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Abstract Pathologic examination of trephine bone mar-
row (BM) biopsies plays a central role in the diagnosis and
staging of haematological neoplasms and other disorders
affecting haematopoiesis. Haematopathology has been
profoundly influenced by the advent of molecular genetic
techniques suitable for paraffin-embedded tissues, and
certain applications, such as the determination of B- and T-
cell clonality, belong to its standard diagnostic repertoire.
Many of these molecular tests can be performed success-
fully with nucleic acids extracted from BM trephine
biopsies, if some technical aspects specific to this template
source such as various fixation and decalcification pro-
cedures are taken into consideration. The current indica-
tions for molecular BM diagnostics range from the
confirmation of lymphoma involvement with gene rear-
rangement analysis, demonstration of tumor-specific trans-
locations in lymphoid and chronic myeloproliferative
disorders along to the detection of microorganisms or
marrow involvement by soft tissue sarcomas. The avail-
ability of quantitative polymerase chain reaction tech-
niques for the investigation of allelic imbalances and gene
expression levels in paraffin-embedded material also open
new avenues for research and advanced diagnostics. The
molecular detection of minimal residual disease in hae-
matological neoplasms, especially in the context of new

treatment strategies, will provide future challenges. This
article summarizes the current state of the art in molecular
diagnostics applied to paraffin-embedded BM biopsies.
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Introduction

Examination of the bone marrow (BM) is of central
importance for the diagnosis and staging of haematological
disorders. Conventional aspiration cytology, flow cyto-
metric immunophenotyping, cytogenetics and the histo-
pathological examination of trephine BM biopsies, usually
obtained from the posterior iliac crest, are currently the
standard examination techniques [4, 15, 80]. Traditional
indications for a trephine biopsy include all disorders in
which marrow aspiration alone is considered unreliable or
insufficient, such as staging of malignant lymphoma,
chronic myeloproliferative disorders, metastatic disease
and any disorder accompanied by marrow fibrosis [21, 68].
However, in many centres, trephine biopsy is considered an
integral part of BM examination and is taken in most
instances when an aspirate is performed, irrespective of the
indication. Traditionally, the examination of BM biopsies
was limited to conventional histological and histochemical
stains, such as hematoxylin and eosin, Giemsa, NASD-
chloroacetate-esterase, as well as iron and reticulin stains.
The availability of a broad range of antibodies suitable for
paraffin sections as well as the development of molecular
techniques applicable to fixed tissues have significantly
broadened the possibilities for the examination of trephine
biopsy samples. Although an excellent morphology un-
doubtedly remains the mainstay and basis for the diagnosis
of haematological disorders, the thoughtful application of
these ancillary methods can improve diagnostic accuracy,
can help to obtain a better subclassification of neoplastic
disorders and may increase sensitivity for the detection of
residual disease. This review focuses on the methodical
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possibilities and limits as well as the diagnostic applica-
tions of molecular in vitro techniques for the examination
of BM trephines. The role of immunohistochemistry in BM
diagnostics is addressed in a separate paper.

Relevance of BM fixation and processing for molecular
studies

The presence of bone trabecules and the necessity for
preservation of the subtle cytological features of haema-
topoietic cells poses special problems with regard to
specimen fixation, decalcification and processing. To
obtain optimal morphology, a variety of fixatives, includ-
ing buffered formalin, Bouin’s, mercury-containing solu-
tions such as Zenker’s fixative and B5 or a combination of
formalin and glutaraldehyde (Schäfer’s solution), are used,
followed by brief acid-based or EDTA decalcification [62].
However, several of these fixatives have a detrimental
influence on the immunoreactivity and/or the preservation
of nucleic acids and therefore limit the application of
ancillary techniques [74, 77]. In addition to paraffin
embedding, plastic embedding of biopsies is still used.
Extraction of DNA and even RNA suitable for molecular
studies such as polymerase chain reaction (PCR)-based
determination of B-cell clonality or detection of fusion
transcripts is possible from plastic-embedded BM samples
[6, 27]. However, due to the decreasing role of plastic
embedding, the techniques described in this review are
based on the use of conventional formalin-fixed, EDTA-
decalcified, paraffin-embedded BM specimens, but can be
equally applied to non-decalcified material such as BM clot
preparations. Samples briefly decalcified with acid-based
agents can also be used for DNA-based PCR assays [8, 30].
Fixation in buffered neutral formalin for 24 h followed by
EDTA decalcification renders both satisfactory morpholo-
gy as well as good antigen, DNA and even RNA
preservation and therefore can be regarded as a good
compromise between optimal morphological detail and the
availability of the full spectrum of ancillary techniques.
Although decalcification with EDTA is more time-
consuming than treatment with acid-based agents, applica-
tion of an ultrasonication bath allows decalcification within
8 to 12 h.

Similar to conventional paraffin tissues, DNA and RNA
extracted from BM biopsies is significantly degraded, and
the prevalent fragment size for DNA is below 500 bp.
Decalcification procedures, prolonged fixation in compar-
ison to surgical specimens and additives such as glutaral-
dehyde may further reduce the yield of amplifiable DNA.
Nevertheless, we and others have demonstrated that DNA
from trephine biopsies can be used for a broad range of
PCR assays, and amplification products of more than
500 bp can be achieved [6, 43, 59, 64, 81, 83]. A large
number of extraction protocols have been published for
paraffin-embedded tissues. In our experience, such stan-
dard protocols can also be applied to BM trephines, as long
as column-based kits designed for fresh tissue are used with
caution, since they may lead to the exclusion of small DNA

and RNA fragments. Common to all these procedures,
proper digestion with Proteinase K (best performed at
elevated temperature overnight) is mandatory to release the
maximum amount of DNA from the tissue, whereas
purification of DNA extracts is not necessary on a routine
basis. Irrespective of the procedure used, control amplifi-
cation of single copy gene fragment(s) of adequate size—
usually in the range of 250–400 bp—is mandatory to check
DNA quality, since some tests such as clonality analyses
may render false positive results with highly degraded
DNA. Control PCRs for amplificates of increasing size in a
multiplex format, such as designed by the BIOMED-2
group, may help to get a better estimate of DNA quality
[79].

If available, archival, air-dried BM smears can be used
as an additional source for DNA and RNA of excellent
quality, since they have not been subjected to cross-linking
fixatives. Air-dried slides, which are received at many
pathology laboratories in addition to trephine biopsies, can
even be used for Southern blot analysis, which requires
high molecular weight DNA [34].

Although the majority of applications of molecular
diagnostics on BM biopsies still use DNA as template
source, recent studies have described RNA-based analyses
from paraffin-embedded BM samples for a variety of
purposes, especially in combination with quantitative
techniques such as real-time reverse transcriptase (RT)-
PCR (Table 1). The negative effects of fixation, embedding
and extraction procedures on RNA integrity, which is less
resistant than DNA, have been elucidated [51]. Parameters
such as tissue fixation (i.e. type of fixation reagent,
duration of fixation) and RNA extraction (i.e. concentra-
tion of Proteinase K, duration of sample digestion) have
different effects on RNA integrity [40, 41, 55, 73]. How-
ever, the mechanisms which lead to cross-linkage between
RNA and proteins and to the addition of monomethylol
(−CH2OH) groups to all four bases by formalin is largely
unknown [51]. The decalcification procedure applied on
BM trephines also exhibits a negative effect on RNA in-
tegrity [7]. Preferably, the fixed BM trephine should be
decalcified in a solution displaying a neutral pH such as
EDTA, because an acidic environment augments the pro-
cess of RNA fragmentation. The degree of RNA fragmen-
tation is variable within different tissues, but the average
length of RNA from archival tissues such as BM trephines
can be estimated rarely to exceed 200 bp. PCR products
which are 100 bp in size or less are amplified more
efficiently and thus highly recommended [32, 46, 73].

Indications for molecular examination of BM biopsies

Determination of clonality in the diagnosis
of lymphoproliferative disorders

The differential diagnosis of lymphoid infiltrates in the BM
is one of the most frequent problems in haematopathology.
Although the majority of lymphoid infiltrates can safely be
diagnosed as either reactive or neoplastic based on the

910



extent of involvement, distribution, cytology and immu-
nophenotype, a significant minority of cases cannot be
classified with certainty [43, 78]. For some low-grade
lymphoma entities such as follicular and marginal zone B-
cell lymphoma, the detection of an aberrant immunophe-
notype may be difficult or impossible in small BM
infiltrates. Even flow cytometric immunophenotyping as
complementary technique may fail to detect a proportion of
cases with BM infiltration, mainly due to sampling error in
the presence of focal fibrosis [36, 75]. However, the
presence of limited vs disseminated disease—as character-
ized by the presence of BM involvement—is of crucial
importance as prognostic information and for therapeutic
decision making.

Detection of B-cell clonality

A variety of approaches have been used for the molecular
detection of B-cell clonality in BM specimens. For
paraffin-embedded tissues in general, the use of consensus
primers against the framework 3 (FR3) or framework 2
(FR2) regions of the immunoglobulin (Ig) heavy chain
variable genes in conjunction with primers against the
joining region (JH or FR4) [2, 18, 20, 56, 79] is the most
frequently chosen approach and will pick up clonality in
50–90% of B-cell non-Hodgkin’s lymphoma (B-NHL)
cases with a significant BM infiltrate, depending on the
type of lymphoma and the method used for the analysis of
amplicons [8, 9, 14, 27, 61, 63, 81]. Whereas B-cell chronic
lymphocytic leukemia (B-CLL) and mantle cell lymphoma
show a clonal product in nearly 100% of cases with these
primer sets; other entities, especially follicular lymphoma,
will show much lower clonality rates. This is due to point
mutations and other events during ongoing somatic
hypermutation, which alter or abolish primer binding
sites. This relatively high false negative rate has to be kept
in mind when evaluating molecular results in the setting of
suspicious lymphoid BM infiltrates. Acute lymphoid
leukemias may show false negative results due to
incomplete VDJ rearrangements [79].

Other primer combinations, such as the recently
published BIOMED-2 primer sets, which give a much
higher pick-up rate of more than 90% irrespective of
lymphoma type, have not been tested sufficiently on BM
samples to allow for definitive conclusions [79]. However,
primer sets rendering amplicons in excess of 300 base pairs
such as the family-specific framework 1 (FR1) region
primers should be used with caution on fixed BM samples,
because poor DNA quality may result in detection of
pseudoclonality due to preferential amplification of rare B
cells. The same problem may occur, if semi-nested or
nested protocols are used which can give oligoclonal or
pseudoclonal results with poor template quality [37, 43].
To avoid false positive results, stringent control of DNA
quality and reproducibility of PCR results are mandatory.
Repetition of the same PCR reaction with different
template concentrations, or repeat extractions, are ways
to confirm clonal results [25, 38].

To increase the sensitivity for the detection of small
clonal populations in nodular lymphoid infiltrates, we have
successfully used microdissection to enrich the target cell
population [43–45]. Although this increases the pick-up
rate through reduction of the polyclonal background
population, it also increases the risk of pseudoclonality
due to the small amount of template, and only clearly
reproducible bands of identical size should be regarded as
evidence for clonality [43, 85]. Since the most frequent
diagnostic question is the presence of BM involvement by
a malignant lymphoma diagnosed at another site, DNA
from the primary tumor can be used for comparative
purposes, and clonal products of the same size and
sequence will confirm the presence of BM infiltration.
However, one has to keep in mind that lymphoid infiltrates
in the marrow may be the result of another clonal process,
rather than dissemination of an extramedullary lymphoma.
This is especially the case in so-called discordant lympho-
ma, where a BM infiltrate composed of small lymphocytes
is found in the setting of nodal or extranodal large cell
lymphoma. In a recent study, we were able to show that one
third of the cases of discordant lymphoma actually
represented two different clonal processes, rather than
morphological progression of the same clone (Fig. 1) [45].

Table 1 Common applications of molecular diagnostics on trephine bone marrow biopsies

Diagnostic application Method References

B-cell clonality IgH PCR [8, 9, 22, 27, 59, 61, 77]
Microdissection and IgH PCR [43–45]
Quantitative RT-PCR for κ and λ light chains [48]

T-cell clonality TCR gamma PCR [30, 81, 82]
TCR gamma PCR with RNase protection assay [35]

Cyclin D1 overexpression in B-NHL Quantitative RT-PCR [71, 72]
BCR–ABL fusion transcripts in CML Quantitative RT-PCR [3, 6, 7, 40, 41]
C-kit mutations in systemic mastocytosis Sequencing, allele-specific probes, microdissection [70, 76]
Mycobacterial infection PCR [1, 69]
General methodical studies DNA PCR [34, 46, 64, 74, 83]

RT-PCR [32, 40, 41, 49, 55]

IgH Immunoglobulin heavy chain gene, TCR T-cell receptor gene

911



Another application of microdissection in BM biopsies is
the clonal analysis of two neoplastic processes with
divergent phenotype, such as composite NHL or combina-
tions of Hodgkin’s and non-Hodgkin’s lymphoma [28, 29,
45]. In addition to nodular infiltrates necessitating discrim-
ination from reactive lymphoid aggregates, some lympho-
ma subtypes with occasionally very subtle patterns of
infiltration such as splenic marginal zone lymphoma or
intravascular large B-cell lymphoma may require molec-
ular studies for diagnostic confirmation [22].

There are very few data available concerning the
sensitivity of molecular techniques in BM trephines, but
it can be assumed from mixing experiments and other data
that the sensitivity is the range of 2–10% clonal cells with
conventional consensus primers, if sensitive detection
methods such as the Genescan technique with fluorescently
labelled primers, heteroduplex analysis or high resolution
polyacrylamide gels are used. BM trephines may be more
representative samples for molecular studies than simulta-
neously obtained aspirates, since the aspirate is frequently
significantly diluted by peripheral blood lymphocytes, a
phenomenon similarly observed in flow cytometric im-
munophenotyping [14, 36].

The detection rate can be increased by addition of
primers for common translocations, namely the t(14;18)
(q32;q21) involving the bcl-2 locus in follicular lymphoma
and the t(11;14)(q13;q32) involving the bcl-1/CCND1
locus in mantle cell lymphoma. However, extremely sen-
sitive tests such as nested PCR, which can pick up rare cells
carrying the translocation, should be avoided in the

diagnostic setting. A detection of the t(14;18) without
morphological correlate is not sufficient for a diagnosis of
malignancy on its own, since rare benign B cells carrying
this translocation are a frequent finding in elderly patients
[52, 53]. Positive results, especially for bcl-2 rearrange-
ments, obtained in BM samples should always be com-
pared to the primary diagnostic tissue by appropriate
techniques such as sequencing to confirm the clonal
identity of the detected translocation.

Alternative methods for detection of B-cell clonality
such as the use of primers against the kappa light chains
can be employed analogously to the common Ig heavy
chain assays [33]. More recently, a promising technique for
BM biopsies based on the quantitative detection of kappa
and lambda mRNA transcript ratio has been described [48].

Detection of T-cell clonality

Since BM involvement by T-cell NHL (T-NHL) is
distinctly less frequent compared to B-cell lymphoma,
only a limited number of studies have dealt with the
molecular detection of T-cell clonality in BM trephines [30,
35, 44, 81, 82]. Nevertheless, molecular studies may
provide significant help in certain diagnostic settings. The
higher number of reactive T-cells in normal BM, the
frequent difficulty to identify an abnormal immunopheno-
type in T-cell neoplasms and the subtle pattern of in-
filtration characteristic for certain T-NHL such as T-cell
proliferations of large granular lymphocytes (T-LGL) or
hepatosplenic T-cell lymphoma are potential reasons to
study T-cell clonality in BM trephines [30, 82]. The most
frequently used strategy for detection of T-cell clonality in
paraffin-embedded tissues are various primer combinations
directed at the T-cell receptor gamma locus (TCRγ), less
commonly against the TCRβ genes, since the latter locus is
more complex and requires a large number of primers [2,
57, 79]. The vast majority of T-cell neoplasms of both α/β,
as well as γ/δ, phenotype show TCRγ rearrangements.
Since somatic hypermutation of rearranged TCR genes
does not occur, mispriming is less of a problem than in B-
cell lymphomas. However, due to the restricted repertoire
of germline genes, pseudoclonality due to diverse rear-
rangements of identical length may cause false positive
results, especially with a limited number of target cells.
Therefore, analysis of PCR products by either Genescan or
heteroduplex analysis is mandatory, and each reaction
should be run at least in duplicate [79].

General issues of clonality determination

One needs to point out that demonstration of B- or T-cell
clonality in the BM should not be equated with malignancy.
Leaving the technical problem of pseudoclonality aside, true
lymphocyte clones may be detected in a variety of fairly
common benign or premalignant disorders, such as mono-
clonal gammopathy of unknown significance (MGUS), in
patients with subclinical clonal B-cell populations with a B-

Fig. 1 Genescan analysis of immunoglobulin heavy chain gene
PCR products with framework 3 (FR3) primers in a patient with
diffuse large B-cell lymphoma and so-called discordant bone
marrow involvement by small lymphocytes. a Lymph node biopsy.
b Microdissected lymphoid infiltrates from the BM trephine.
Genescan analysis shows two clonal products of different size. A
distinct clonal origin was confirmed by sequencing
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CLL phenotype or occasionally in patients with nodular
lymphoid infiltrates [26, 43]. This underlines that a
diagnosis of malignancy should only be made if appropriate
clinical, morphological and phenotypical findings are
present.

The identification of a clonal population in the presence
of a morphologically suspicious lymphoid infiltrate with
standard molecular techniques has to be discerned from the
detection of minimal (residual) disease for staging or
follow-up purposes. The presence of minimal numbers of
clonal cells in morphologically negative BM samples of
lymphoma patients, identified through highly sensitive
techniques such as nested PCR or with clone-specific
primer sets, usually does not carry the same impact on
patient management as overt BM involvement, but may
help to identify patients at higher risk for relapse or
progression. For a more detailed review of the topic of
minimal residual disease, especially in the context of new
treatment options and the technical issues involved such as
tumor-specific primers and quantitative PCR, the extensive
haematological literature should be consulted [11, 17, 23].

Practical issues of DNA studies in trephine
BM biopsies

DNA is extracted either from serial paraffin sections or
microdissected tissue fragments with xylene followed by a
graded alcohol series. The resulting pellet is digested
overnight with Proteinase K in an adequate amount (25–
200 μl) of buffer at 55°C and continuous shaking. If the
supernatant is clear, Proteinase K is inactivated by boiling,
and the resulting crude extract is used directly as template
for PCR. Since quantitation of DNA by photometric

measurement is of limited usefulness, it can be helpful to
perform two PCR reactions in parallel, using two different
DNA concentrations (e.g. 1–2 μl undiluted and diluted
1:10). As mentioned above, DNA extracted from trephine
BM biopsies may show increased degradation, and it is
crucial to check amplification efficiency with a control
primer set. The size of the control product should be larger
than the fragment size achieved with primer sets routinely
used for clonality determination, e.g. at least 250–270 bp.
Most diagnostic DNA PCR assays in our laboratory are
carried out as single-step PCR with 40 cycles of amplifi-
cation. For clonality determination, AmpliTaq Gold (Perkin
Elmer) has shown better amplification efficiency. Separa-
tion of fluorescently labelled PCR products for clonality
determination is performed in our laboratories by auto-
mated fragment length analysis using an ABI 3130
capillary sequencer (Applied Biosystems, Foster City,
CA). Alternatively, polyacrylamide gels (with or without
heteroduplex analysis) may be used, but agarose gel
electrophoresis alone is clearly insufficient for product
analysis. Currently used primer sets are listed in Table 2.
Although the clonality pick-up rate in NHL varies with
different primer sets, a fairly good concordance between
different laboratories has been reached in multi-centre
trials, if stringent quality controls are performed and more
than one primer set is used [12].

Quantitation of gene expression

In addition to using the ratio of Ig light chain mRNAs as a
surrogate marker for B-cell clonality [48], the recent advent
of real-time RT-PCR for the precise quantitation of mRNA
transcripts holds significant promise for BM diagnostics.

Table 2 Sequences of primers commonly used in our laboratories

Primer Sequence 5′–3′ Product size

B-cell clonality
FR3, forward ACACGGCYSTGTATTACTGTa ∼70–130 bpb

FR2a, forward TGGRTCCGMCAGSCYYCNGGa ∼230–270 bpb

Bcl2 (MBR), forward TTAGAGAGTTGCTTTACGTGGCCTG ∼100–250 bp
JHa, reversec ACCTGAGGAGACGGTCACC –
T-cell clonality
Vγ11, forward TCTGGRGTCTATTACTGTGa –
Vγ101, forward CTCACACTCYCACTTCa –
Jg11, reverse CAAGTGTTGTTCCACTGCC ∼60–80 bp (Vγ11 + Vγ101)b

Jp11, reverse GTTACTATGAGCYTAGTCCa ∼70–90 bp (Vγ11 + Vγ101)b

BCR–ABL
b2, forward ATCCGTGGAGCTGCAGATG b2a2 (111 bp), b2a3 (118 bp)
b3, forward GAGTCTCCGGGGCTCTATGG b3a2 (98 bp), b3a3 (103 bp)
e1, forward AGATCTGGCCCAACGATGGCGA e1a2 (73 bp), e1a3 (79 bp)
a2, reverse TCAGATGCTACTGGCCGCTGA –
a3, reverse TGTGATTATAGCCTAAGACC –

MBR Major breakpoint region of bcl-2 in follicular lymphoma
aThese primers contain sites with multiple (“degenerate”) nucleotides to allow annealing to different VH (or TCR J) genes
bGives the approximate size range for a product derived from a normal polyclonal population
cAlternatively, a mix of multiple JH primers (JH 1-2-4-5 and JH3 and JH6) can be employed
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By using microdissected cells from paraffin sections
including decalcified BM biopsies, we could show that
determination of cyclin D1 levels with real-time PCR,
using intron-spanning primers (exon 1/2) amplifying a
70-bp mRNA fragment and a corresponding specific
TaqMan probe (Perkin Elmer) is an excellent tool for the
differential diagnosis of small B-cell neoplasms [71].
Mantle cell lymphomas could be reliably discerned from
other lymphoma subtypes by virtue of their constantly
high cyclin D1 levels caused by the t(11;14)(q13;q32)
translocation (Fig. 2). Hairy cell leukemia, which shows
up-regulation of cyclin D1 by another, so far unknown
mechanism, showed cyclin D1 levels intermediate between
mantle cell lymphoma and other B-NHL. In multiple
myeloma, real time RT-PCR was able to discriminate three
groups with high, intermediate and low to negative cyclin
D1 levels. All cases with high mRNA levels showed the
presence of a t(11;14) by fluorescence in situ hybridization
(FISH), whereas most cases with intermediate values
contained a trisomy 11, pointing to a role of gene dosage
for cyclin D1 levels. Cases with low to negative cyclin D1
did not show alterations of the CCND1 (cyclin D1) locus
on 11q13 by FISH [72]. This example demonstrates the
enormous potential of quantitative gene expression anal-
ysis in archival tissues. However, the pitfalls as well as the
biological and technical limitations of these techniques
have to be kept in mind if they are applied for diagnostic
purposes [32, 49, 51, 73, 74]. The problem of normaliza-
tion has not been solved satisfactorily to date, since many
so-called “housekeeping” genes can show some variation
in expression levels depending on cell type and conditions.
In addition, the normalization against multiple house-
keeping genes recommended by some investigators may be
impractical in the diagnostic setting with sometimes very
limited archival material. Furthermore, quantitative RT-
PCR assays may show variable sensitivity to fixation-
mediated degradation or alterations of secondary RNA
structure, which necessitates stringent controls for compar-
isons among different mRNA species. Nevertheless, the
investigation of differential expression ratios using the
delta/delta Ct method is feasible in paraffin-embedded BM
biopsies if results are rigorously controlled, and the
expression levels of the target genes are within the linear
range of the standard curve.

Molecular diagnostics in myeloproliferative disorders

The rapidly expanding knowledge of the molecular
alterations in myeloproliferative diseases and their im-
portance for patient management have resulted in an
increasing amount of work aimed at identifying these
genetic alterations in trephine biopsy samples. A model
disease where molecular studies are of significant practical
relevance is chronic myelogenous leukemia (CML), which
is characterized by the hallmark Philadelphia chromosome
caused by the t(9;22) translocation resulting in a breakpoint
cluster region–Abelson (BCR–ABL) fusion. Already more
than 10 years ago, up to two-decade-old archival tissues

were demonstrated to be suitable for detection of BCR–
ABL hybrid genes and fusion transcripts [3]. In accordance
with these data, the successful detection of BCR–ABL
transcripts also has been shown in other reports [40, 41].
Predominantly, these studies were conducted to confirm that
these molecular techniques are applicable to archival tissues,
i.e. proof of principle. The transfer of these techniques to the
daily routine, however, represents a challenging step.
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Fig. 2 Amplification plots of cyclin D1 and housekeeping gene
TBP of microdissected tumor cells from a patient with mantle cell
lymphoma. a Lymph node biopsy. b BM biopsy involved by
lymphoma. c Reactive control lymph node. Whereas the curves for
cyclin D1 and TBP are almost superimposed in the control tissue,
both lymph node and BM biopsy show an identical left shift of the
cyclin D1 curve with significantly lowered Ct, indicating significant
overexpression of cyclin D1 mRNA
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Histomorphological evaluation of the patients’ BM
trephine in synopsis with clinical data usually enables the
diagnosis of CML. In CML, the initial diagnostic workup is
often accompanied by application of metaphase cytoge-
netics or FISH analysis performed on BM aspirates, i.e.
fresh specimens. In more than 95% of typical CML as well
as in up to 30% of adult and 5% of childhood acute lym-
phoblastic leukemia (ALL), a reciprocal chromosomal
translocation t(9;22), can be detected [13, 19]. This trans-
location exhibits an underlying molecular anatomy with
either a major BCR (M-BCR), a minor BCR (m-BCR) or
rarely a micro BCR (μ-BCR). In CML, the M-BCR typi-
cally encodes for the fusion transcript b2a2 or b3a2,
whereas in ALL, the m-BCR mainly encodes for e1a2 [19].
In some cases of chronic neutrophilic leukemia, e19a2
fusion transcripts were detected as the result of a break-
point in the μ-BCR [19]. Although several rare types of
fusion transcripts have been described (e.g. b2a3, e1a3)
[47], the most frequently detected types are indeed b2a2,
b3a2 and e1a2 (Fig. 3). However, there is no complete
concordance between the type of BCR–ABL fusion tran-
script and the disease type, either CML or ALL. Rare cases
of typical CML can exhibit transcripts derived from the m-
BCR [66]; conversely, some ALL cases contain M-BCR
fusions [31]. The fusion transcripts of the M-BCR and m-
BCR encode for chimeric proteins, the p210BCR–ABL and
the p190BCR–ABL protein, respectively. This causes aber-
rant expression and constitutive activation of the ABL
tyrosine kinase with uncontrolled proliferation of the
affected neoplastic cells [19]. In cases of ALL, the
detection of BCR–ABL fusion transcripts is associated
with an aggressive course and poor survival [13].

Although CML and ALL typically can be diagnosed by
histomorphological evaluation and in ALL additional
immunohistochemistry, pathologists may be confronted
with the need to investigate the BCR–ABL rearrangement
in patients presenting with myeloproliferative disorders in
case of (1) small BM biopsies with haematopoiesis that is
not representative (2) leukemic infiltrates without available
metaphase cytogenetics and (3) the existence of cryptic
translocations that cannot be detected by conventional

cytogenetics [10]. In addition, the embedded BM trephine
may be the only available material when cytogenetics has
not been conducted initially. Especially since the introduc-
tion of a specific tyrosine kinase inhibitor against the BCR–
ABL protein (imatinib mesylate, formerly STI 571), which
has shown marked activity in patients with CML and Ph1+
ALL, the detection of a BCR–ABL transcript and its type
should accompany both initial diagnosis and the monitor-
ing of tyrosine kinase inhibitor-based therapies [13, 24].

Given the considerable extent of RNA degradation in
paraffin-embedded tissues, the detection of BCR–ABL
transcripts is more efficient when the product amplified by
RT-PCR is less than 100 bp. In addition, for the specific
detection of a particular BCR–ABL transcript, one primer
should be placed directly into the fusion region. Primers
suitable for RT-PCR for amplification of either b2a2 or
b3a2 fusion transcripts have been previously described
[16]. Although not particularly designed for the application
in archival tissues, the accuracy of these assays has been
successfully reproduced in our hands in archival BM
trephines of patients with proven Ph-chromosome positive
CML and ALL.

RT-PCR assays should be able to detect the three most
common BCR–ABL transcripts. For the daily routine in a
diagnostic molecular pathology laboratory, at least three
RT-PCR reactions per case (+RT in duplicate, single −RT
reaction as the case-specific control) per given BCR–ABL
fusion type as well as adequate positive control reactions
for all types have to be performed, giving a total of at least
12 RT-PCR reactions for one case. However, rare BCR–
ABL fusion transcripts will not be detectable by such an
approach. Multiplex RT-PCR approaches could reduce
time and costs by enabling the detection of several potential
BCR–ABL fusion types in a single reaction. A variety of
multiplex RT-PCR assays including commercially avail-
able kits have been described by different laboratories [54,
67, 84]. However, their usefulness is restricted to fresh,
unfixed samples such as peripheral blood or BM mononu-
clear cells because of the large amplicons generated by
these assays. Unfortunately, a multiplex PCR approach
often leads to a reduced sensitivity due to primer interfer-
ence along with suboptimal PCR reaction conditions [60].
We have recently described a simple, robust and reliable
multiplex RT-PCR, the usefulness of which for daily
routine has been extensively demonstrated (Fig. 4) [7]. In
addition, the detection of rare transcripts such as e1a3 is
enabled by using the same forward primers and placing an
additional reverse primer in ABL exon a3 (see Table 2).
However, for diagnostic purposes it is highly recom-
mended to initially establish BCR–ABL fusion type-
specific RT-PCR assays separately and only consecutively
design a multiplex RT-PCR along with optimization of
reaction conditions.

The quantification of BCR–ABL fusion transcripts in
peripheral blood mononuclear cells (PBMC) and BM
aspirates of patients with CML and ALL using real-time
RT-PCR has been shown to be important for monitoring the
response to therapeutical intervention such as BM trans-
plantation, peripheral blood stem cell tranplantation

M-bcr b2 M-bcr b3 Abl a2 Abl a3

Abl a2 Abl a3m-bcr e1

A

B

b2a2
b3a2

b2a3

b3a3

e1a2

e1a3

Fig. 3 Schematic illustration of the BCR and ABL hybrid genes
fused in the M-BCR (a) and m-BCR (b). Drawn lines in the M-BCR
(b2a2, b3a2) and m-BCR (e1a2) represent the most common fusion
transcripts derived from the BCR–ABL hybrid genes. Dotted lines
indicate rare but optional detectable fusion transcripts (b2a3, b3a3,
e1a3)
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(PBSCT), interferons and tyrosine kinase inhibitors [19].
Furthermore, the levels of BCR–ABL transcripts prior,
during and after therapeutic intervention seem to predict
the clinical outcome of the patients, and thus qualitative
and quantitative detection of these transcripts from PBMC
became a standard in clinical studies [65]. To transfer our
knowledge from qualitative detection to quantitative
monitoring of BCR–ABL transcripts, we investigated
whether archival BM trephines of patients with proven
CML are suitable for determination of the BCR–ABL
transcript level at a given time point of the disease [6].
Retrospectively, we retrieved sequential BM trephines that
have been taken from ten patients during the course of the
disease, including more than 10-year-old plastic-embedded
specimens. We were able to demonstrate that monitoring of
BCR–ABL transcript levels in both plastic- and paraffin-
embedded BM trephines is feasible in an accurate and
sensitive manner. Moreover, the intra-individual BCR–
ABL transcript level could be properly correlated with the
histomorphological features at a given time point during
the course of the disease. One representative time course of
a CML is shown to demonstrate the BCR–ABL transcript
levels in good correlation with therapeutic interventions
and histopathological findings (Fig. 5).

Although the detection of BCR–ABL fusion transcripts
currently is the most relevant molecular diagnostic assay in
myeloproliferative disorders, several other applications
have been described in the last years, e.g. suppressor gene
methylation in myelodysplastic syndromes and expression
of aberrant transcripts in chronic myeloproliferative
disorders based on DNA and RNA extracted from
paraffin-embedded trephines. Using either laser capture
microdissection of immunostained BM sections or special
PCR techniques for enrichment of the mutated allele,
several groups demonstrated the occurrence of the activat-
ing c-kit mutation D816V in mast cells and lymphoid
aggregates of patients with systemic mastocytosis [70, 76].

Another potential application of molecular diagnostics on
BM trephines is the detection of the recently described
activating point mutation V617F in the JAK2 gene, which
is found in a high percentage of chronic myeloproliferative
disorders other than CML [5, 39, 42, 50].

Other applications of molecular tests in BM pathology

Several other applications for molecular testing on BM
biopsies have been described, and many assays performed
on aspirates can be adapted to trephine biopsies. For
example, the detection of tumor-specific fusion transcripts
can also be applied to recurrent translocations of soft tissue
tumors involving the BM, such as the t(11;22)(q24;q12)
EWS/FLI-1 and t(21;22)(q22;q12) EWS/ERG transloca-
tions of Ewing sarcoma. In the future, minimal residual
disease quantitation by real-time RT-PCR will play an
increasing role for monitoring these patients under therapy
[86]. In non-neoplastic disorders, detection of infectious
agents such as Mycobacteria spp., especially in immuno-
suppressed patients, can be facilitated by molecular testing
[1, 69].

Conclusions

In conjunction with other techniques such as immunohis-
tochemistry and FISH [58, 72], the application of molecular
genetics to paraffin-embedded BM trephines has signifi-
cantly expanded the scope of histopathologic bone marrow
examination. Some tests, such as PCR-based determination

Fig. 4 Representative gel-electropheresis demonstrating BCR–ABL
positivity in bone marrow trephines of patients with Ph+ CML
(b3a2, b2a2) and Ph+ ALL (e1a2). Each case was analysed in
duplicate by a multiplex RT-PCR along with a negative control.
BCR–ABL positive cell lines (SD-1, K562, BV173) serve as
positive control. Note that these primer design and primer mix
respect the inevitable fragmentation of RNA in archival tissues by
generating PCR products that are as small as required for an efficient
RT-PCR approach. The two PCR products obtained in the K562 cell
line derived from the exon-specific binding of the forward primers
(b3–a2=98 bp, b2–[b3]–a2=186 bp, respectively). DNA marker,
pBR322/Bsu RI. Note that it is digitally inverted
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Fig. 5 Retrospective monitoring of BCR–ABL transcript levels in
archival bone marrow trephines of a patient with Ph+ CML initially
diagnosed in 1994. Declining levels could be correlated to a
histopathologically demonstrable partial remission in 10/1997 after
an autologous PBSCT in 08/1997. The phase of acceleration
diagnosed in 05/1998 was accompanied with a 3.0-fold increase of
BCR–ABL transcripts. The patient died in the blast crisis 3 months
later after another increase of the BCR–ABL transcript level
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of clonality, can help to resolve common diagnostic
problems such as the nature of nodular lymphoid BM
infiltrates in the setting of NHL. If the technical aspects of
BM fixation and processing are observed and common
pitfalls such as poor template quality avoided, the success
rates for molecular studies in BM trephines are equal to
other routinely fixed, archival tissues. The combination of
excellent morphological detail and preservation of marrow
architecture with the phenotypical and genetic information
obtained from ancillary techniques makes the BM trephine
biopsy a valuable resource for modern diagnostics and
research in haematopathology.

Acknowledgements We thank Mrs. Birgit Geist for her excellent
technical support. This study was supported in part by the Deutsche
Forschungsgemeinschaft (DFG), grant FE 597/1 to FF, LQ-M and
MK.

References

1. Akcan Y, Tuncer S, Hayran M, Sungur A, Unal S (1997) PCR
on disseminated tuberculosis in bone marrow and liver biopsy
specimens: correlation to histopathological and clinical diag-
nosis. Scand J Infect Dis 29:271–274

2. Arber DA (2000) Molecular diagnostic approach to non-
Hodgkin’s lymphoma. J Mol Diagn 2:178–190

3. Aurer I, Juhbashi T, Sekine I, Tomonaga M, Gale RP (1993)
Analysis of BCR/ABL abnormalities in mRNA from 20-year-
old paraffin-embedded tissue for BCR/ABL rearrangement by
polymerase chain reaction. Acta Haematol 90:5–7

4. Bain BJ (2001) Bone marrow trephine biopsy. J Clin Pathol
54:737–742

5. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N,
Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott
MA, Erber WN, Green AR (2005) Acquired mutation of the
tyrosine kinase JAK2 in human myeloproliferative disorders.
Lancet 365:1054–1061

6. Bock O, Lehmann U, Kreipe H (2003) Quantitative intra-
individual monitoring of BCR–ABL transcript levels in
archival bone marrow trephines of patients with chronic
myeloid leukemia. J Mol Diagn 5:54–60

7. Bock O, Reising D, Kreipe H (2003) Multiplex RT-PCR for the
detection of common BCR–ABL fusion transcripts in paraffin-
embedded tissues from patients with chronic myeloid leukemia
and acute lymphoblastic leukemia. Diagn Mol Pathol 12:119–
123

8. Braunschweig R, Baur AS, Delacretaz F, Bricod C, Benhattar J
(2003) Contribution of IgH–PCR to the evaluation of B-cell
lymphoma involvement in paraffin-embedded bone marrow
biopsy specimens. Am J Clin Pathol 119:634–642

9. Brinckmann R, Kaufmann O, Reinartz B, Dietel M (2000)
Specificity of PCR-based clonality analysis of immunoglobulin
heavy chain gene rearrangements for the detection of bone
marrow involvement by low-grade B-cell lymphomas. J Pathol
190:55–60

10. Browett PJ, Cooke HM, Secker-Walker LM, Norton JD (1989)
Chromosome 22 breakpoints in variant Philadelphia transloca-
tions and Philadelphia-negative chronic myeloid leukemia.
Cancer Genet Cytogenet 37:169–177

11. Bruggemann M, Pott C, Ritgen M, Kneba M (2004)
Significance of minimal residual disease in lymphoid malig-
nancies. Acta Haematol 112:111–119

12. Cabras AD, Kremer M, Schulz S, Werner M, Hummel M,
Komminoth P, Höfler G, Höfler H (2000) Quality assessment in
diagnostic molecular pathology: experience from a German–
Austrian–Swiss multicenter trial. Virchows Arch 437:46

13. Cilloni D, Guerrasio A, Giugliano E, Scaravaglio P, Volpe G,
Rege-Cambrin G, Saglio G (2002) From genes to therapy: the
case of Philadelphia chromosome-positive leukemias. Ann N Y
Acad Sci 963:306–312

14. Coad JE, Olson DJ, Christensen DR, Lander TA, Chibbar R,
McGlennen RC, Brunning RD (1997) Correlation of PCR-
detected clonal gene rearrangements with bone marrow mor-
phology in patients with B-lineage lymphomas. Am J Surg
Pathol 21:1047–1056

15. Cotelingam JD (2003) Bone marrow biopsy: interpretive
guidelines for the surgical pathologist. Adv Anat Pathol
10:8–26

16. Cross NC, Melo JV, Feng L, Goldman JM (1994) An optimized
multiplex polymerase chain reaction (PCR) for detection of
BCR–ABL fusion mRNAs in haematological disorders. Leu-
kemia 8:186–189

17. Darby AJ, Johnson PW (2002) Molecular remission and non-
Hodgkin’s lymphoma. Best Pract Res Clin Haematol 15:549–
562

18. Deane M, McCarthy KP, Wiedemann LM, Norton JD (1991)
An improved method for detection of B-lymphoid clonality by
polymerase chain reaction. Leukemia 5:726–730

19. Deininger MW, Goldman JM, Melo JV (2000) The molecular
biology of chronic myeloid leukemia. Blood 96:3343–3356

20. Derksen PW, Langerak AW, Kerkhof E, Wolvers-Tettero IL,
Boor PP, Mulder AH, Vrints LW, Coebergh JW, van Krieken
JH, Schuuring E, Kluin PM, van Dongen JJ (1999) Comparison
of different polymerase chain reaction-based approaches for
clonality assessment of immunoglobulin heavy-chain gene
rearrangements in B-cell neoplasia. Mod Pathol 12:794–805

21. Diebold J, Molina T, Camilleri-Broet S, Le Tourneau A,
Audouin J (2000) Bone marrow manifestations of infections
and systemic diseases observed in bone marrow trephine biopsy
review. Histopathology 37:199–211

22. DiGiuseppe JA, Hartmann DP, Freter C, Cossman J, Mann RB
(1997) Molecular detection of bone marrow involvement in
intravascular lymphomatosis. Mod Pathol 10:33–37

23. Dolken G (2001) Detection of minimal residual disease. Adv
Cancer Res 82:133–185

24. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF,
Ford JM, Capdeville R, Talpaz M (2001) Activity of a specific
inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of
chronic myeloid leukemia and acute lymphoblastic leukemia
with the Philadelphia chromosome. N Engl J Med 344:1038–
1042

25. Elenitoba-Johnson KS, Bohling SD, Mitchell RS, Brown MS,
Robetorye RS (2000) PCR analysis of the immunoglobulin
heavy chain gene in polyclonal processes can yield pseudoclon-
al bands as an artifact of low B cell number. J Mol Diagn 2:92–
96

26. Fend F, Weyrer K, Drach J, Schwaiger A, Umlauft F,
Grunewald K (1993) Immunoglobulin gene rearrangement in
plasma cell dyscrasias: detection of small clonal cell popula-
tions in peripheral blood and bone marrow. Leuk Lymphoma
10:223–229

27. Fend F, Gschwendtner A, Gredler E, Thaler J, Dietze O (1994)
Detection of monoclonal B-cell populations in decalcified,
plastic-embedded bone marrow biopsies with the polymerase
chain reaction. Am J Clin Pathol 102:850–855

28. Fend F, Quintanilla-Martinez L, Kumar S, Beaty MW, Blum L,
Sorbara L, Jaffe ES, Raffeld M (1999) Composite low grade B-
cell lymphomas with two immunophenotypically distinct cell
populations are true biclonal lymphomas. A molecular analysis
using laser capture microdissection. Am J Pathol 154:1857–
1866

29. Fend F, Kremer M, Specht K, Quintanilla-Martinez L (2003)
Laser microdissection in hematopathology. Pathol Res Pract
199:425–430

30. Gebhard S, Benhattar J, Bricod C, Meuge-Moraw C, Delacretaz
F (2001) Polymerase chain reaction in the diagnosis of T-cell
lymphoma in paraffin-embedded bone marrow biopsies: a
comparative study. Histopathology 38:37–44

917



31. Gleissner B, Gokbuget N, Bartram CR, Janssen B, Rieder H,
Janssen JW, Fonatsch C, Heyll A, Voliotis D, Beck J, Lipp T,
Munzert G, Maurer J, Hoelzer D, Thiel E (2002) Leading
prognostic relevance of the BCR–ABL translocation in adult
acute B-lineage lymphoblastic leukemia: a prospective study of
the German multicenter trial group and confirmed polymerase
chain reaction analysis. Blood 99:1536–1543

32. Godfrey TE, Kim SH, Chavira M, Ruff DW, Warren RS, Gray
JW, Jensen RH (2000) Quantitative mRNA expression analysis
from formalin-fixed, paraffin-embedded tissues using 5′ nucle-
ase quantitative reverse transcription–polymerase chain reac-
tion. J Mol Diagn 2:84–91

33. Gong JZ, Zheng S, Chiarle R, De Wolf-Peeters C, Palestro G,
Frizzera G, Inghirami G (1999) Detection of immunoglobulin
kappa light chain rearrangements by polymerase chain reaction.
An improved method for detecting clonal B-cell lymphopro-
liferative disorders. Am J Pathol 155:355–363

34. Grunewald K, Lyons J, Hansen-Hagge TE, Janssen JW,
Feichtinger H, Bartram CR (1991) Molecular genetic analysis
of DNA obtained from fixed, air dried or paraffin embedded
sources. Ann Hematol 62:108–114

35. Hanamura A, Kinoshita T, Kurokawa T, Nagai H, Murate T,
Nagasaka T, Mori H, Saito H (1999) Molecular evaluation of
bone marrow involvement in peripheral T-cell lymphoma with
a PCR-mediated RNase protection assay. Int J Hematol 70:283–
289

36. Hanson CA, Kurtin PJ, Katzmann JA, Hoyer JD, Li CY,
Hodnefield JM, Meyers CH, Habermann TM, Witzig TE
(1999) Immunophenotypic analysis of peripheral blood and
bone marrow in the staging of B-cell malignant lymphoma.
Blood 94:3889–3896

37. Heinmoller E, Renke B, Beyser K, Dietmaier W, Langner C,
Ruschoff J (2001) Piffalls in diagnostic molecular pathology-
significance of sampling error. Virchows Arch 439:504–511

38. Hoeve MA, Krol AD, Philippo K, Derksen PW, Veenendaal
RA, Schuuring E, Kluin PM, van Krieken JH (2000)
Limitations of clonality analysis of B cell proliferations using
CDR3 polymerase chain reaction. Mol Pathol 53:194–200

39. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F,
Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli
A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker
W (2005) A unique clonal JAK2 mutation leading to consti-
tutive signalling causes polycythaemia vera. Nature 434:1144–
1148

40. Koopmans M, Monroe SS, Coffield LM, Zaki SR (1993) Op-
timization of extraction and PCR amplification of RNA extracts
from paraffin-embedded tissue in different fixatives. J Virol
Methods 43:189–204

41. Krafft AE, Duncan BW, Bijwaard KE, Taubenberger JK, Lichy
JH (1997) Optimization of the isolation and amplification of
RNA from formalin-fixed, paraffin-embedded tissue: the
Armed Forces Institute of Pathology experience and literature
review. Mol Diagn 2:217–230

42. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R,
Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-
of-function mutation of JAK2 in myeloproliferative disorders.
N Engl J Med 352:1779–1790

43. Kremer M, Cabras AD, Fend F, Schulz S, Schwarz K, Hoefler
H, Werner M (2000) PCR analysis of IgH-gene rearrangements
in small lymphoid infiltrates microdissected from sections of
paraffin-embedded bone marrow biopsy specimens. Hum
Pathol 31:847–853

44. Kremer M, Sandherr M, Geist B, Cabras AD, Hofler H, Fend F
(2001) Epstein–Barr virus-negative Hodgkin’s lymphoma after
mycosis fungoides: molecular evidence for distinct clonal
origin. Mod Pathol 14:91–97

45. Kremer M, Spitzer M, Mandl-Weber S, Stecker K, Schmidt B,
Hofler H, Quintanilla-Martinez L, Fend F (2003) Discordant
bone marrow involvement in diffuse large B-cell lymphoma:
comparative molecular analysis reveals a heterogeneous group
of disorders. Lab Invest 83:107–114

46. Kreuzer KA, Lass U, Nagel S, Ellerbrok H, Pauli G,
Pawlaczyk-Peter B, Siegert W, Huhn D, Schmidt CA (2000)
Applicability of an absolute quantitative procedure to monitor
intra-individual bcr/abl transcript kinetics in clinical samples
from chronic myelogenous leukemia patients. Int J Cancer
86:741–746

47. Laurent E, Talpaz M, Kantarjian H, Kurzrock R (2001) The
BCR gene and philadelphia chromosome-positive leukemo-
genesis. Cancer Res 61:2343–2355

48. Lehmann U, Bock O, Langer F, Kreipe H (2001) Demonstra-
tion of light chain restricted clonal B-lymphoid infiltrates in
archival bone marrow trephines by quantitative real-time
polymerase chain reaction. Am J Pathol 159:2023–2029

49. Lehmann U, Kreipe H (2001) Real-time PCR analysis of DNA
and RNA extracted from formalin-fixed and paraffin-embedded
biopsies. Methods 25:409–418

50. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly
BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger
J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Frohling
S, Dohner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A,
Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee
SJ, Gilliland DG (2005) Activating mutation in the tyrosine
kinase JAK2 in polycythemia vera, essential thrombocythemia,
and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–
397

51. Lewis F, Maughan NJ, Smith V, Hillan K, Quirke P (2001)
Unlocking the archive-gene expression in paraffin-embedded
tissue. J Pathol 195:66–71

52. Limpens J, de Jong D, van Krieken JH, Price CG, Young BD,
van Ommen GJ, Kluin PM (1991) Bcl-2/JH rearrangements in
benign lymphoid tissues with follicular hyperplasia. Oncogene
6:2271–2276

53. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen
GJ, Schuuring E, Kluin PM (1995) Lymphoma-associated
translocation t(14;18) in blood B cells of normal individuals.
Blood 85:2528–2536

54. Markoulatos P, Siafakas N, Moncany M (2002) Multiplex
polymerase chain reaction: a practical approach. J Clin Lab
Anal 16:47–51

55. Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K
(1999) Analysis of chemical modification of RNA from
formalin-fixed samples and optimization of molecular biology
applications for such samples. Nucleic Acids Res 27:4436–
4443

56. McCarthy KP, Sloane JP, Wiedemann LM (1990) Rapid
method for distinguishing clonal from polyclonal B cell
populations in surgical biopsy specimens. J Clin Pathol 43:
429–432

57. McCarthy KP, Sloane JP, Kabarowski JH, Matutes E, Wiedemann
LM (1992) A simplified method of detection of clonal rear-
rangements of the T-cell receptor-gamma chain gene. Diagn Mol
Pathol 1:173–179

58. Miranda RN, Mark HF, Medeiros LJ (1994) Fluorescent in situ
hybridization in routinely processed bone marrow aspirate clot
and core biopsy sections. Am J Pathol 145:1309–1314

59. Nagasaka T, Lai R, Chen YY, Chen W, Arber DA, Chang KL,
Weiss LM (2000) The use of archival bone marrow specimens
in detecting B-cell non-Hodgkin’s lymphomas using polymer-
ase chain reaction methods. Leuk Lymphoma 36:347–352

60. Olavarria E, Kanfer E, Szydlo R, Kaeda J, Rezvani K,
Cwynarski K, Pocock C, Dazzi F, Craddock C, Apperley JF,
Cross NC, Goldman JM (2001) Early detection of BCR–ABL
transcripts by quantitative reverse transcriptase-polymerase
chain reaction predicts outcome after allogeneic stem cell
transplantation for chronic myeloid leukemia. Blood 97:1560–
1565

61. Pajor L, Lacza A, Kereskai L, Jakso P, Egyed M, Ivanyi JL,
Radvanyi G, Dombi P, Pal K, Losonczy H (2004) Increased
incidence of monoclonal B-cell infiltrate in chronic myelopro-
liferative disorders. Mod Pathol 12:1521–1530

918



62. Peterson LA, Brunning RD (2001) Bone marrow specimen
processing. In: Knowles DM (ed) Neoplastic hematopathology.
Lippincott Williams & Wilkins, Philadelphia, pp 1391–1406

63. Pittaluga S, Tierens A, Dodoo YL, Delabie J, De Wolf-Peeters
C (1999) How reliable is histologic examination of bone
marrow trephine biopsy specimens for the staging of non-
Hodgkin lymphoma? A study of hairy cell leukemia and mantle
cell lymphoma involvement of the bone marrow trephine
specimen by histologic, immunohistochemical, and polymerase
chain reaction techniques. Am J Clin Pathol 111:179–184

64. Provan AB, Hodges E, Smith AG, Smith JL (1992) Use of
paraffin wax embedded bone marrow trephine biopsy speci-
mens as a source of archival DNA. J Clin Pathol 45:763–765

65. Radich JP, Gooley T, Bryant E, Chauncey T, Clift R, Beppu L,
Edmands S, Flowers ME, Kerkof K, Nelson R, Appelbaum FR
(2001) The significance of bcr–abl molecular detection in
chronic myeloid leukemia patients “late,” 18 months or more
after transplantation. Blood 98:1701–1707

66. Ravandi F, Cortes J, Albitar M, Arlinghaus R, Qiang Guo J,
Talpaz M, Kantarjian HM (1999) Chronic myelogenous
leukaemia with p185(BCR/ABL) expression: characteristics
and clinical significance. Br J Haematol 107:581–586

67. Salto-Tellez M, Shelat SG, Benoit B, Rennert H, Carroll M,
Leonard DG, Nowell P, Bagg A (2003) Multiplex RT-PCR for
the detection of leukemia-associated translocations: validation
and application to routine molecular diagnostic practice. J Mol
Diagn 5:231–236

68. Schmid C, Isaacson PG (1992) Bone marrow trephine biopsy in
lymphoproliferative disease. J Clin Pathol 45:745–750

69. Schulz S, Cabras AD, Kremer M, Weirich G, Miethke T,
Bosmuller HC, Hofler H, Werner M, Fend F (2005) Species
identification of mycobacteria in paraffin-embedded tissues:
frequent detection of nontuberculous mycobacteria. Mod Pathol
18(2):274–282

70. Sotlar K, Escribano L, Landt O, Mohrle S, Herrero S, Torrelo
A, Lass U, Horny HP, Bultmann B (2003) One-step detection of
c-kit point mutations using peptide nucleic acid-mediated
polymerase chain reaction clamping and hybridization probes.
Am J Pathol 162:737–746

71. Specht K, Kremer M, Muller U, Dirnhofer S, Rosemann M,
Hofler H, Quintanilla-Martinez L, Fend F (2002) Identification
of cyclin D1 mRNA overexpression in B-cell neoplasias by
real-time reverse transcription-PCR of microdissected paraffin
sections. Clin Cancer Res 8:2902–2911

72. Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber
S, Koch I, Tomer R, Hofler H, Schuuring E, Kluin PM, Fend F,
Quintanilla-Martinez L (2004) Different mechanisms of cyclin
D1 overexpression in multiple myeloma revealed by fluores-
cence in situ hybridization and quantitative analysis of mRNA
levels. Blood 104:1120–1126

73. Specht K, Richter T, Müller U, Walch A, Werner M, Höfler H
(2001) Quantitative gene expression analysis in microdissected
archival formalin-fixed, paraffin-embedded tumor tissue. Am J
Pathol 158:419–429

74. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives
and tissue processing on the content and integrity of nucleic
acids. Am J Pathol 161:1961–1971

75. Stacchini A, Demurtas A, Godio L, Martini G, Antinoro V,
Palestro G (2003) Flow cytometry in the bone marrow staging
of mature B-cell neoplasms. Cytometry B Clin Cytom 54:10–
18

76. Taylor ML, Sehgal D, Raffeld M, Obiakor H, Akin C, Mage
RG, Metcalfe DD (2004) Demonstration that mast cells, T cells,
and B cells bearing the activating kit mutation D816V occur in
clusters within the marrow of patients with mastocytosis. J Mol
Diagn 6:335–342

77. Tbakhi A, Totos G, Pettay JD, Myles J, Tubbs RR (1999) The
effect of fixation on detection of B-cell clonality by polymerase
chain reaction. Mod Pathol 12:272–278

78. Thiele J, Zirbes TK, Kvasnicka HM, Fischer R (1999) Focal
lymphoid aggregates (nodules) in bone marrow biopsies:
differentiation between benign hyperplasia and malignant
lymphoma—a practical guideline. J Clin Pathol 52:294–300

79. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA,
Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E,
Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard
C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith
JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and
standardization of PCR primers and protocols for detection of
clonal immunoglobulin and T-cell receptor gene recombina-
tions in suspect lymphoproliferations: report of the BIOMED-2
concerted action BMH4-CT98-3936. Leukemia 17:2257–2317

80. Viswanatha D, Foucar K (2003) Hodgkin and non-Hodgkin
lymphoma involving bone marrow. Semin Diagn Pathol
20:196–210

81. Weirich G, Funk A, Hoepner I, Heider U, Noll S, Putz B,
Fellbaum C, Hofler H (1995) PCR-based assays for the
detection of monoclonality in non-Hodgkin’s lymphoma:
application to formalin-fixed, paraffin-embedded tissue and
decalcified bone marrow samples. J Mol Med 73:235–241

82. Weirich G, Sandherr M, Fellbaum C, Richter T, Schmidt L,
Kinjerski T, Dietzfelbinger H, Rastetter J, Hofler H (1998)
Molecular evidence of bone marrow involvement in advanced
case of Tgammadelta lymphoma with secondary myelofibrosis.
Hum Pathol 29:761–765

83. Wickham CL, Boyce M, Joyner MV, Sarsfield P, Wilkins BS,
Jones DB, Ellard S (2000) Amplification of PCR products in
excess of 600 base pairs using DNA extracted from decalcified,
paraffin wax embedded bone marrow trephine biopsies. Mol
Pathol 53:19–23

84. Wilson GA, Vandenberghe EA, Pollitt RC, Rees DC, Goodeve
AC, Peake IR, Reilly JT (2000) Are aberrant BCR–ABL
transcripts more common than previously thought? Br J
Haematol 111:1109–1111

85. Zhou XG, Sandvej K, Gregersen N, Hamilton-Dutoit SJ (1999)
Detection of clonal B cells in microdissected reactive
lymphoproliferations: possible diagnostic pitfalls in PCR
analysis of immunoglobulin heavy chain gene rearrangement.
Mol Pathol 52:104–110

86. Zoubek A, Ladenstein R, Windhager R, Amann G, Fischmeister
G, Kager L, Jugovic D, Ambros PF, Gadner H, Kovar H (1998)
Predictive potential of testing for bone marrow involvement in
Ewing tumor patients by RT-PCR: a preliminary evaluation. Int
J Cancer 79:56–60

919


	Ancillary techniques in bone marrow pathology: molecular diagnostics on bone marrow trephine biopsies
	Abstract
	Introduction
	Relevance of BM fixation and processing for molecular studies
	Indications for molecular examination of BM biopsies
	Determination of clonality in the diagnosis of lymphoproliferative disorders
	Detection of B-cell clonality
	Detection of T-cell clonality
	General issues of clonality determination
	Practical issues of DNA studies in trephine BM biopsies
	Quantitation of gene expression

	Molecular diagnostics in myeloproliferative disorders
	Other applications of molecular tests in BM pathology
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


