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Proliferating cell nuclear antigen (PCNA) is a DNA polymerase cofactor and regulator of replication-linked functions.
Upon DNA damage, yeast and vertebrate PCNA is modified at the conserved lysine K164 by ubiquitin, which mediates
error-prone replication across lesions via translesion polymerases. We investigated the role of PCNA ubiquitination in
variants of the DT40 B cell line that are mutant in K164 of PCNA or in Rad18, which is involved in PCNA ubiquitination.
Remarkably, the PCNAK164R mutation not only renders cells sensitive to DNA-damaging agents, but also strongly
reduces activation induced deaminase-dependent single-nucleotide substitutions in the immunoglobulin light-chain
locus. This is the first evidence, to our knowledge, that vertebrates exploit the PCNA-ubiquitin pathway for
immunoglobulin hypermutation, most likely through the recruitment of error-prone DNA polymerases.
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Introduction

Proliferating cell nuclear antigen (PCNA), a homotrimeric
DNA-encircling protein, is the key target of the conserved
ubiquitin-dependent RAD6 pathway of post-replicative DNA
repair [1]. If replication fork movement is stalled by a DNA
lesion, cells can recruit translesion polymerases to bypass the
lesion or initiate error-free repair by using the undamaged
sister chromatid. Studies in the yeast Saccharomyces cerevisiae
suggest that the switch from replicative to translesion DNA
synthesis is mediated by PCNA ubiquitination catalyzed by
the E2 ubiquitin-conjugating enzyme Rad6 and the E3
ubiquitin ligase Rad18 [1,2]. Whereas K164 of yeast PCNA
can be modified either by mono- or poly-ubiquitin or by
small ubiquitin-related modifier (SUMO) [1], only mono-
ubiquitination of PCNA was observed after methyl methane-
sulfonate (MMS) treatment or ultraviolet (UV) irradiation of a
human cell line [1,3,4]. Mono-ubiquitination of human PCNA
requires the human Rad18 homologue and increases the
affinity of PCNA for the translesion DNA polymerases Polg
[3,4] and REV1 [5]. Studies in S. cerevisiae have shown that the
lysine-to-arginine substitution at amino acid position 164 of
PCNA (PCNAK164R) prevents ubiquitination, but does not
interfere with the essential function of PCNA in replication
[1]. K164 is also the target of RAD18-mediated PCNA
ubiquitination in higher eukaryotes [1,3].

Immunoglobulin (Ig) hypermutation is a cell-type and
locus-specific mutation activity, which diversifies the rear-
ranged V(D)J segments of the Ig genes by random nucleotide
substitutions. Ig hypermutation requires activation-induced
deaminase (AID) [6], which most likely initiates hypermuta-
tion by cytosine deamination within the Ig loci [7,8]. The
resulting uracils are recognized either by the uracil glyco-
sylase UNG-2 or by mismatch repair factors leading to
mutations at G/C and A/T bases, respectively [9].
Polg�deficient human and murine B cells [10–12], a REV1-
disrupted mouse, and a DT40 mutant [13–15] show an altered
spectrum and a decreased frequency of Ig mutations

respectively, but it remains unclear, how translesion DNA
polymerases are engaged for the Ig hypermutation pathway.
Because of its high ratio of targeted DNA integration [16],

the chicken DT40 cell line has become a popular genetic
system to study DNA repair [17] and AID-induced Ig gene
diversification [18,19]. To clarify the role of PCNA ubiquiti-
nation in higher eukaryotes, we tested the effect of the
PCNAK164R mutation alone, or in combination with RAD18 or
REV1 gene disruptions in the chicken B cell line DT40. The
analysis of the mutant cell clones indicate for the first time
that Ig hypermutation specifically exploits the same mecha-
nism that mediates DNA damage-induced mutagenesis.

Results

Generation of a Genomic PCNA K164 Mutant
The primary amino acid structure of PCNA indicates that

the ubiquitin attachment site K164 is conserved from yeast to
human (Figure 1A). Because cell-cycle regulated PCNA
expression is likely to be important for normal cell
proliferation, we preserved the physiologic expression con-
trol of the PCNA gene by introducing the K164R mutation
into of endogenous locus. The DT40 variant AIDRwV� [18] was
chosen as the progenitor clone of the study, because it has the

Academic Editor: David Nemazee, Scripps Research Institute, United States of
America

Received June 16, 2006; Accepted September 5, 2006; Published October 24,
2006

DOI: 10.1371/journal.pbio.0040366

Copyright: � 2006 Arakawa et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: AID, activation induced deaminase; Ig, immunoglobulin; MMS,
methyl methanesulfonate; PCNA, proliferating cell nuclear antigen; sIg, cell-surface
Ig; SUMO, small ubiquitin-related modifier; UNG, uracil DNA glycosylase; wV,
pseudo variable

* To whom correspondence should be addressed. E-mail: buersted@gsf.de

PLoS Biology | www.plosbiology.org November 2006 | Volume 4 | Issue 11 | e3661947

PLoS BIOLOGY



PLoS Biology | www.plosbiology.org November 2006 | Volume 4 | Issue 11 | e3661948

PCNA Ubiquitination Controls Ig Hypermutation



following properties: (i) it diversifies its rearranged Ig light-
chain locus by hypermutation due to the deletion of the
nearby pseudo V (wV) gene conversion donors; (ii) it expresses
the AID gene as a floxed cDNA cassette; and (iii) it can be
induced by tamoxifen to express Cre recombinase. After
transfection of the PCNA mutagenesis construct
pPcnaK164RBsr into AIDRwV�, a transfectant was identified
that had integrated the construct targeted into one of the two
PCNA alleles (Figure 1B). Excision of the floxed Bsr marker
cassette (Figure 1B) produced the heterozygous mutant,
PCNAþ/K164R. To generate a homozygous PCNA mutant,
pPcnaK164RBsr was retransfected into PCNAþ/K164R and a
transfectant having integrated the construct into the remain-
ing wild-type allele was identified. Transient Cre induction in
this transfectant yielded two clones—an AID-expressing,
homozygous PCNA mutant, PCNAK164R/K164R —in which only
the Bsr marker cassette had been excised and an AID negative
control, AID�/�PCNAK164R/K164R, in which both the Bsr marker
and the AID expression cassette had been removed. The status
of the codon-164 mutations in the heterozygous and the
homozygous mutant PCNA clones was confirmed by sequenc-
ing the exon 4 of the PCNA loci (Figure 1C). Both copies of
either the RAD18 or the REV1 gene were disrupted by
targeted integration in the AIDRwV� and PCNAK164R/K164R

clones yielding the single mutants RAD18�/� and REV1�/� as
well as the double mutants PCNAK164R/K164R RAD18�/� and
PCNAK164R/K164R REV1�/�. Notably, the PCNAK164R/K164R and
RAD18�/� clones did not show a growth defect, compared to
the AIDRwV� progenitor clone in the absence of genotoxic
stress. However, the REV1 single mutant and the REV1/
PCNAK164R/K164R double mutants had reduced cloning effi-
ciencies and proliferated more slowly (unpublished data).

Biochemical Analysis of PCNA Modifications
Next, we probed cell lysates from untreated and MMS-

treated cells for PCNA modifications by immunoblotting
(Figure 2A). In addition to unmodified PCNA, AIDRwV� cells
showed protein species that had mobilities corresponding to
mono-ubiquitinated and SUMOylated PCNA (Figure 2A).
Whereas mono-ubiquitination of PCNA was detectable in
yeast and HeLa cells only in the presence of DNA damaging
agents [1], mono-ubiquitinated PCNA was observed in DT40
cells even in the absence of MMS. Mono-ubiquitination or
SUMOylation of PCNA was not affected by the absence of
AID expression in AID�/�wV�cells (Figure 2A). This is not
surprising, because PCNA ubiquitination is likely to play an
important role for general DNA repair of the genome, and
any increase related to the processing of AID-induced DNA
lesions in the Ig loci is unlikely to be detectable against this
background.

To verify the identity of these protein species, cells were
transfected by cDNA expression constructs encoding His-
tagged versions of either ubiquitin or SUMO. A comparison
of whole-cell lysates and cell lysates purified by NiNTA
pulldown confirmed the identity of the bands assigned to

mono-ubiquitinated and SUMOylated PCNA (Figure 2B). To
quantify the amounts of mono-ubiquitinated and SUMOy-
lated PCNA more precisely in the different cell samples,
Western blots were repeated using in parallel an antibody to
PCNA and an antibody to histone (Figure 2C, left). The
signals obtained by the later antibody serve a loading control.
This analysis showed, as expected, that mono-ubiquitination
of PCNA was induced by MMS, and both mono-ubiquitinated
and SUMOylated PCNA species were absent in PCNAK164R/

K164R cells (Figure 2A and 2C, right). Whereas the signal for
SUMOylated PCNA was not affected in RAD18�/� cells, the
signal for mono-ubiquitinated PCNA was significantly re-
duced and apparently not inducible by MMS. An AID negative
control clone, AID�/�wV�, showed a pattern identical to the
progenitor AIDRwV�. The levels of AID expression as
determined by an antibody to AID did not vary among the
different cell clones (Figure 2C). Taken together, the results
indicate that the PCNAK164R mutation prevents PCNA
ubiquitination and SUMOylation, whereas the RAD18 gene
disruption decreases, but does not abolish mono-ubiquitina-
tion of PCNA in DT40.

The PCNAK164R Mutant Is Sensitive to DNA Damage
Because PCNA ubiquitination is known to be crucial for

bypass replication across DNA lesions in S. cerevisiae [1], we
asked whether the same mechanism operates in vertebrates as
well. To investigate the role of PCNA modification for DNA
damage tolerance, the survival of the different clones was
determined after exposure to the DNA alkylating agent MMS,
the DNA interstrand cross-linking agent cisplatin, and c
radiation (Figure 3). Compared to the progenitor cells,
PCNAK164R/K164R cells are highly sensitive to MMS and
cisplatin, but only mildly sensitive to c radiation. The survival
of RAD18�/� cells after exposure to all three types of
genotoxic stress is lower than of AIDRwV� cells, but higher
than of PCNAK164R/K164R cells (Figure 3). The PCNAK164R/K164R

RAD18�/� double mutant shows similar, or slightly lower,
survival rates than the PCNAK164R/K164R single mutant.
However, PCNAK164R/K164R REV1�/� cells proliferate poorly
even in the absence of genotoxic stress and showed
significantly lower survival rates than REV1�/� cells. Together,
these findings strongly suggest that PCNA ubiquitination at
the conserved K164 is crucial for DNA damage tolerance also
in vertebrates, demonstrating that the RAD6 pathway is
conserved across species and that PCNA is the conserved
target.

The PCNAK164R Mutant Is Defective in Hypermutation at
the Ig Locus
All clones included in the study were cell-surface Ig

positive [sIg(þ)], allowing the detection of deleterious Ig
light-chain mutations by loss of sIg expression [18]. To
compare the mutation rates, fluorescence activated cell
sorting (FACS) was performed for 24 subclones of each of
the control and mutant clones 2 wk after subcloning (Figure

Figure 1. Site-Directed Mutagenesis of the PCNA Locus

(A) Alignment of the human, mouse, chicken, Schizosaccharomyces pombe, and S. cerevisiae PCNA amino acid sequences. Amino acid 164 serving as the
attachment site for ubiquitination in S. cerevisiae is marked by an asterisk.
(B) A physical map of the PCNA locus and the PCNA mutagenesis construct, pPcnaK164RBsr. The targeting strategy of PCNA locus and the genealogy of
the mutant clones are shown below and to the right, respectively.
(C) Sequence chromatographs covering the PCNA codon 164 which was changed from AAA in the AIDRwV� clone to AGA in the PCNAK164R/K164R clone.
DOI: 10.1371/journal.pbio.0040366.g001
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Figure 2. Ubiquitination and SUMOylation of PCNA

(A) Cells were treated with or without MMS and were analyzed by immunoblotting using an monoclonal antibody to PCNA. The asterisk denotes a band
reactive with PCNA antibodies, possibly corresponding to a PCNA modification independent of K164 and Rad18.
(B) Analysis of clones stably transfected with His-tagged ubiquitin or SUMO-1 expression vectors. Whole cell lysates (left) and lysates after NiNTA
chromatography (right) are shown. The positions expected for unmodified, mono-ubiquitinated, and SUMOylated PCNA are indicated by lines. Due to
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4). Whereas subclones of the nonhypermutating control
AID�/� PCNAK164R/K164R show on average 0.4% of the total
events in the sIg(�) gate, subclones of the AIDRwV�

progenitor show 35.4%. In contrast, the average percentages
of sIg(�) events for subclones of the heterozygous PCNAþ/K164R
and the homozygous PCNAK164R/K164R are only 14.4% and
5.4%, respectively. The averages for subclones of RAD18�/�

and REV1�/� are 16.2% and 9.7%, respectively and the
PCNAK164R/K164R RAD18�/� and PCNAK164R/K164R REV1�/�

double mutants behave similar to the PCNAK164R/K164R single
mutant. This analysis indicates that the PCNAK164R mutation
decreases the frequency of deleterious Ig mutations about 7-
fold, whereas the reduction is only about 2-fold in the RAD18
knockout and about 3- to 4-fold in the REV1 knockout. A
reduction of sIg(�) cells is already detected for the hetero-
zygous PCNAþ/K164R subclones suggesting a dose-dependent
effect. All mutant clones are derived from the same AIDRwV�

progenitor, and the expression levels of AID are not expected
to vary among AID-positive clones. Because green fluorescent
protein (GFP) is expressed together with the AID transgene
(AID-IRES-GFP), constant levels of AID in all those clones were
further confirmed by measuring GFP expression on the x-axis
of the FACS plots.

To directly analyze the mutation frequencies and spectra,
light-chain VJ segments were sequenced from several

subclones of each control and mutant clone 6 wk after
subcloning. When aligned to a consensus sequence of the
rearranged Ig light-chain gene, mutations from PCNAK164R/

K164R (Figure 5) and from REV1�/� (unpublished data) cells are
similarly distributed as mutations from AIDRwV� cells [18].
However, as expected from the analysis of sIg loss rates,
RAD18�/�, REV1�/�, and PCNAK164R/K164R cells yield about 2-,
3-, and 7-fold fewer of mutations per sequence, respectively,
than AIDRwV� cells do (Figure 6A). Whereas PCNAK164R/K164R

RAD18�/� cells have a similar frequency of mutations as
PCNAK164R/K164R cells, the PCNAK164R/K164R REV1�/� double
mutant shows even fewer mutations than the PCNAK164R/K164R

single mutant.
All types of mutations are reduced in PCNAK164R/K164R cells

compared to AIDRwV�cells, but the most pronounced
decrease is seen for C-to-G and G-to-C transversions (type
II mutations in Figure 6B). Interestingly, the same type of
mutations are moderately reduced in RAD18�/� cells and
strongly reduced in REV1�/� cells. PCNAK164R/K164R and
PCNAK164R/K164R RAD18�/� cells show similar mutation spec-
tra and mutation frequency. The mutation spectrum of
PCNAK164R/K164R REV1�/� cells appears to be similar to that of
PCNAK164R/K164R cells. Only three mutations—possibly PCR
errors—were found in 89 light-chain VJ segments from AID�/�

PCNAK164R/K164R cells, indicating that AID is required for the

Figure 3. Colony Survival Curves after Exposure to DNA-Damaging Agents

The values of DNA damaging agents, which give 10% cell viability, are also summarized (D10 values).
DOI: 10.1371/journal.pbio.0040366.g003

the low residual level of PCNA ubiquitination in the RAD18 mutant, this modification could not be detected by pull-downs. The bands at the bottom
represent low levels of unmodified PCNA unspecifically bound to the beads.
(C) Quantification of mono-ubiquitinated and SUMOylated PCNA, histone H3, and AID by immunoblotting. Cells were treated with or without MMS, and
immunoblotted using monoclonal antibodies to PCNA (left upper), histone H3 (left middle), and AID (left lower). The values for mono-ubiquitinated and
SUMOylated PCNA given in the right hand graphs were calculated as described in the Materials and Methods.
DOI: 10.1371/journal.pbio.0040366.g002
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low Ig mutation activity still present in the PCNA mutant
(unpublished data).

Discussion

This study demonstrates that the PCNAK164R single-codon
substitution causes marked sensitivity to genotoxic stress and
a strong decrease in Ig hypermutation in the DT40 cell line.

Although the mutation prevents mono-ubiquitination as well
as SUMOylation, the observed phenotype is most likely due to
the lack of ubiquitination. This is consistent with the finding
that the RAD18 knockout, which does not affect PCNA
SUMOylation but decreases PCNA ubiquitination, shows a
similar, though more modest, phenotype compared to the
PCNAK164R mutation. The results indicate that PCNA

Figure 4. FACS Analysis of Ig Hypermutation Activity

(A) FACS profiles of representative subclones derived from a sIgM (þ) cell after staining with a monoclonal antibody to IgM. (B) The average percentages
of events falling into sIgM (�) gates based on the measurement of 24 subclones are shown by graph.
DOI: 10.1371/journal.pbio.0040366.g004
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ubiquitination has not only preserved its role for DNA repair
from yeast to higher eukaryotes, but has been exploited
additionally for Ig diversification in vertebrate B cells. It is
currently difficult to assert the role of the PCNA SUMOyla-
tion, because the Srs2 protein, which is recruited by
SUMOylated PCNA in S. cerevisiae [20,21] is not conserved
during evolution. Similar to the situation in yeast, the DT40
PCNAK164R mutant does not exhibit any obvious defects in
proliferation.

Studies in yeast [1] and evidence from human and mouse
cells [3,4] suggest that PCNA mono-ubiquitination induces a
switch from replicative to translesion DNA synthesis [3]. The
most straightforward explanation of the PCNAK164R pheno-
type in DT40 is likewise a defect in the recruitment of error-
prone translesion DNA polymerases. One of the polymerases
activated by PCNA ubiquitination seems to be Rev1, because
PCNAK164R/K164R and REV1�/� cells show similar sensitivities
to DNA-damaging reagents and a similar decrease in C-to-G
and G-to-C mutations. The selective decrease of this type of
hypermutation may reflect the deoxycytidyl transferase
activity of Rev1, which would add cytosine opposite to an
abasic site in the template strand [22]. These ideas are
supported by the recent observations that mono-ubiquiti-
nated PCNA can recruit REV1 [5] and that a REV1 mutant in

which the deoxycytidyl transferase activity is selectively
inactivated does not rescue the Ig hypermutation defect seen
in DT40 after REV1 disruption [23]. Other types of Ig
hypermutations are significantly decreased in the PCNAK164R/

K164R cells, but not in REV1�/� cells, suggesting that PCNA
ubiquitination directly activates other translesion DNA
polymerases apart from Rev1. Vice versa, the low viability
and increased DNA damage sensitivity of PCNAK164R/K164R

REV1�/� cells indicates that Rev1 fulfills some functions
independent of PCNA ubiquitination. C-to-T and G-to-A
transitions predominate among the mutations still detected
in PCNAK164R/K164R cells. Although these mutations could be
due to an error-prone pathway operating independently of
PCNA ubiquitination, they may also reflect AID-induced
uracils, which have escaped excision by UNG-2 and have
paired with adenines during replication.
The remaining low level of PCNA mono-ubiquitination in

DT40 RAD18�/� cells, recently also reported by another group
[24], is surprising given the fact that Rad18 is entirely
responsible for PCNA mono-ubiquitination in S. cerevisiae.
The RAD18 knockout construct used in the studies most likely
generates a RAD18 null mutation [25], although it does not
delete the RAD18 RING finger coding sequence. To rule out
that the analyzed RAD18 mutant still possessed enzymatic

Figure 5. Ig Hypermutation of the PCNAK164R/K164R Clone

Ig light-chain sequence variation in the PCNAK164R/K164R clone. All sequence differences in the region from the first intron to the J-C intron are shown

relative to the rearranged light-chain consensus sequence of the AIDRwV� precursor clone. The position of complementary determining regions CDR1,

CDR2, and CDR3 and that of Jk are indicated.
DOI: 10.1371/journal.pbio.0040366.g005
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activity, we generated a second RAD18 mutant in which the
RING finger-coding region is deleted. Analysis of this new
mutant confirmed the persistence of low-level PCNA ubiq-
uitination seen in the first RAD18 mutant (unpublished data).
These data point to the presence of a Rad18-independent
back-up pathway of PCNA ubiquitination in vertebrate cells.
A possible candidate for an E3 ligase involved in PCNA
ubiquitination in RAD18�/� cells may be the gene product of
FANCL [26]. The residual PCNA ubiquitination may explain

the milder DNA damage sensitivity and the higher Ig
mutation rate of RAD18�/� cells compared to PCNAK164R/

K164R cells. Whereas it was initially reported that RAD18
disruption in wild-type DT40 does not affect Ig hyper-
mutation [27], we detected a ;2-fold reduction of Ig
hypermutation in pseudogene deleted RAD18�/� cells, and
another group recently reported a strong decrease in hyper-
mutation activity [28]. We believe this discrepancy may be
caused by the difficulty to accurately measure Ig hyper-

Figure 6. Mutation Spectrum

(A) Frequencies of particular nucleotide substitutions within light-chain gene. (B) A graphical view showing the frequencies of different types of
mutations per hundred sequences.
DOI: 10.1371/journal.pbio.0040366.g006
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mutation in wild-type DT40, which diversifies its Ig genes
predominantly by gene conversion.

If ubiquitinated PCNA functions as a link to the recruit-
ment of error-prone polymerases during Ig hypermutation, it
remains an intriguing question how it is coupled to upstream
events in the hypermutation process. The DNA editing model
assumes that AID first deaminates cytosine to uracil and that
the resulting uracil is then excised by UNG-2 [7]. A
comparison of the mutation frequencies in UNG-disrupted
and wV-deleted DT40 suggests that about one in seven AID-
induced uracils is converted into a mutation [8]. This high
mutation rate suggests that the abasic sites produced by uracil
excision are not repaired by the standard base excision
repair, but are deliberately channeled into error-prone
translesion synthesis. One of the possibilities is that UNG-2
is recruited by PCNA [29] and excises AID-induced uracils
shortly before DNA synthesis, thereby precluding the
possibility of base excision repair. Another possibility is that
the DNA lesions produced by the combined action of AID
and UNG are for some reason, perhaps by protein attach-
ment or by another type of modification, guarded from
faithful repair until they encounter the PCNA clamp.

Materials and Methods

Target disruption of the RAD18 and REV1 genes. The RAD18
knockout constructs, which delete codons 163–182 of the RAD18
gene, were obtained from Dr. Shunichi Takeda (Graduate School of
Medicine, Kyoto University, Kyoto, Japan). The REV1 knockout
constructs were designed to delete REV1 codons 119–407 by targeted
integration. These constructs were transfected into the AIDRwV� and
PCNAK164R/K164R clones in a stepwise manner to generate the
following homozygous knockout clones: RAD18�/�, PCNAK164R/K164R

RAD18�/�, REV1�/�, and PCNAK164R/K164R REV1�/� (Figure S1). New
RAD18 knockout constructs were designed to delete RAD18 codons
1–90, which include the whole RING finger motif. These constructs
were transfected into the AIDR clone, yielding the second RAD18�/�

mutant.
Site-directed mutagenesis of PCNA locus. The cDNA sequence

AB053163 in the public databases includes the full-length open
reading frame of the chicken PCNA sharing 94% identity and 97%
homology with the codons of human PCNA. Comparison of the cDNA
sequence to the chicken genome sequence [30] revealed the exon-
intron structure of the PCNA locus on chromosome 22. The sequence
intended as the 5’ arm of the PCNA targeting construct was first
amplified by PCR from DT40 genomic DNA as two fragments using
overlapping primers that included a point mutation to change codon
164 from lysine to arginine. The two fragments were then combined
by chimeric PCR to yield the 5’ targeting arm including the codon
164 mutation. The 3’ targeting arm was amplified by PCR using
genomic DNA from DT40 as template. Both arms were cloned
upstream and downstream of the floxed Bsr resistance marker [31],
yielding the PCNA mutagenesis construct pPcnaK164RBsr. The con-
struct was linearized by NotI before transfection. Cell culture,
transfection, selection of stable transfectants, and marker recycle by
transient Cre induction were performed as previously described [32].
Transfectants having integrated the construct by targeted integration
were identified by PCR using a primer derived from the PCNA locus
upstream of the 5’ targeting arm together with a primer derived from
the Bsr gene. To confirm the status of the point mutation at codon
164, the region surrounding exon 4 was amplified by PCR from
genomic DNA of the AIDRwV�, PCNAþ/K164R and PCNAK164R/K164R

clones and directly sequenced without cloning. Apart from the P2
and P3 primers, which were used for sequencing, all other primers
were used for the verification of gene targeting by PCR.

The primer sequences are as follows: B1, CGATTGAAGAACT-
CATTCCACTCAAATATACCC; G1, TGTTGATATCCCGCAAGA-
TACCTGGATTGA; M1, AGCTTGGATAACTTCGTATAGCATA-
CATTATACGAACGGTAGGG; P1, GGGGGATCCTAGTTGTTT-
GAATGACTGCATGCAC; P2, GATCAGAGAAATACCAGATC-
CAGTGACC; P3; TGCACTGTTCTTAGGACAGCATGTTTTCCT; P4,
TAGTGTTTGAAGCACCAAGTGAGTGG; P5 CAAACCCCACAGC-
TAAGAAAGTGCC; R1, GTTTGCATATATGTGTGTGTGTGCA-

TATGT; R2, TCATAGCAGCAGCAGCAGTTCTCCAGAGGC; R3,
AGATGGATGCCACAGACTGACGCACACAGC; V1, ATGATGTTG-
CATGGAGGTCAATACCATGT; V2, GCGTCTCCTCTCGCA-
CATTCCGTATCAGCT; and V3, GAGTTAGGTAATTGTAGCTC-
CATCCTCAAC.

PCNA modifications. DT40 cells were incubated in 0.02% MMS for
2 h. Total cell lysates were sonicated, separated on 4%–12% Bis-Tris
gels, and immunoblotted with PC10 monoclonal antibodies to PCNA
(Abcam, Milton Road, Cambridge, United Kingdom), 3H1 histone H3
(Cell Signaling Technology), and L7E7 AID (Cell Signaling Technol-
ogy, Beverly, Massachusetts, United States). For NiNTA purification,
the coding sequences for His-tagged human ubiquitin [1] or human
SUMO1 [33] were cloned under chicken b-actin promoter, and stably
transfected into the AIDRwV�, RAD18�/�, and PCNAK164R/K164R clones.
NiNTA chromatography was performed as described [1], and samples
were immunoblotted with the PC10 antibody. The signals for mono-
ubiquitinated and SUMOylated PCNA were quantified from the gel
image of the Western blot shown in Figure 2C. First, the lowest
respective value for mono-ubiquitinated and SUMOylated PCNA was
assumed to be the background noise, and this value was subtracted. In
the second step, the signals for each sample on the anti-PCNA
Western blot at the positions of mono-ubiquitinated and SUMOy-
lated PCNA, respectively, were normalized according to the signals
obtained from the anti-histone Western blot to account for sample
loading variation. In the last step all values were normalized to the
value of mono-ubiquitinated PCNA in non-MMS treated AIDRwV�

cells, which was taken as 1.00.
Colony survival assays. Colony survival on methylcellulose-con-

taining medium was performed as described [34]. Cisplatin and
methylmethane sulphonate were obtained from Sigma (St. Louis,
Missouri, United States). Cs137 was used for c radiation resource. Each
curve is derived from two to three separate experiments.

Ig reversion assay. Subcloning, antibody staining, flow cytometry,
and quantification of sIgM expression has been described previously
[32].

Ig gene sequencing. To minimize PCR-introduced artificial
mutations, PfuUltra hotstart polymerase (Stratagene, La Jolla,
California, United States) was used for amplification prior to
sequencing. Long-range PCR and sequencing were performed as
previously described [32]. To minimize the fluctuation effects, light-
chain gene sequences were determined from several subclones of
each mutant and control clone. The reference sequence for the
mutation analysis was deduced by comparing the different sequences
from each subclone. Sequences from AIDRwV� subclones were pooled
with sequences previously obtained under the same conditions [8,18]
to establish a larger dataset to which the results from the PCNA,
REV1, and RAD18 mutants could be compared.

Supporting Information

Figure S1. Gene Targeting Strategies and Screenings for Clones
Having Undergone Targeted Integration Events

Physical maps of the loci, the targeting vectors, and the targeted
alleles are shown for PCNA (A), RAD18 (B), and REV1 (C), respectively.
The position and orientation of the primers used for the screening by
long-range PCR are indicated. The identification of the desired
clones relied on the appearance of new PCR fragments as well as the
disappearance of germline fragments. k HindIII/uX HaeIII was used as
size marker.

Found at DOI: 10.1371/journal.pbio.0040366.sg001 (366 KB PDF).

Accession Numbers

The Swiss-Prot (http://www.ebi.ac.uk/swissprot) accession numbers for
the sequences displayed in Figure 1 are human (P12004), mouse
(P17918), chicken (AB053163), Schizosaccharomyces pombe (Q03392), and
S. cerevisiae (NP_009645).
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