edu/gxe). With a sample of �24,683 in-
dividuals, our study had 80% power to detect an effect size on
birth weight of 33 g at a nominal significance level of 0.05 and
an effect allele frequency of 5% (Figure 1). With an effect allele
frequency of 50%, the detectable effect size was 14 g (Figure 1).
The detectable effect sizes on birth weight for each of the 12
SNPs when the data from EPIC-Norfolk, Hertfordshire, Fenland,
EYHS Danish, and EYHS cohorts; the EGG Consortium data;
and all published data were included are shown in Table 2. A
likelihood ratio test was performed to assess Hardy-Weinberg
equilibrium of the genotype distributions for each SNP.

RESULTS

Despite sufficient power (80%) to detect small effects (�19 g)
for all tested loci (Table 2), only the MTCH2 (ntotal = 23,680)
and FTO (ntotal = 28,219) loci were significantly associated with
birth weight (Table 3). The BMI-increasing allele of the
MTCH2 variant (rs10838738) was associated with a 13-g lower
birth weight (P = 0.012) (Figure 2), and the BMI-increasing
allele of the FTO variant (rs1121980) with a 11-g higher birth
weight (P = 0.013) (Figure 3). No between-study heterogeneity
for either the MTCH2 (I2 = 0%, P = 0.96) or FTO (I2 = 0%, P =
0.94) association with birth weight was found. The associations
of the MTCH2 and FTO variants with birth weight were not
significant after correction for multiple testing.

The meta-analyses for the NEGR1, SEC16B, TMEM18, ETV5,
GNPDA2, BDNF, BCDIN3D, SH2B1, MC4R, and KCTD15 loci
showed no significant associations with birth weight as a
continuous trait (Table 3). The BMI-increasing allele of the
TMEM18 locus was, however, associated with a significantly
lower odds of having a low birth weight in the meta-analysis of
the EPIC-Norfolk, Hertfordshire, Fenland, EYHS Danish, and
EYHS Estonian cohorts (OR: 0.89; 95% CI: 0.80, 0.99; P =
0.029; n = 13,602) (Table 4). Low heterogeneity was observed
in the association between the cohorts (I2 = 1%, P = 0.40). The
association between near-TMEM18 and low birth weight was

not significant when multiple testing was accounted for. No
other loci than near-TMEM18 were significantly associated
with the odds of having a low or high birth weight (Table 4 and
Table 5).

DISCUSSION

In the present study, in which wemeta-analyzed data on 24,683
individuals of white European descent and all published data
(nmax = 28,219), we found little evidence that loci known to be
associated with BMI in adult life affect weight at birth. Of the 12
established BMI-increasing loci (13–17), only the MTCH2 and
FTO loci showed nominally significant associations with birth
weight. The BMI-increasing allele of the near-TMEM18 locus
showed some evidence of association with the odds of having
a low birth weight (,2500 g). None of the associations were
significant after correction for multiple testing.

The 12 examined loci were robustly associated with increased
BMI in adulthood (13–17), and evidence indicates that many of
these loci also affect BMI in childhood (13, 15, 16, 19, 21, 22, 24,
26, 34). However, it has not yet been systematically examined
whether these loci affect weight at birth. A recent report from the
MRC National Survey of Health and Development found no
significant association for the FTO and near-MC4R loci with
birth weight in 2469 white European individuals, and the effect
of these loci on weight gain appeared soon after birth (24).
Similarly, a genetic predisposition score for obesity, formed of
10 of the established BMI loci (NEGR1, TMEM18, ETV5,
GNPDA1, BDNF, MTCH2, SH2B1, FTO, MC4R, and KCTD15),
was not associated with birth weight among 7146 children from
ALSPAC (b = 0.00 z score units) but was strongly associated
with increased weight gain from birth to adulthood, with the
strongest effect seen during early infancy (birth to 6 wk) (19).

In our meta-analysis of 24,683 individuals, only 2 of all 12
tested loci had a nominally significant association with birth
weight, although our study was sufficiently powered to detect
small effects (�19 g) (Table 2). None of the observed associa-
tions were significant after correction for multiple testing
(Bonferroni-corrected P value threshold = 0.004). We found no
association between the additive score of the 12 BMI-increasing
alleles and birth weight among 13,651 individuals. The present
study thus confirms that obesity susceptibility loci have either
a small or no effect on weight at birth, and likely affect body
weight in response to postnatal changes in satiety, eating be-
havior, and environment soon after birth (19, 24).

TheMTCH2 locus showed a nominally significant association
with lower birth weight in 23,680 individuals. Each BMI-
increasing allele of MTCH2 decreases birth weight by 13 g—an
effect size that is approximately one-third of the effect reported
for the 2 previously established birth weight loci near CCNL1
and in ADCY5 (25). MTCH2 encodes a conserved mitochondrial
membrane protein that is known to play a critical role in cell
apoptosis (35), but the mechanisms linking MTCH2 with in-
creased BMI are currently unknown. Further studies are required
to characterize the mechanisms that may link MTCH2 with
decreased birth weight.

We also found a nominally significant association for the BMI-
increasing allele of FTO with higher birth in 28,219 individuals.
Each BMI-increasing allele of FTO increases birth weight by
11 g. We excluded 2 published studies: a study in Finns (n = 4693)
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(23) that only reported BMI at birth and a study in Africans (n =
1113) (20). The Finnish study found a significant association
between the BMI-increasing allele of rs1421085 in FTO and
increased BMI at birth (P = 0.02). The African study did not
show a significant association between rs9939609 in FTO and
birth weight (16) (P = 0.80), although the direction of effect was
consistent with the present results.

Variation in the FTO gene has been repeatedly associated with
regulation of food intake (36, 37), but may also be directly im-
plicated in processes connected to growth regulation. A loss of
function mutation of FTO was reported to lead to postnatal growth
retardation, multiple congenital malformations, and death in in-
fancy in a Palestinian Arab consanguineous family (38). In 3 of the
7 studied family members, intrauterine growth was also retarded
(38), which suggested direct effect of FTO on fetal growth.
However, maternal and fetal genotypes are correlated with each
other, and birth weight is influenced by maternal environment (3).
Therefore, maternal genotypes may confound the associations
between fetal genotype and birth weight. For example, increased
placental expression of FTO has been associated with higher fetal
weight and length and higher placental weight (39). Maternal FTO
genotype is also associated with maternal BMI (13, 14) and sus-
ceptibility to type 2 diabetes (13), both of which may lead to in-
creased birth weight (3). Further studies are required to elucidate
the specific mechanisms and the effect of maternal genotype on
the association between FTO and birth weight.

We found no significant associations of other BMI sus-
ceptibility loci than MTCH2 and FTO with birth weight in our
meta-analyses. The BMI-increasing allele of rs6548238 near-
TMEM18 had, however, a nominally significant association with
a lower odds of having a low birth weight in a meta-analysis of
13,602 individuals. In a previous study, the BMI-increasing al-
lele of rs6548238 was shown to be associated with lower birth
length and a trend with decreased birth weight in 500 obese
children (18). The near-ETV5 and near-BDNF loci were exam-
ined in 7146 children from ALSPAC, but no association with
birth weight was found (19). Four studies examined the asso-
ciation of the rs17782313 SNP near MC4R with birth weight,
but none found a significant association (15, 23, 24, 26). The
NEGR1, SEC16B, GNPDA2, SH2B1, BCDIN3D, and KCTD15
loci have not yet been studied.

Three different methods for collecting birth weight data were
used among the cohorts of the present meta-analysis. The gold
standard for retrospective studies is the retrieval of birth weight
data from birth records, as was done for the Hertfordshire cohort
(30) and for all studies participating in the EGG Consortium (25).
In the EPIC-Norfolk, Fenland, and EYHS cohorts, recorded birth
weight datawere not available and birth weights were thus reported
either by the participants’ mothers (EYHS) or by the participants
(EPIC-Norfolk and Fenland). Maternally reported birth weight is
highly correlated with birth weight retrieved from official records
(40). The lower accuracy of self-reported birth weight did, how-
ever, decrease our power to detect significant associations between
genetic variants and birth weight. Furthermore, we had no in-
formation available on the gestational age of the study participants
in the EPIC-Norfolk, Hertfordshire, Fenland, EYHS Danish, and
EYHS Estonian cohorts, and our findings in these cohorts could
thus be confounded by gestational age. We also did not have
maternal DNA available to examine whether the associations were
independent of maternal genotypes.

In summary, in the present meta-analysis of 24,683 individuals
of European descent and all published data, only theMTCH2 and
FTO loci showed a nominally significant association with birth
weight. However, none of these associations were significant
after correction for multiple testing. Our results suggest that
obesity-susceptibility loci have small or no effects on weight at
birth. The associations of the MTCH2 and FTO loci with birth
weight may, nevertheless, provide new insights into the un-
derlying mechanisms by which these loci confer increased risk
of obesity.
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