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Abstract

Background: Interpreting non-targeted metabolomics data remains a challenging task. Signals from non-targeted
metabolomics studies stem from a combination of biological causes, complex interactions between them and
experimental bias/noise. The resulting data matrix usually contain huge number of variables and only few samples,
and classical techniques using nonlinear mapping could result in computational complexity and overfitting.
Independent Component Analysis (ICA) as a linear method could potentially bring more meaningful results than
Principal Component Analysis (PCA). However, a major problem with most ICA algorithms is the output variations
between different runs and the result of a single ICA run should be interpreted with reserve.

Results: ICA was applied to simulated and experimental mass spectrometry (MS)-based non-targeted metabolomics
data, under the hypothesis that underlying sources are mutually independent. Inspired from the Icasso algorithm, a new
ICA method, MetICA was developed to handle the instability of ICA on complex datasets. Like the original Icasso
algorithm, MetICA evaluated the algorithmic and statistical reliability of ICA runs. In addition, MetICA suggests two ways
to select the optimal number of model components and gives an order of interpretation for the components obtained.

Conclusions: Correlating the components obtained with prior biological knowledge allows understanding how non-
targeted metabolomics data reflect biological nature and technical phenomena. We could also extract mass signals
related to this information. This novel approach provides meaningful components due to their independent nature.
Furthermore, it provides an innovative concept on which to base model selection: that of optimizing the number of
reliable components instead of trying to fit the data. The current version of MetICA is available at https://github.com/
daniellyz/MetICA.

Background
Metabolomics is a newly established Omics-discipline
widely used in systems biology. By targeting metabolites
as substrates, intermediates and products of metabolic
pathways, it has been successfully applied to explain ob-
served phenotypes [1–3] and to monitor changes in cells
in response to stimuli [4, 5]. While targeted metabolo-
mics focuses on a chosen set of metabolites [6, 7], non-

targeted studies aim at the simultaneous and relative
quantification of a wide breadth of metabolites in the
system investigated [2, 8–11]. The latter approach de-
mands multi-parallel analytical technology, including ul-
trahigh resolution mass spectrometry (MS) in direct
infusion (DI) and/or linked to chromatography or electro-
phoresis, as well as nuclear magnetic resonance (NMR), in
order to achieve complete experimental coverage [12, 13].
The spectra obtained from the different samples generated
from each of these platforms are usually aligned in an in-
tensity matrix whose rows correspond to samples and col-
umns of overlapping chemical signals. This matrix allows
the simultaneous study of mass spectra.
Previous studies have used various statistical learning

methods on such data matrices to reveal differences
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between classes of samples and to isolate chemical sig-
nals specific to a certain class or trend [9, 13, 14]. In the
context of non-targeted metabolomics, the reliability of
these multivariate methods might suffer from the curse
of the dimensionality problem [15]. This problem arises
when datasets contain too many sparse variables (over
2000, most contain more than 10 % missing values) and
very few samples (less than 100). Making a statistical
model conform closely to such datasets with a limited
number of training samples could result in loss of pre-
dictive power (i.e., overfitting). From another angle, since
non-targeted techniques capture inegligible chemical
noise and experimental bias, it may be difficult for a
mathematical model to properly isolate the structure of
interest [16]. Therefore applying statistical learning
requires intensive method selection and validation work
[8, 17–19].
Indeed, it is recommended to apply various learning

algorithms in the same study to improve the reliability
of the information extracted [13, 20, 21]. One common
way of doing this is to use unsupervised learning (e.g.,
clustering, component analysis) prior to supervised
methods (e.g., discriminant analysis, random forest, sup-
port vector machine), since basic data structure is re-
vealed through simple dimension reduction, unbiased by
the target information. The goal of such a non-
hypothesis driven technique is to detect underlying

structures relevant to the information expected, or to
unnoticed subgroups, bias and noise [22]. It allows bet-
ter understanding of how the non-targeted approach re-
flects each link of a biological experiment.
In our study, an unsupervised learning algorithm, i.e.

independent component analysis (ICA), is applied to
enlarge the feature discovery in comparison to classical
principal component analysis (PCA). Currently, the con-
cept of ICA is widely used in high-dimensional data ana-
lysis such as signal processing of biomedical imaging
[23, 24] and transcriptomics research [25, 26]. Recently
several applications in targeted [27, 28] and low-
resolution non-targeted metabolomics have achieved the
goal of feature extraction [29–31] and functional investi-
gation [7, 32]. To apply ICA we assume that the data ob-
served X (n rows, p columns) are linear combinations of
unknown fundamental factors or sources S, independent
of each other (Fig. 1). Matrix A describes the linear com-
bination. The sources are estimated by searching statis-
tical components that are as independent as possible.
Compared to PCA, ICA as a linear method could pro-
vide three potential benefits for non-targeted
metabolomics:

� More meaningful components would be extracted
by optimizing independence condition instead of
variance maximization in PCA [31].

Fig. 1 Matrix decomposition in non-targeted metabolomics. a X is an aligned data matrix from mass spectra of all the samples studied. The goal
of ICA is to decompose X to a matrix S which contains independent sources and matrix A describes the linear mixture of theses source. b One
row of X: the mass spectrum of one studied sample. c One column of X: aligned mass peaks for an annotated compound. d One independent
source is plotted against another. The distribution of samples can be seen in the space described by these two sources. e represents the contribution
of metabolites to these sources (loadings of metabolites)
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� Independence conditions detected by ICA involve
both orthogonality (linear independence) and higher-
order independence (e.g., exponential, polynomial),
while classical PCA only ensures orthogonality be-
tween components. Therefore ICA could potentially
extract additional information from the dataset.

� Since non-targeted metabolomics data usually con-
tain huge numbers of variables and only a few sam-
ples, certain techniques using nonlinear mapping
could result in computational complexity and over-
fitting [33]. Another drawback of such techniques is
the difficulty of mapping the extracted component
back in the data space. As a method based on simple
linear hypothesis, ICA not only reduces the risk of
overfitting but also allows the reconstruction of data
in the original space.

However, major concern with ICA algorithms is sto-
chasticity. Most ICA algorithms try to solve gradient-
descent-based optimization problems such as the
maximization of the non-Gaussianity of source S (e.g.,
approximated negentropy maximization in FastICA,
[34]), minimization of mutual information [35, 36] and
maximum likelihood estimation [37]. The randomness
due to the fact that the objective function can only be
optimized (maximized or minimized) locally depending
on the starting point of the search (algorithm input).
Thus, outputs will not be same in different runs of algo-
rithms if the algorithm input is randomized. The curse
of dimensionality makes the situation more complicated
in the case of high-dimensional signal space as in non-
targeted metabolomics data: it is extremely unlikely that
the local minima obtained from one algorithm run will
be the desired global minima and they should be inter-
preted with great caution.
A parameter free, Bayesian, noisy ICA algorithm has

recently been developed to model the stochasticity in
targeted metabolomics [7]. By applying prior distribu-
tions to A, S and noise Γ, Bayesian ICA estimates the
posterior distribution of S iteratively through a mean-
field-based approach [38], then A & Γ using a maximum
a posteriori (MAP) estimator. The algorithm also sug-
gests an optimal component selection strategy based on
the Bayesian information criterion (BIC). However, tests
of this algorithm on non-targeted datasets present
several uncertainties: firstly, it is hard to decide on the
types of priors for A and Γ in a non-targeted study since
the dataset reflects the complexity of the study and has
multiple manifolds; besides, the performance of the mean-
field-based approach is doubtful if it cannot be compared
with a full Monte Carlo sampling (too time-consuming); in
addition, BIC maximization is usually impossible for high
dimensional datasets with a reasonable amount of
components.

Therefore we developed a heuristic method based on
the FastICA algorithm and hierarchical clustering. The
method, named MetICA is based on the Icasso algorithm
used in medical imaging studies [39, 40]. We start with
data pre-processing, including centering and dimension
reduction, for which a classical PCA was used [22]. The
FastICA algorithm is run many times on the PCA score
matrix with m different inputs, generating many esti-
mated components. Close estimates give birth to a clus-
ter. The reliability of the FastICA algorithm can be
reflected by the quality of clustering. Moreover, as with
any statistical method, it is necessary to analyze the stat-
istical reliability (significance) of the components ob-
tained. In fact, a relatively small sample size can easily
induce estimation errors [41]. Bootstrapping original
datasets and examining the spread of the sources esti-
mated might identify these uncertainties. Both reliability
studies would help to decide the optimal number of
components. In addition to the adaptation of the Icasso
algorithm in non-targeted metabolomics, the novelty in
the present study is the dual evaluation of algorithmic
and statistical reliability for model validation. Another
novelty is the automatic ordering of extracted ICs based
on statistical reliability instead of only on kurtosis, as is
done in other studies [7, 31]. Finally, our MetICA could
be used for routine validation and interpretation of ICA
in non-targeted metabolomics.

Methods
Metabolomics data acquisition and pre-treatment
Non-targeted metabolomics data were obtained from a
DI-MS platform: a Bruker solariX Ion Cyclotron Reson-
ance Fourier Transform Mass Spectrometer (ICR/FT-
MS, Bruker Daltonics GmbH, Germany) equipped with
a 12 Tesla superconducting magnet (Magnex Scientific
Inc., UK) and an APOLO II ESI source (BrukerDaltonics
GmbH, Germany) in negative ionization mode. Mass
spectra of each sample were acquired with a time do-
main of 4 mega words over a mass range of m/z 100 to
1000 (Fig. 1a). The technique has ultrahigh resolution
(R = 400 000 at m/z = 400) and high mass accuracy
(0.1 ppm). After de-adduction and charge state deconvo-
lution, mass peaks were calibrated internally according
to endogenous abundant metabolites in DataAnalysis 4.1
(Bruker Daltonics GmbH, Germany) and extracted at a
signal-to-noise ratio (S/N) of 4. The peaks extracted
were aligned within a 1 ppm window and generated a
data matrix. Each row represents the intensity of one
mass signal in each sample (Fig. 1b). Masses found in
less than 10 % of samples were not considered during
further data analysis and other absent masses were set at
zero intensity in the sample concerned. We applied the
software Netcalc developed in-house to remove potential
spectral noise and isotope peaks. This software also
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unambiguously annotates the elemental formula assigned
to the aligned m/z based on a mass difference network
[42]. The annotation process is considered as an unsuper-
vised filtration that reduces data size and reveals an under-
lying biochemical network structure inside the data set.
Our ICA algorithm is applied on this filtered data matrix.

Biological studies
We applied the non-targeted approach followed by the
ICA algorithm in a comparative study of metabolic foot-
printing of randomly-selected yeast strains. The goal is
to detect underlying yeast phenotype subgroups based
solely on their exo-metabolome in wine [43, 44]. To
reach this goal, fifteen commercial Saccharomyces
strains (S1 to S15, Lallemand Inc., France) were chosen
to perform alcoholic fermentation (AF) triplicates in the
same Chardonnay grape must. The strains chosen were
different in species (either S. cerevisae or S. bayanus)
and in origin (selected in different countries for different
styles of wine or obtained by adaptive evolution) to en-
sure phenotype diversity. We kept the fermentation con-
ditions consistent (e.g., volume, medium composition,
temperature, etc…) between strains and replicates. At
the end of AF (sugar depleted), methanolic extracts of
45 samples were studied on the ICR/FT-MS platform
with the method described in the section "Metabolomics
data acquisition and pre-treatment". We randomized the
order of strains for the fermentation experiment and for
the non-targeted study. The resulting data matrix "Yeast-
Experimental.txt" (Additional file 1) had n = 45 rows (sam-
ples) and p = 2700 columns (filtered mass signals). Prior

knowledge about yeast strains according to the yeast pro-
ducer, including basic genetic traits, fermentation behav-
iors and wine characteristics, will be used for component
interpretation and method validation.

Application of MetICA Algorithm
We provide a concise overview of MetICA for non-
targeted metabolomics (Fig. 2). The algorithm was
mainly implemented in R version 3.1.2.

PCA-denoising
PCA is done by a singular value decomposition (SVD) of
the centered data matrix �X : The denoised matrix Xd is ob-
tained by Xd ¼ X � K , where K is the k first PCs of load-
ing matrix, obtained from the prcomp function in the
script MetICA_fastICA.R (Additional file 1). Working on
Xd preserves 90 % of the relevant information and reduces
the potential noise given by 10 % of variance.

FastICA algorithm
The functions ica.R.def ('deflation' method) and ica.R.par
('parallel' method) from the R package fastICA, version
1.2-0 (http://cran.r-project.org/web/packages/fastICA/
index.html), were applied to the denoised matrix Xd

(Fig. 2 and MetICA_fastICA.R). The goal of the FastICA
algorithm is to very rapidly estimate W or the demixing

matrix. Based on a fixed-point iteration schema [34], bW
is estimated to maximize the approximated negentropy
under the constraint of orthogonormality. The estimated

source is calculated by bS = Xd � bW . Several rules

Fig. 2 Each step of MetICA
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concerning input parameters are followed while running
the algorithms multiple times on Xd :

� The number of ICs is set to be the same as the
number of PCs chosen for denoising.

� The hyperbolic logcosh function is fixed for
negentropy approximation as a good general
purpose contrast function [34].

� The script MetICA_fastICA.R contains two methods
of extracting more than one IC: ica.R.def ('deflation'
or one at a time) and ica.R.par ('parallel'). 'Deflation'
avoids potential local minima [45], while 'parallel'
has the power to minimize mutual information
between sources [46]. Therefore each method is
responsible for half of the runs.

� The matrix W 0, which is the initial point of each
run, is arbitrarily sampled from a Gaussian
distribution (mean = 0, variance = 1, no constraints
on covariance). Other random distributions were
tested and no big changes were observed for
extracted components.

Dissimilarity matrix
The pipeline presented in Fig. 2 is achieved in MetICA_-
source_generator.R and MetICA_cluster_generator.R (Add-
itional file 1). Each run of FastICA generates an estimated

source matrix Slbcontaining k components. These k compo-
nents can be similar to a certain extent. If we combine

thesebSl in a large estimated matrix bS (n rows, k*m columns,
from function MetICA_source_generator), the similarity be-
tween the components from different runs can be described
by Spearman’s correlation coefficient. In order to perform
further clustering analysis, each coefficient rij is trans-

formed into distance or dissimilarity by dij ¼ 1 � rij
�� �� ac-

cording to [47] (function MetICA_cluster_generator).

Hierarchical clustering
An agglomerative hierarchical clustering analysis (HCA)
is performed on the dissimilarity matrix D with R func-
tion hclust (in function MetICA_cluster_generator). The
results display a tree-like dendrogram (Fig. 2) for the
hierarchical data structure: more similar components ag-
glomerate to form a cluster and multiple clusters form a
larger as a function of inter-cluster distance [48]. An
average-link (AL) agglomeration method was chosen as
in the original algorithm, Icasso [39]. Based on the hier-
archical data structure, it is possible to obtain a reason-
able number of clusters by cutting the dendogram at
certain dissimilarity levels (cutree function in R). In this
way, all k*m components are partitioned into a certain
number of groups. Compact and well-separated clusters
reveal the convergence of the FastICA algorithm. The
representative points or 'centrotype' of each cluster is

the point that has the minimum sum of distances to
other points in the cluster (MetICA_cluster_center.R in
Additional file 1). These points are considered as con-
vergence points of FastICA and deserve further study.
Therefore it is crucial to decide on the number of parti-
tions providing the highest-quality clusters in terms of
algorithmic convergence and statistical significance.
Some validation strategies will be presented in the
results and discussion section.

Production of simulated data
To confirm the power of the MetICA algorithm, a simu-
lated data SX was generated to mimic the real non-targeted
metabolomics data. The visual illustration of this process is
in (Additional file 2: Figure S1) and the function used was
in MetICA_simulated_generator.R (Additional file 1). From
the centered yeast metabolic footprinting data �X , a multi-
variate Gaussian background noise N was created to have
the same covariance as �X . In parallel, we performed a sim-
ple PCA and used non-Gaussian PCs (measured by kur-
tosis) to reconstruct a matrix, RX. The simulated SX is the
sum of I N and RX, wherein I is a real number controlling
the level of noise. The simulated data for I = 0.1 was stored
in Yeast-Simulated.txt (Additional file 1).

Results and discussion
Diagnostics of simulated and experimental data
The FastICA algorithm is based on the maximization of
negentropy, an exact measure of non-Gaussianity. It is
equivalent to the minimization of mutual information, or
searching independent components [34]. The algorithm
only works when the dataset is derived from non-Gaussian
sources and thus contains non-Gaussian features. There-
fore we measured the non-Gaussianity of each mass using
kurtosis (Additional file 2: Figure S3). The distribution of
kurtosis for the experimental data showed a significant
amount of super-Gaussian (kurtosis >1) and sub-Gaussian
(kurtosis <−1) variables, while the background matrix N
mainly contained Gaussian variables (kurtosis between −1
and 1). The simulated matrix SX contained a large number
of super-Gaussian variables, knowing that two super-
Gaussian PCs (PC11, kurtosis=1.9 and PC15, kur-
tosis=2.1) were used for generation (Additional file 2:
Figure S1). Since both experimental and simulated
datasets displayed non-Gaussian features, we were
able to apply MetICA to these datasets.

Performance of MetICA on simulated data
The MetICA was first tested on simulated data. The
performance was evaluated based on whether the al-
gorithm was able to retrieve the signals (PCs) used for
generation. Different combinations of non-Gaussian PCs
were used to generate the simulated data and evaluate
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the algorithm. The following is a simple example
from different SXs generated by PC15 (R2 = 1.3 %,
kurtosis = 1.9) and PC11 (R2 = 0.8 %, kurtosis = 2.1)
with three levels of noise (I = 0.01, 0.05 and 0.1). We
applied MetICA to SX in the way described in the
previous section. The objective here was to find the
optimal number of partitions for MetICA estimated
sources. With this number, we expected to obtain
high-quality clusters from HCA, with two of them
representing the PCs used for generation. Our strat-
egy started with the visualization of all the estimated
sources (from different algorithm inputs) after projec-
tion onto a 2D space. A reliable projection should
preserve the distance between estimated sources and
hierarchical clusters should only contain neighboring
points. According to our tests, Curvilinear Compo-
nent Analysis (CCA, Matlab SOM Toolbox 2.0, [49])
outperformed multidimensional scaling (MDS, [48])
and the Self-Organizing Map (SOM, [50]) for this

purpose. In fact, CCA preserved the distance better
and gave more explicit visual separations between
clusters. In order to examine the HCA results in the
2D space, the executable program MetICA_CCA.exe
(Additional file 1) assigned randomly different colors
to the sources belonging to different clusters. We
could monitor cluster splitting by increasing the num-
ber of clusters (Additional file 2: Figure S2) until we
obtained compact, well-separated clusters (Fig. 3a-c,
minimal partitions necessary for different level of
noise). Apart from visual monitoring, we applied a
quality measure to decide the optimal number of par-
titions. The index is simply the ratio between the
average within-clusters distance and the between-
clusters distance (Additional file 2: Figure S2). The
smaller the index is, the more compact and better
separated the clusters seem to be on the 2D space.
At the beginning this index decreases as a function of

Fig. 3 Feature extraction from simulated data. a, b, c, Distribution of estimated MetICA sources (for three background noise levels) when projected on
a 2D CCA space. Sources belonging to the same hierarchical cluster have the same color. d The sample distribution on PC11 and PC15 used for SX
generation: samples (top of edges) corresponding to fermentation triplicates of the same strain are connected to their gravity center (rectangle). e The
sample distribution of the centrotypes of the red cluster and blue cluster. For any background noise level tested, the centrotypes of these two clusters
carry the same strain rankings as PC11 and PC15
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the number of clusters. From a certain point, it tends
to be stable or increases, meaning that adding an-
other cluster does not much improve the data model-
ing. The decision regarding the optimal number of
clusters via this index is consistent with visual moni-
toring (Fig. 3a-c).
After the optimal number of clusters was chosen, cen-

trotypes of clusters were verified by comparing to com-
ponents used for data generation (PC11 and PC15). For
all three noise levels tested, PC11 and PC15 can be de-
scribed by the centrotypes of red and blue cluster, re-
spectively (Fig. 3). In other words, MetICA was able to
retrieve both PCs from the simulated data at different
levels of noise. However, we needed 6 clusters at noise
level I = 0.1 instead of 4 clusters at I = 0.05 and 3 clus-
ters at at I = 0.01, proving that MetICA could start to
extract sources from the background noise.
In brief, the performance of MetICA on simulated data

confirmed that we could effectively study the FastICA
convergence via HCA, CCA and the cluster quality
index. More clusters were needed to extract underlying
components when the data contained stronger noise.

Algorithmic reliability of MetICA on experimental data
The same validation strategy was applied to the
experimental data as to the simulated data. We evalu-
ated the algorithm convergence from 15 ICs ( R2 =
90.5 %) estimated in each of m = 800 FastICA runs.
Our quality index decreased until the number of clus-
ters reached c = 13 and it increased afterwards. The
optimal number c = 13 was confirmed visually (Fig. 4).

The matrix OC (45 * 13) contained the centrotypes of
all the clusters.

Statistical reliability of MetICA on experimental data
MetICA revealed the convergence of FastICA on non-
targeted metabolomics data. However, some of the con-
vergences observed might only haven been due to a few
particular samples. Therefore it is important to evaluate
the statistical significance of each centrotype obtained.
However, as an unsupervised method, ICA could not be
validated via prediction error since no target information
could be used. Once again, as an optimization-based
component analysis, cross-validation (CV) methods
widely used in PCA validation [51] are inappropriate or
too time-consuming. In fact, to start each CV run, data-
sets must be divided into two groups and the whole
MetICA procedure has to be run on one of them (train-
ing subset). Accordingly it is necessary to validate the
convergence for each CV run.
Therefore we instead applied a sophisticated boot-

strapping validation. Bootstrapping means random sam-
pling with replacement. In general, bootstrapping is
considered as a slight modification of the dataset with-
out changing its size. Bootstrapping validation is widely
used for model selection in Machine Learning problems
[52–54], especially when strict mathematical formula-
tions are not available. In our case, the statistical signifi-
cance of MetICA components was barely evaluated
mathematically. Therefore we tried to find a score that
described the stability of MetICA components subjected
to bootstrapping. It was expected that components dis-
torted by particular samples would be very sensitive to

Fig. 4 Selection of optimal cluster number. a The evolution of the geometric index average inner/between cluster distance as a function of number of
clusters. The index is smallest at c=13, meaning the most compact and well-separated clusters. b The distribution of clusters (one color = one cluster) on
the 2D space of CCA. It provides a visual confirmation for c
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these slight modifications, while statistically significant
components were expected to remain stable. The valid-
ation was implemented in the script MetICA_bootstrap.R
(Additional file 1) for yeast exo-metabolome data as fol-
lows: from the original X (45 * 2700) we generated B =
100 bootstrapped data: X1 , X2 … XB by replacing 5 rows
of X each time. Then, we fixed the algorithm input, the
demixing matrix W 0 and ran FastICA once on 50 boot-
strapped datasets with ’parallel’ extraction and the other
50 with 'deflation' extraction. We extracted from each

bootstrapped dataset k estimated sources (Sbb1, Sbb2… Sbb1k )
to ensure R2 > 90 % and we did likewise in each FastICA
run for the original data (to ensure R2 > 90 %).
The 13 centrotypes OC1 , OC2… OC13 from the ori-

ginal dataset were compared with these k estimated

sources. The most correlated source bSba′ was considered
to be aligned to centrotype OCa . The absolute Spearman’s

correlation coefficient ρa between OCa and bSba′ was the
score of OCa for the particular bootstrapped data. The
higher the score was, the closer the estimated source was
to the centrotype. The sum of scores H ¼ P

ρa from all
the bootstrapped data was our final similarity score for
centrotype OCa . It measured how similar MetICA centro-
types were to estimated sources of bootstrapped data, in
other words, the stability of centrotypes after bootstrap-
ping. The math input is as follows:

H ¼
XB
b¼1

max
j¼1…k

ρ OCa; Sbj
� ��� ��

The H score implies the statistical reliability of centro-
types given a fixed demixing matrix W 0 . However, such
a score might depend on the FastICA input. Therefore
the scoring is repeated with fixed bootstrapped datasets
but 50 randomized W 0 . Finally, for each centrotype, we

obtained a distribution of H. We used the median bH of
the distribution as an exact score of the centrotype. The
dispersity shows how trustworthy the score estimate is.
Our empirical experiment showed that the distribution
was quite weakly dispersed (Fig. 6, the results on the
other datasets are similar). The visual illustration of the
whole scoring process is in (Additional file 2: Figure S4).
The centrotype scoring leads to another possibility for

deciding on the number of clusters. After the number of

clusters was determined, we could evaluate the bH of
each centrotype after which we obtained a score distri-
bution of all the centrotypes for the particular number

of clusters. Therefore we could monitor the bH for all the
centrotypes as a function of the number of clusters
(Fig. 5) and select the optimal number based on the

amount of centrotypes containing a higher bH . We ob-
served a pattern of statistically reliable super-Gaussian

centrotypes (bH > 58, points above the green line in Fig. 5).
At c = 13 clusters suggested previously by the quality
index, we obtained 9 such centrotypes. Low significant
centrotypes seemed to occur when we further increased
the number of clusters, which means that c = 13 was also
a good decision in terms of statistical reliability.
Afterwards a comparison was made between the boot-

strap score and kurtosis of these centrotypes. In previous
studies, super-Gaussian distributed components usually
indicated interesting class separation structures while
Gaussian-like distribution (kurtosis close to 0) or sub-
Gaussian (kurtosis < −1) contained less information [31].
In Fig. 5, it can be seen that low kurtosis centrotypes

also have a low bH . However, the highest kurtosis does
not ensure the highest bootstrap score (Fig. 6).

Component order and interpretation
The components extracted by a single ICA run have no
order. However, we give an interpretation order for the

centrotypes obtained based on their bootstrap score bH .
We first interpret the centrotypes that have relatively

higher bH (statistically significant) with smaller error bars
(stable after changing algorithm inputs). The following
are biological interpretations for some of the top nine
centrotypes (Fig. 6). The script for visualization of scores
and loadings is in Tutorial.pdf (Additional file 1).

ICA detects outliers
ICA seems to be sensitive to outliers. For instance, sample
R1S6 (wine fermented by strain S6 in the first replicate)
has an extreme negative score on OC6 compared to the
other samples, including the two other replicates of S6
(Additional file 2: Figure S5A). The same situation was
also observed on OC2 & OC3 (Additional file 2: Figure
S5B-C). Although the interpretation of these outliers is
not so obvious, the reliability of the centrotypes encour-
aged us to investigate the potential technical errors.

ICA detects phenotype separations
The three samples (wines from fermentation triplicates)
of strain S5 have higher negative scores than all the
other samples on OC7 (Fig. 7). In general, if one compo-
nent carries biological information, it is interesting to
know which mass signals are highly involved. These sig-
nals have higher loadings in weights matrix A, which is
the pseudo-inverse of the product of whitening matrix K
and demixing matrix W:

A ¼ KWð Þt KW KWð Þt� �−1

Mass signals with the top 100 highest negative load-
ings on OC7 were extracted. The concentration of these
metabolites should be higher in wines fermented by S5

Liu et al. BMC Bioinformatics  (2016) 17:114 Page 8 of 14



than other strains. Under the assumption that exo-
metabolome reflects cell activity, we mapped the ex-
tracted mass signals from the yeast metabolic network
using the MassTRIX server (http://masstrix3.helmholtz-
muenchen.de/masstrix3/) [55]. Among 49 annotated
masses, 13 were metabolites in the yeast metabolic path-
way biosynthesis of amino acids (Fig. 7). This observa-
tion was in accordance with information from the yeast
provider: strain S5 could synthesize more amino acids
and thus stimulate secondary fermentation in wine.
Similar results were observed on OC10 : triplicates of

S3 (commercial name: ECA5) had much higher positive
scores than the other samples (Additional file 2: Figure
S5D). Corresponding metabolites annotated on Mas-
sTRIX revealed enrichment in several pathways in cen-
tral carbon metabolism, such as fructose & mannose
metabolism, the Pentose phosphate pathway and the
TCA cycle. In fact, ECA5 is a strain created by adaptive
evolution to enhance sugar metabolism, notably the
metabolic flux in the Pentose phosphate pathway [56].

Comparison to other ICA algorithms
The performance of MetICA was compared to other
ICA algorithms (Table 1) using another non-targeted
ICR/FT-MS-based metabolomics dataset (published data
[57]). The data matrix counted initially 18591 signals
measured in 51 urine samples from doped athletes, clean
athletes and volunteers (non-athletes). For the purpose
of filtering and formula annotation, such high data di-
mension was more efficiently handled by our in-house
developed software Netcalc compared to other standard
approaches, such as ChemoSpec (http://cran.r-

project.org/web/packages/ChemoSpec/index.html) and
MetaboAnalyst (http://www.metaboanalyst.ca/). The re-
duced data matrix Doping.txt (Additional file 1) with
9279 mass signals remained were analyzed directly with
MetICA, as well as two FastICA algorithms in R (‘Paral-
lel’ and ‘Deflation’). Four other ICA packages were tested
on the PCA score matrix Xd (51 rows, 43 columns, or-
dered by variance explained): icapca in R [58], icamix in
R (http://cran.r-project.org/web/packages/icamix/), ker-
nel-ica toolbox version 1.2 in Matlab with a Gaussian
kernel [59] and mean field ICA toolbox in Matlab for
Bayesian ICA described previously [7]. If ‘out of mem-
ory’ problem occurred or the simulation failed to pro-
duce reasonable results, the corresponding package was
applied only on first few columns of Xd (variance ex-
plained was reduced, Table 1 [1, 2]). For all 7 ICA
methods tested, 10 replicates were made with random-
ized algorithm inputs. We evaluated the shapes of ex-
tracted components Table 1 [3–5]), the stability between
simulation runs (Table 1 [6]) and the reliability of com-
ponents & model (Table 1 [7, 8]).
The comparison revealed that MetICA extracted both

super-Gaussian and sub-Gaussian components, while 'par-
allel' FastICA, icapca and icamix only highlighted super-
Gaussian signals. Components from Kernel-ICA &
Bayesian-ICA were more Gaussian-distributed. Among
seven algorithms, 'parallel' FastICA and icamix gave con-
sistent results between simulation runs. MetICA resulted
in 12 out of 18 stable components if we fixed the number
of clusters at 18. Our studies also showed that the amount
of stable components would increase if the cluster number
was tuned for each run through cluster visualization or

Fig. 5 Bootstrap scores as a function of cluster number. When the cluster number is fixed, we could compute the ̂H score (the median of the H
estimate) for each centrotype. Then we monitored the distribution of scores as a function of cluster number
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bootstrapping. In the end, MetICA was among the few al-
gorithms that suggested both model selection and compo-
nent ranking. The icapca package suggests a reliable
LOO-CV-based component selection, but the simulation
seemed computationally intensive for our dataset. As a re-
sult, the model from icapca only explained 75.7 % of total
variance.

Conclusion
In this paper, we developed the MetICA routine for the
application and validation of ICA on non-targeted meta-
bolomics data. We adapted Icasso, an algorithm previ-
ously used in medical signal processing, to our MS-
based yeast exo-metabolome data. We studied the con-
vergence of FastICA in a way slightly different from that
in the original Icasso version [31]: Spearman’s correl-
ation was used instead of Pearson’s correlation to sim-
plify the relations between estimated sources; the cluster
number was selected based on a simple geometric index

on projected space, instead of quantitative indices in the
original space. These two simplifications improved the
efficiency for high-dimensional data, since we tried to
keep the maximum variance after PCA-denoising while
having enough FastICA runs. As a result, we usually gen-
erate a huge amount of estimated components (>5000),
but using the original Icasso is too time-consuming to
handle this amount. An alternative fast approach for esti-
mated sources clustering was to use the rounded kurtosis
value [60]. However, MetICA seems to be much more sen-
sitive to detect non-similarities for non-targeted metabo-
lomics data.
Furthermore, we investigated the statistical reliability of

convergence points by comparing them to FastICA esti-
mates for bootstrapped data. Reliable centrotypes revealed
strong phenotype separations and pathway differences be-
tween phenotypes.
From the modeling viewpoint, Bayesian ICA optimized

the model by BIC - a trade-off between likelihood (how

Fig. 6 H estimates and kurtosis of centrotypes. The upper figures shows the distribution of the H estimate of each centrotype by box plot, sorted
by their median, e.g. OC11 has the highest ̂H so it is considered to be the most statistically-reliable. The lower figure shows the kurtosis of each
corresponding centrotype
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much the model fits the data) and the risk of over-
fitting. When processing high dimension data became
difficult, our method provided an alternative mean of
model optimization: increasing the number of reliable
components instead of fitting the data. We suggested

two ways of deciding the optimal number of model com-
ponents, namely the number of clusters: either by using
a cluster quality index (algorithmic reliability), or
through the bootstrap scores of all the centrotypes (stat-
istical reliability).

Fig. 7 Interpretation of a centrotype. a The score of each sample on OC7. The three wines from the fermentation triplicates of strain S5 (R1S5, R2S5,
R3S5) all have higher negative scores. b Loadings of metabolites on OC7. Metabolite having higher negative loadings contribute to the separation of
S5 from other strains. c Many of these metabolites are annotated in the biosynthesis of amino acids. Here, red nodes are annotated compounds

Table 1 Comparison between different ICA algorithms

MetICA FastICA FastICA icapca icamix kernel-ICA Bayesian

18 Clusters 'Parallel' 'Deflation' Gaussian

[1] Variance Explained 90 % 90 % 90 % 75.7 % 99 % 99 % 99 %

[2] Component Extracted 18 20 20 7 43 43 9

[3] Maximal Kurtosis 44.1 43.9 44.1 44.1 43.6 3.9 29.8

[4] Minimal abs(Kurtosis) 1.6 3.4 1.9 0.5 15.1 0.008 0.007

[5] Minimal Kurtosis −1.6 3.4 −2 0.5 15.1 −1.7 −0.9

[6] Stable Components 12/18 20/20 9/20 3/7 43/43 0/43 1/9

[7] Model Selection HCA - - LOO-CV Likelihood - BIC

[8] Component Order Bootstrap - Deflation Variance - Deflation Kurtosis

Seven ICA algorithms were compared based on [1] maximal percentage of variance the algorithm could handle (depending on the computer memory), [2] optimal number of
components that the algorithm suggests, [3] kurtosis of the most super-Gaussian component [4] kurtosis of the most Gaussian component, [5] minimal kurtosis of components
(the most sub-Gaussian when it is negative), [6] number of consistent components extracted in all 10 algorithms runs with an absolute Spearman's correlation between them
higher than 0.8 and on whether the algorithm suggests [7] model selection criteria [8] importance order of components
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The whole MetICA routine was tested on simulated
data and several MS-based non-targeted metabolomics
data, including low resolution MS datasets (an example
is provided in Additional file 3). Compared to other ICA
methods, MetICA could efficiently decide a reasonable
number of clusters based on algorithmic reliability. The
bootstrap scores further validated this decision. For both
high and low mass resolution and for any biological
matrices, MetICA was able to handle more than 10 000
features and to sensitively select reliable models.
Since our routine was based on a simple linear model,

we could easily reconstruct the original dataset and cal-
culate the fitting error. Therefore, our procedure could
also be further used for dimension reduction before ap-
plying supervised statistical methods, or data denoising
to remove undesirable signals (bias and instrumental
noise) [61]. All in all, it opens a door for extracting non-
Gaussian information and non-linear independence from
non-targeted metabolomics data.

Additional files

Additional file 1: Source code and raw datasets used for MetICA
evaluation. Source code, raw datasets and user manual were also
available at https://github.com/daniellyz/MetICA. (ZIP 4725 kb)

Additional file 2: Figure S1. Generation of simulated data. The
simulated data SX was generated by adding the background noise N
(multivariate Gaussian distribution derived from original data) to a matrix
reconstructed by two selected non-Gaussian PCs (PC11 & 15). The blue
intensity here represents signal intensity. Figure S2. Hierarchical clusters in
2D space. Distribution of estimated MetICA sources from simulated data
when projected on a 2D CCA space. Sources belonging to the same
hierarchical cluster have the same color. The splitting of the dark
blue cluster into black, dark blue and cyan clusters was seen when
we increased the cluster number NC from 2 to 4. It splitted again
when NC increased to 6. The quality index is the ratio between the
average within-cluster distance (R1, the distance between the estimate and
the cluster center it belongs to) and the average between-cluster distance
(R2, the distance between each cluster center to the global center of all
estimates). Figure S3. Kurtosis distribution of all variables (masses). Three his-
tograms represent kurtosis distributions for experimental data X_exp,
simulated background noise N and simulated data SX (I=0.01), respectively.
Figure S4. Illustration for bootstrap scores. For a fixed algorithm input,
FastICA runs on B different bootstrapped data. The centrotype OCa (blue) is
compared to all the estimated sources from each run. The Spearman
correlation coefficient (red) to the most correlated estimate (green) is the
similarity score we are seeking. The final score HOCa is the sum of scores
from all the bootstrapped data. Figure S5. Scores of samples on some
centrotypes. A) On OC6, sample R1S6 (wine fermented by strain S6 in the
first replicate) has an extreme negative score, so it is considered as an
outlier. B) C) For the same reason as R1S6 on OC6, samples R3S6, R2S4 and
R3S11 are considered as outliers. D) The three wines from the fermentation
triplicates of strain S3 (R1S3, R2S3 and R3S3) all have higher positive scores.
(DOCX 996 kb)

Additional file 3: Evaluation of MetICA on lower resolution metabolomic
data. Additional text and figures are provided to illustrate the application of
MetICA on lower resolution LC-MS data. (DOCX 280 kb)
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