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Abstract Aims: Numerical and structural centrosome
changes have been described for and linked with genetic
instability in solid tumors. Here, we specifically address
centrosome aberrations in the adenoma–carcinoma se-
quence of colorectal cancer by detailed evaluation of γ-
tubulin staining patterns. Methods: Formalin-fixed and
paraffin-embedded specimens (normal colonic epithelium
n=21; low-grade intraepithelial neoplasia n=27, high-grade
intraepithelial neoplasia n=16 and invasive adenocarcino-
mas n=33) were stained by an anti-γ-tubulin antibody
using standard immunofluorescence. Three-dimensional
image stacks of the stainings were recorded (Zeiss LSM510
confocal microscope), followed by numerical and struc-
tural data analysis (DIAS software package) and statistical

evaluation (NCSS-software). Results: The mean centrosome
signal per cell differed significantly (P<0.0001) between
normal colonic epithelium (0.8775) and each low-grade
intraepithelial neoplasia (1.787), high-grade intraepithelial
neoplasia (2.259) and invasive carcinomas (2.267). Simi-
larly, both the centrosomes’ structural entropy (SE) and
minimal spanning tree (MST) differed significantly (P<
0.001) between normal (SE=3.956, MST=38.78) and each
low- (SE=6.39, MST=26) and high-grade intraepithelial
neoplasia (SE=5.75, MST=26.97) and invasive carcinoma
(SE=6.86, MST=28.08). Conclusion: Numerical and struc-
tural centrosome dysregulation is seen as early as in low-
grade dysplastic lesions of the adenoma–carcinoma sequence
of colorectal carcinomas and may, as such, play an initial
role in the carcinogenic process.
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Introduction

The formation and organization of centrosomes is essential
for proper cell division and the generation of two diploid
daughter cells [1, 25]. During interphase, centrosomes are
involved in the organization of the cytoplasmatic micro-
tubule network and thereby also influence cell movement
and cell polarity. Parallel to the cell cycle, centrosomes
duplicate, mature and separate by moving to the opposite
poles of the cell, ensuring mitotic-spindle formation and
attachment. At mitosis, centrosomes are directly involved
in proper chromosome segregation. Changes in either the
number and/or location of centrosomes may negatively in-
fluence chromosomal segregation and cell ploidy and there-
by promote chromosomal instability in malignancy [1, 25].

Indeed, centrosome aberrations have been demonstrated
in several types of cancer [2, 3, 4, 18, 22], both in cell lines
[7, 23, 27, 32] as well as in solid [8, 17, 19, 26] and
hematopathological [5, 21] tumors. In fact, both super-
numerary and structurally altered centrosomes have been
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described for especially aneuploid cell lines [7] and tumors
[18, 19]. Moreover, direct manipulation of centrosome
regulation in cell culture models was shown to induce
aneuploidy and transformation [32], supporting the con-
cept of a potentially causative role of centrosome aber-
rations in malignant progression. A recent in situ study of
precursor lesions implicated centrosome defects in the
carcinogenesis of tumors of the uterine cervix, prostate and
breast [24].

In colorectal cancer, concomitant phenotypic and geno-
typic changes characterize the progression of normal epi-
thelium to adenoma to invasive carcinoma [6, 11, 12, 16].
The genetic alterations accompanying the adenoma–carci-
noma sequence are generally divided into two pathways,
resulting in either chromosomal unstable, frequently aneu-
ploid tumors (CIN) or microsatellite unstable (MIN), most-
ly diploid tumors. Specific small genetic alterations, such
as point mutations, and/or gains and losses of entire genes
have been associated with chromosomal and microsatellite
instability [9]. However, whether or not centrosome aber-
rations and the associated chromosome missegregation are
primarily involved in or contribute to the carcinogenesis of
colorectal tumors, particularly the CIN-type aneuploid car-
cinomas, is still unclear.

In the present study, we have therefore investigated cen-
trosome alterations in the adenoma–carcinoma sequence of
colorectal cancer by examining numerical and structural
changes of the centrosome-specific marker γ-tubulin in
situ, using formalin-fixed and paraffin-embedded tissue
sections of normal epithelial cells, low-grade intraepitheli-
al neoplasia (LGIN), high-grade intraepithelial neoplasia
(HGIN) and invasive adenocarcinoma.

Materials and methods

Tissue specimens

Colorectal specimens (n=76; surgically removed polypec-
tomies and small biopsies), all formalin fixed and paraffin
embedded, were selected from the archives of the Patho-
logical Institute of Freiburg. Upon reclassification (GK,
MW) according to the World Health Organization 2000
[10] guidelines, these specimens included 27 samples of
LGIN, 16 samples of HGIN and 33 samples of adeno-
carcinomas of the colon. Normal epithelial samples (n=21)
were analyzed in some of the above specimens from ad-
jacent tissues.

Immunohistochemistry

Tissue sections (8 μm) were deparaffinized, hydrated using
standard measures and subjected to antigen retrieval using
Pronase E (0.05%). Subsequently, tissue sections were
incubated with a primary mouse anti-γ-tubulin antibody
(1:100; clone GTU-88, Sigma), followed by incubation
with a fluorescein isothiocyanate (FITC)-labeled goat-anti
mouse IgG (1:200; Dianova). Finally, nuclei were coun-

terstained with 4′6′-diamidino-2-phenylindole-2-hydrochlo-
ride (DAPI).

Data collection and in-situ parameter analysis

For data collection, five microscopic areas were selected
(63 objective, zoom 2), and three-dimensional image stacks,
consisting of 16 planes with a distance of 0.5 μm in the
z-axis, were acquired with a confocal laser-scanning mi-
croscope (Zeiss LSM 510Meta, PlanNeofluar 63×/1.2 water,
zoom 2). Excitation of fluorescent dye was at 351 nm for
DAPI and 488 nm for FITC-labeled γ-tubulin. Image
stacks were converted into a projection image of all re-
corded slices and were analyzed semi-automatically with
respect to the number of cells (DAPI) and γ-tubulin signals
by programs based on the DIAS software package [13, 14].
Furthermore, structural image analysis was performed by
measuring the structural entropy of γ-tubulin signals, which
quantifies the degree of signal perturbation within a given
environment (i.e. selected tissue area), as well as the min-
imum spanning tree (MST) of γ-tubulin signals, which
quantifies the shortest connection of all γ-tubulin signals as
mean distance within the selected tissue area [15, 31]. The
total number of analyzed cells was between 250 and 300
cells per case.

Fig. 1 Summary of the numerical changes of centrosomes along
the adenoma–carcinoma sequence of colorectal adenocarcinoma.
Box plots depict the measured γ-tubulin signals per cell for normal
epithelial cells, low- and high-grade intraepithelial neoplasia (LGIN
and HGIN) and invasive carcinoma. Each individual sample is
indicated by a dot, minimum and maximum data points are indicated
(bar, linked to the box by a line), and one statistical “outsider”
(carcinoma) is shown by the closed circle
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Statistical analysis

Statistical analysis was performed on the entire data set
collected from all tissue samples using a commercially
available software package (NCSS 2000, Number Crunch-
er Statistical Systems, Kaysville, Utah, USA) and included
analysis of variance, theMann-Whitney U test, theWilcoxon-
Rank test and the Kolmogorov-Smirnov test.

Results

Numerical changes of γ-tubulin staining
in the adenoma–carcinoma sequence

In normal colonic epithelial cells (n=21), γ-tubulin staining
showed a mean number of 0.88+/−0.6 signals per cell. In
LGIN, an increase of γ-tubulin signals to 1.79+/−0.8 per

cell was observed. These changes were even more obvious
in HGIN, with 2.26+/−0.6 signals per cell, and invasive
carcinomas, with 2.28+/−1.2 signals per cell (Fig. 1).

Statistical analysis (summarized in Table 1) of the nu-
merical changes seen in γ-tubulin immunofluorescence
stain revealed a significant alteration (P<0.0001) between:
(1) normal cells and LGIN, (2) normal cells and HGIN and
(3) normal and invasive carcinoma cells. However, the
changes of γ-tubulin signals between LGIN and HGIN and
invasive carcinoma showed no statistical significance.

Structural changes of γ-tubulin staining
in the adenoma–carcinoma sequence

Whilst a regular, apical-orientated distribution of γ-tubulin
was seen in normal epithelial cells, a progressively increasing
sterical distortion of the γ-tubulin signals was observed in
LGIN and HGIN and was most prominent in invasive
carcinomas, with a complete loss of orientation (Fig. 2). To
quantitatively measure these observations, we performed
quantitative and syntactic analysis of: (1) the structural
entropy of the γ-tubulin signals and (2) the MST between
all γ-tubulin signals within the tissue images.

The structural entropy of the centrosomes within normal
epithelium was 3.96+/−1.4 and was raised to 6.39+/−1.6 in
LGIN, 5.75+/−1.6 in HGIN and to 6.86+/−2.1 in invasive
carcinomas. As seen in the numerical γ-tubulin changes,
the structural entropy measurements were also significantly
different between normal and neoplastic epithelium (P<

Table 1 Summary of the numerical changes of centrosomes within
the adenoma–carcinoma sequence. DAPI 4′6′-diamidino-2-phenyl-
indole-2-hydrochloride, LGIN low-grade intraepithelial neoplasia,
HGIN high-grade intraepithelial neoplasia

Histology γ-Tubulin/
DAPI (per cell)

Fold increase
(relative to normal)

Significance (P)
(relative to normal)

Normal 0.878
LGIN 1.787 2.035 <0.0001
HGIN 2.259 2.573 <0.0001
Carcinoma 2.267 2.582 <0.0001

Fig. 2 Changes of centrosomes along the adenoma–carcinoma
sequence of colorectal adenocarcinoma. Representative staining of
centrosomes by γ-tubulin immunofluorescence (top row) and struc-
tural analysis of centrosome location by minimal spanning tree (bot-

tom row). Panels from left normal epithelium, low- and high-grade
intra-epithelial neoplasia and far right invasive adenocarcinoma.Mag-
nification: 1260 (63 objective, zoom 2, camera ×10). γ-Tubulin sig-
nals are shown in green
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0.001) (Table 2). Together with an elevated number of
γ-tubulin signals, this parallel increase of structural entro-
py may lead to a reduction of the mean distance between
γ-tubulin signals, i.e., the MST. Indeed, the measurement
of the MST of γ-tubulin signals also revealed significant
differences between normal and neoplastic cells (P<0.001):
the mean MST length in normal mucosa was 38.8+/−13.4
and shortened to 26.0+/−4.0 in LGIN, 27.0+/−3.3 in HGIN
and 28.1+/−5.3 in invasive carcinoma.

Discussion

Centrosome dysfunction is closely associated with aneu-
ploidy and chromosomal instability in cell-culture models
[32], including colorectal cell lines [7], and has been im-
plicated in a variety of human solid tumors [8, 17, 19, 26]
as well as in lymphomas and leukemias [5, 21]. However,
the association with and/or involvement of centrosome ab-
errations at early stages of malignant transformation, such
as in dysplastic precursor lesions, have thus far only been
addressed in a single study [24].

The present study is, therefore, the first in situ analysis of
centrosomes within a large series of normal colonic epi-
thelium, LGIN, HGIN and invasive carcinoma samples of
colorectal cancer patients. By visualizing centrosomes with
γ-tubulin, a highly conserved component of centrosomes
[29, 30], we found not only numerical but also structural
aberrations of centrosomes within the adenoma–carcinoma
sequence. Moreover, these numerical and structural cen-
trosome changes were already evident at the transition of
normal epithelium to LGIN, suggesting that centrosome
alterations may represent a very early event in the carci-
nogenesis of colorectal cancer. In fact, centrosome signals
increased twofold from normal to LGIN and threefold from
normal to HGIN and invasive carcinoma (Table 1). These
observations are in accordance with earlier studies demon-
strating that supernumerary centrosomes may occur in pre-
invasive lesions of the uterine cervix, prostate and female
breast [24], as well as in pre-invasive lesions of the cervix
in association with human papilloma virus infections [28].

Centrosome dysfunction may occur not only at the level
of numerical changes but also in the failure of structural
organization [17, 20, 23]. We, therefore, evaluated whether
structural and/or sterical alterations might additionally be

involved in centrosomal dysfunction in colorectal carcino-
genesis. Indeed, semi-automated image analysis of the
structural entropy and MST [13, 14, 15, 31] of γ-tubulin-
stained tissues revealed statistically significant changes in
centrosome orientation and localization. Concomitantly
with the numerical changes, these structural alterations
were already present in LGIN.

Finally, the numerical and structural centrosome alterations
observed from the transition of normal colonic epithelium
to LGIN did not progress further along the adenoma–
carcinoma sequence, remaining equally elevated in HGIN
and invasive carcinomas.

Together, these results suggest early and stable numer-
ical as well as structural alterations of centrosomes in the
carcinogenesis of colorectal cancer. Whether these centro-
some alterations are simply a consequence of the well-
characterized genetic events of the adenoma–carcinoma
sequence [6, 11, 12, 27] or whether they are a primary cause
for the progression of a normal epithelium into an (aneu-
ploid) invasive carcinoma remains an open question. How-
ever, the early occurrence of centrosome alterations, as seen
in our samples of LGIN, may point toward a causative role
of centrosome dysfunction in malignant transformation.

In fact, we have obtained further data supporting an early
role of centrosome alteration in colorectal carcinogenesis
by mRNA expression analysis of STK15, a serine-threo-
nine kinase previously shown to be essential for centro-
some function [32]. Similar to the pattern of γ-tubulin
staining, STK15 mRNA increased significantly already in
LGIN without any further increases in HGIN and carcino-
ma (Gerlach et al., unpublished observations). Moreover,
our preliminary data also suggest that this increase of
STK15 mRNA occurs preferentially in the carcinogenesis
of chromosomal unstable colorectal tumors, and this ap-
pears to also be correlated with the number of γ-tubulin
signals/cells. However, further studies have to prove the
link of STK15 mRNA and γ-tubulin, i.e., centrosome ab-
errations, particularly in the development of chromosomal
unstable colorectal cancers.

In summary, we have shown that centrosome aberrations
are an early event in the adenoma–carcinoma sequence of
colorectal adenocarcinomas. These changes are character-
ized by supernumerary centrosomes and an increasing per-
turbation in the arrangement of centrosomes within the
cells. Both of these alterations may be associated with the
induction of aneuploidy in colorectal carcinomas, particu-
larly those that are chromosomally unstable.
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