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ABSTRACT

Aims. We investigate the nature of the innermost regions with radii of several AUs of seven circumstellar disks around pre-main-
sequence stars, T Tauri stars in particular. Our object sample contains disks apparently at various stages of their evolution. Both single
stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar
objects (YSOs). When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10 μm
feature should additionally be investigated.
Methods. We performed interferometric observations in N band (8−13 μm) with the Mid-Infrared Interferometric Instrument (MIDI)
at the Very Large Telescope Interferometer (VLTI) using baseline lengths of between 54 m and 127 m. The data analysis is based on
radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the spectral energy distribution (SED),
N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial
distribution of the dust composition of the disk atmosphere.
Results. Spatially resolved mid-infrared (MIR) emission was detected in all objects. For four objects (DR Tau, RU Lup, S CrA N, and
S CrA S), the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active
disk-model. For the more evolved objects of our sample, HD 72106 and HBC 639, a purely passive disk-model provides the closest
fit. The visibilities inferred for the source RU Lup allow the presence of an inner disk gap. For the YSO GW Ori, one of two visibility
measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10 μm silicate emission feature.
In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack
of small silicates in the inner versus the outer regions of these disks. We conclude from this observational result that more evolved
dust grains can be found in the more central disk regions.

Key words. infrared: stars – accretion, accretion disks – planetary systems: protoplanetary disks – astrochemistry –
instrumentation: interferometer – radiative transfer

1. Introduction

In this study we present the results of highly spatially resolved
observations of seven pre-main-sequence stars acquired with the
instrument MIDI at the VLTI. Our study is focused on YSOs,
T Tauri stars in particular, because this class of object is consid-
ered to represent the progenitors of solar-type stars. Studying the
evolution of the disks around these stars with MIDI will provide
us with an insight into the innermost and most dynamical regions
where the earliest stages of the formation of a planetary system
can be found.

In terms of spatial resolution, sensitivity, and spectral cov-
erage, MIDI is the only instrument suitable to the simultane-
ous investigation of the temperature and density distributions in

� Based on observations made with Telescopes of the European
Organisation for Astronomical Research in the Southern Hemisphere
(ESO) at the Paranal Observatory, Chile, under the programs 074.C-
0342(A), 075.C-0064(A,B), 075.C-0413(A,B), and 076.C-0356(A).
�� Appendix A is only available in electronic form at
http://www.aanda.org

the innermost disk regions, accretion effects, and dust proper-
ties, i.e., in determining the evolutionary status of circumstellar
disks. Even the presence of a (stellar) companion and its location
can be investigated using MIDI. The analysis of (interferomet-
ric) observations of more than one YSO at different evolutionary
stages provide the opportunity of verifying and constraining disk
evolution and planet-formation models (e.g., Leinert et al. 2004).

MIDI, operating in the atmospheric N band, is sensitive to
warm (�300 K) matter, dust in particular, located in the inner
few AUs of young circumstellar disks. It is generally assumed
that the formation of planetary systems starts in these inner disk
regions (Klahr 2004; Wünsch et al. 2005; Nagasawa et al. 2006).
As a consequence of the planet-formation process, the disk struc-
ture and the composition of the dust population is assumed to
evolve (Lissauer 1993; Gail 2003; Wolf 2007). The dust compo-
sition and density distribution of old T Tauri objects with an age
of >10 Myr are assumed to have been strongly modified. In these
systems, the accretion onto the star is strongly reduced or has
even stopped (Hartmann et al. 1993). Furthermore, the former
circumstellar envelope of Class I objects as well as the innermost
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Table 1. Object properties derived in previous measurements or in this study.

Object (no.) RA [h m s] Dec. [◦ ′ ′′] d [pc] AV [mag] SpTyp M� [M�] T� [K] L� [L�] Age [Myr]
DR Tau (I) 1.7(det.)

DR Tau (II) 04 47 06.2(2) +16 58 43(2) 140(ass.) 1.6(3) K7(3,4) 0.80(4) 4000(4) 0.9(3) 3(5)

DR Tau (III) 0.9(3)

GW Ori (I)
05 29 08.4(1) +11 52 13(1) 440(6) 1.3(6) G0(6) 3.7(6) 6000(6)

40(det.) 1(6)
GW Ori (II) 62(6)

HD 72106 B 08 29 34.9(1) −38 36 21(1) 290(9) 0.0(7) A0(9) 1.8(8) 9500(7) 28(det.) 10(8)

RU Lup 15 56 42.3(1) −37 49 16(1) 127(11) 0.50(11) K8(11) 0.80(11) 4000(11) 1.3(11) 1(11)

HBC 639 16 26 23.4(2) −24 20 60(2) 170(11) 5.7(11) K0(11) 2.0(11) 4800(det.) 8.5(11) 2(11)

S CrA N (I,II)
19 01 08.6(2) −36 57 20(2) 130(12,13)

1.5(12) K3(12) 1.5(12) 4400(12) 2.3(12) 3(12)

S CrA S 1.0(12) M0(12) 0.60(12) 3800(12) 1.0(det.) 1(12)

References: (1): Perryman (1997); (2): 2 MASS catalogue (Cutri et al. 2003); (3): Muzerolle et al. (2003); (4): Mohanty et al. (2005); (5): Greaves
(2004); (6): Calvet et al. (2004); (7): Schütz et al. (2005); (8): Wade et al. (2005); (9): Vieira et al. (2003); (10): Folsom (2007); (11): Gras-Velázquez &
Ray (2005); (12): Prato et al. (2003); (13): Johns-Krull et al. (2000).

disk regions (Calvet et al. 2002) may have disappeared in these
objects. In contrast, in YSOs with an age of <�1 Myr, the accre-
tion process usually plays a dominant role.

Binarity is a common phenomenon in YSOs. Extensive stud-
ies in the near-infrared (NIR) wavelength range, where a spa-
tial resolution of between 0.005′′ and 10′′ was reached, showed
that between 23% and 55% of YSOs are binaries or even
multiple systems (Simon et al. 1995; Köhler & Leinert 1998;
Dûchene et al. 1999; Ratzka et al. 2005). In a theoretical study,
Artymowicz & Lubow (1994) highlighted modifications to the
structure of circumstellar and circumbinary disks resulting from
a close companion. Furthermore, the nature of the infrared com-
panions of T Tauri stars remains a matter of debate in terms of
the structure and orientation of their circumstellar disks as well
as their evolutionary stage (Koresko et al. 1997; McCabe et al.
2006).

Simultaneous modeling of the spectral energy distribution
(SED) – averaged over the entire disk – and of interferomet-
ric measurements – sensitive to the inner, warm regions – is the
main goal of this study. Modeling the SED alone does not allow
us to constrain unambiguously the disk density and temperature
structure (e.g., Thamm et al. 1994). Spatially resolved observa-
tions, such as interferometric observations with MIDI are needed
to reduce the ambiguity caused by considering solely the SED.
The modeling approach should be as simple as possible to re-
duce the mathematical underdetermination of the model. A key
issue of this study is to determine whether all objects in our het-
erogeneous sample can be modeled with one single approach or
if modifications and extensions of the model must also be con-
sidered. Finally, it has not yet been shown whether any quantities
of the objects, such as the stellar luminosity, stellar temperature,
and mass accretion rate derived in previous, spatially unresolved
observations can also be confirmed with interferometric, small-
scale (range of AU) observations.

Any deviations in the outcome of a homogeneous disk model
from the (spectral and spatial) measurements point to (small-
scale) perturbations of the disk structure. A non-representative
selection of potential perturbations are an inner-disk gap (Calvet
et al. 2002; Mathieu et al. 1991), vortices (Klahr 2004), a puffed-
up inner-rim wall (Dullemond et al. 2001), and a close stellar
companion (Mathieu et al. 1997; Artymowicz & Lubow 1994).
Non-homologous evolution of the disk produces these perturba-
tions (Wood et al. 2002; McCabe et al. 2006).

MIDI provides both correlated, i.e., coherent spectra sen-
sitive to the inner part, and uncorrelated spectra sensitive
to regions that can be non-interferometrically resolved. For
the T Tauri objects TW Hya (Ratzka et al. 2007) and RY Tau
(Schegerer et al. 2008), an increase in the relative crystalline
mass contribution to the 10 μm silicate feature could be deter-
mined for an increasing spatial resolution obtained with MIDI.
This result was even found for the active object FU Ori (Quanz
et al. 2005). This finding was explained by the hypothesis that
silicate dust evolves more rapidly in inner disk regions, i.e., at
small radii r, than in outer regions of the disk (e.g., van Boekel
et al. 2004) assuming similar initial dust compositions. It is not
known, so far, if this increase occurs only for intermediate-mass
YSOs such as RY Tau or if such a correlation exists even for
fainter (∼1 L�), younger (∼1 Myr old), and less active T Tauri
objects. Radial mixing could reverse the increase in evolved dust
towards the more inner regions (Gail 2003). In this study, we
compare silicate features that effectively arise at different disk
radii within an object. By focusing on one single object, the re-
sults of this investigation do not depend on disk properties such
as the evolutionary stage, initial composition, and disk inclina-
tion but only on the origin of the feature.

This paper is structured in the following way. In Sect. 2, we
present the object sample and briefly describe our observations
and data reduction. In Sect. 3, our modeling approach is outlined.
The derived individual disk parameters are presented in Sect. 4.
An analysis of the 10 μm silicate feature is given in Sect. 5, fol-
lowed by a summary in Sect. 6. The Appendix lists some further
properties of the objects in our sample.

2. Interferometric observations and data reduction

Most of our objects are well-known T Tauri stars. They belong
to various star-forming regions such as the Taurus-Auriga (e.g.,
DR Tau) and ρ Ophiuchi (e.g., HBC 639) region. Selected object
parameters are compiled in Table 1 (see Appendix A for more
details). Different models of an object are provided in roman
digits. In this Table 1, the coordinates (RA and Dec. in J2000.0),
distance (d), visual extinction (AV), spectral type (SpTyp), stellar
mass (M�), effective stellar temperature (T�), stellar luminos-
ity (L�), and age are listed. Footnotes are references and point
to the previous measurements. The footnotes “det.” and “ass.”
represent parameter values that were determined and assumed
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Table 2. Overview of our observations with MIDI.

Date UT Object T P B [m] PA [◦] AM Diameter [mas] Ref. Comments

Jan. 01st 2005 2 : 30−2 : 59 DR Tau UT3-UT4 61 106 1.3 ∗, ∗ ∗ ∗ ∗
Jan. 01st 2005 3 : 15−3 : 17 HD 31421 UT3-UT4 60 106 1.3 2.74 ± 0.03 1
Jan. 31st 2005 3 : 56−3 : 58 HD 31421 UT3-UT4 56 104 1.3 2.74 ± 0.03 1
Mar. 01st 2005 23 : 57−0 : 14 HD 31421 UT3-UT4 56 105 1.3 2.74 ± 0.03 1
Mar. 01st 2005 0 : 21−0 : 35 GW Ori UT3-UT4 56 105 1.3

Mar. 03rd 2005 0 : 02−0 : 13 HD 31421 UT2-UT4 87 79 1.3 2.74 ± 0.03 1
Mar. 03rd 2005 0 : 28−0 : 45 GW Ori UT2-UT4 88 79 1.3 ∗
Dec. 31st 2005 4 : 19−4 : 39 HD 72106 UT1-UT4 127 41 1.1 ∗∗
Dec. 31st 2005 4 : 53−4 : 56 HD 69142 UT1-UT4 130 48 1.1 2.18 ± 0.18 2

Mar. 11th 2005 0 : 29−1 : 01 HD 72106 UT2-UT4 88 71 1.1 ∗∗
Mar. 11th 2005 1 : 08−1 : 27 HD 69142 UT2-UT4 89 78 1.0 2.18 ± 0.18 2
Aug. 26st 2005 0 : 52−0 : 56 HD 152885 UT2-UT4 84 96 1.1 2.88 ± 0.09 2
Aug. 26st 2005 1 : 55−2 : 25 RU Lup UT2-UT4 64 122 1.5 ∗
Aug. 26st 2005 2 : 38−2 : 40 HD 152885 UT2-UT4 69 116 1.4 2.88 ± 0.09 2
Aug. 26st 2005 3 : 02−3 : 04 HD 178345 UT2-UT4 84 96 1.1 2.42 ± 0.03 2
Aug. 26st 2005 4 : 48−4 : 50 HD 178345 UT2-UT4 69 116 1.4 2.42 ± 0.03 2

May 15th 2006 2 : 29−2 : 43 RU Lup UT2-UT3 46 17 1.2
May 15th 2006 4 : 51−5 : 03 HD 152820 UT2-UT3 46 13 1.3 2.63 ± 0.15 2

May 25th 2005 3 : 20−3 : 28 HD 152820 UT3-UT4 55 94 1.1 2.63 ± 0.15 2
May 25st 2005 3 : 43−3 : 50 RU Lup UT3-UT4 61 103 1.0

May 25st 2005 7 : 32−7 : 40 HD 152820 UT3-UT4 58 130 1.1 2.63 ± 0.15 2
May 25th 2005 7 : 55−8 : 02 RU Lup UT3-UT4 55 149 1.5
Apr. 18th 2005 4 : 11−4 : 18 HD 142804 UT2-UT4 71 66 1.3 2.80 ± 0.08 2
Apr. 18th 2005 4 : 39−4 : 58 HBC 635 UT2-UT4 75 61 1.2

Apr. 19th 2005 3 : 19−4 : 33 HD 142804 UT2-UT4 60 58 1.5 2.80 ± 0.08 2
Apr. 19th 2005 3 : 44−4 : 11 HBC 635 UT2-UT4 66 52 1.4 ∗
Aug. 25th 2005 23 : 19−23 : 21 HD 142804 UT2-UT4 60 116 1.0 2.80 ± 0.08 2
Aug. 25th 2005 23 : 45−23 : 46 HD 142804 UT2-UT4 58 118 1.0 2.80 ± 0.08 2
Aug. 26th 2005 0 : 08−0 : 27 HBC 635 UT2-UT4 59 121 1.1 ∗
May 31st 2005 10 : 07−10 : 38 S CrA N UT2-UT4 70 109 1.4 ∗ ∗ ∗
May 31st 2005 10 : 48−10 : 49 HD 178345 UT2-UT4 66 120 1.5 2.42 ± 0.03 1

Jun. 28th 2005 7 : 57−7 : 58 HD 178345 UT3-UT4 59 137 1.2 2.42 ± 0.03 1
Jun. 28th 2005 8 : 17−8 : 39 S CrA N UT3-UT4 56 145 1.4
Aug. 26th 2005 0 : 52−0 : 57 HD 152885 UT2-UT4 84 96 1.1 2.88 ± 0.09 2
Aug. 26th 2005 2 : 38−2 : 40 HD 152885 UT2-UT4 69 116 1.4 2.88 ± 0.09 2
Aug. 26th 2005 3 : 02−3 : 04 HD 178345 UT2-UT4 84 96 1.1 2.42 ± 0.03 1
Aug. 26th 2005 4 : 04−4 : 35 S CrA S UT2-UT4 72 110 1.3 ∗
Aug. 26th 2005 4 : 48−4 : 50 HD 178345 UT2-UT4 69 116 1.4 2.42 ± 0.03 1

∗ Bad weather conditions (not perfect beam overlap, noisy data); ∗∗ data reduced using EWS package, only; ∗ ∗ ∗ results from MIA and EWS
package are not consistent at short wavelength (deviation: 13%); ∗ ∗ ∗ ∗ results from MIA and EWS package are not consistent for the whole band
(devation: 14%). References: 1: Cohen et al. (1999); 2: MIDI consortium (in prep).

in this study, respectively. Apart from one, all objects are be-
tween 0.1 and 3 million years old. The exception is HD 72106 B
with an age of 10 million years. Highly spatially resolved mea-
surements in the NIR and mid-infrared (MIR) wavelength range
have shown that the objects DR Tau and RU Lup do not have any
stellar companion (e.g., Ghez et al. 1997). In contrast, HD 72106
and S CrA at least are well-known binary systems. Considering
the stellar mass, GW Ori with M� = 3.7 M� would be the only
Herbig Ae/Be object (M� > 3 M�) in our sample, while in terms
of spectral type only HD 72106 B would be a Herbig Ae/Be ob-
ject (Vieira et al. 2003).

The date and the observing time (UT ) with MIDI, as well
as telescope pairs (T P), and both the projected (effective) length
(B) and angle of the baseline (PA, measured from North to East)
during the observations are presented for targets and correspond-
ing calibrator stars in Table 2. The given airmass (AM) is an av-
erage value for the observation. We also add the diameter of the
calibrator star and the corresponding references. The diameters

were derived from fitting the SED of the objects. In the last
column of this Table 2, we also provide comments concern-
ing the observation and data reduction. A detailed description
of an observing sequence with MIDI is given in Leinert et al.
(2004). The calibration was completed using data for all cali-
brator stars that were observed during one night with the same
observational mode as the scientific target and show clear visi-
bility signals. The error bars in the visibility curves, which are
presented below, represent the standard deviation when using the
ensemble of calibrator measurements. Since the sample contains
various objects with known close-by infrared companions, we
checked whether these companions affect the visibility measure-
ments. This examination was necessary because of the relatively
wide field-of-view of MIDI, of about 1′′. The companions do
not affect the measurements. We used the MIA package (MIDI
Interactive Analysis Software) for data reduction (Leinert et al.
2004; Ratzka 2005). The results were confirmed by using the in-
dependent EWS software. Both reduction software packages are
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publicly available1. Several target/calibrator pairs were observed
at different airmasses (Table 2). Therefore, a correction to the
airmass was performed by multiplying the uncorrelated spectra
with the inverse of the cosine of the zenith angle. The visibility
spectra do not need to be corrected because the correlated flux is
normalized by the uncorrelated flux.

3. Modeling approach

In the data analysis, we used the radiative-transfer code MC3D,
which is based on a Monte Carlo method (Wolf et al. 1999) and
was more recently developed to its present form (Schegerer et al.
2008). A predefined, parameterized model of a passive disk is
the basic ingredient of our modeling approach. We use the disk
model of Shakura & Sunyaev (1973), where the density distri-
bution is given as:

ρ(r, z) = ρ0

(R�
r

)α
exp

⎡⎢⎢⎢⎢⎢⎣−1
2

(
z

h(r)

)2⎤⎥⎥⎥⎥⎥⎦ · (1)

The quantities r and z are the radius measured from the disk cen-
ter and the vertical distance from the disk midplane, respectively.
The quantity R� is the stellar radius. The function h(r) represents
the scale-height2:

h(r) = h100

( r
100 AU

)β
(2)

with h100 = h(r = 100 AU). The quantity ρ0 allows us to scale
the total disk mass Mdisk. We assume a gas-to-dust mass ratio of
100:1. In our approach the exponents α and β satisfy the follow-
ing relation:

α = 3

(
β − 1

2

)
· (3)

The latter relation results from the coupling of surface density
and temperature of the disk (Shakura & Sunyaev 1973). We note
that the approach established by Shakura & Sunyaev is correct
only for geometrically thin disks, i.e., where z 	 r. However,
since the density exponentially decreases with increasing z and
the scale-height h(r) is at least one order of magnitude smaller
than the corresponding radius r, this approximation should be
justified for the predominant mass fraction. The error in the den-
sity of regions z � r is of the order z5/r7 for Taylor’s series. The
approach of Shakura & Sunyaev was already successfully used
in modeling HH 30 IRS (Burrows et al. 1996; Wood et al. 1998;
Cotera et al. 2001) and the Butterfly Star (Wolf et al. 2003). In
contrast to the more basic, but time-consuming, approach of hy-
drostatical equilibrium (Schegerer et al. 2008), the predefined,
parametrized disk model of Shakura & Sunyaev (1973) avoids
the difficulties in handling regions of high optical depth (e.g.,
Sonnhalter et al. 1993). However, even in predefined density dis-
tributions, the resulting temperature distribution must converge
independently of the number of photon packages emitted.

For all objects besides HD 72106 B and HBC 639, accretion
effects were also considered. The potential energy of a particle

1 Software packages are available at http://www.mpia-hd.
mpg.de/MIDISOFT/ and http://www.strw.leidenuniv.nl/
~koehler/MIA+EWS-Manual/
2 The scale-height is defined as the vertical distance from the mid-
plane, where the density has decreased by a factor e ≈ 2.718 (Euler’s
constant).

on its way towards the star is partly released in the disk mid-
plane assuming the canonical modeling approach of a geomet-
rically thin, active disk as formerly established by Lynden-Bell
& Pringle (1974), and Pringle (1981). Considering the “mag-
netically mediated” modeling approach (e.g., Uchida & Shibata
1984; Bertout et al. 1988; Calvet & Gullbring 1998), the accre-
tion disk is truncated by the stellar magnetic field at a radius
Rbnd. Thereupon, more than half of the potential energy of the
accreting particles is released in a boundary region above the
stellar surface. This boundary region is heated to a temperature
of Tbnd by the accreting material. The effects of the this ap-
proach were described and applied by Schegerer et al. (2008)
in modeling the circumstellar disk around RY Tau. Calvet &
Gullbring (1998) theoretically derived reasonable ranges for the
latter both accretion values, i.e., 5700 K < Tbnd < 8800 K and
2 R� < Rbnd < 5 R�. We note that the effects of any variations
in the boundary temperature Tbnd and the magnetic truncation
radius Rbnd on the SED and MIR visibilities can be neglected in
the above-mentioned ranges (D’Alessio et al. 1998). In our mod-
eling approach, we always used standard values for the bound-
ary temperature and truncation radius, i.e., Tbnd = 8000 K and
Rbnd = 5 R�. These values were applied by Akeson et al. (2005)
and Schegerer et al. (2008) for other T Tauri stars. The accretion
rate Ṁ, which determines the total accretion luminosity Lacc, is
not an independent model parameter. But its value is constrained
by the results of previous measurements. Correspondingly, the
stellar mass M�, the effective stellar temperature T�, and the
stellar luminosity L�, which were derived in previous studies
were starting parameters in the modeling. In some cases, it was
necessary to deviate from these results to be able to simulate
the measurements considered in this study. These deviations are
discussed below.

In our modeling approach, we assumed a dust mixture of
“astronomical silicate” and graphite with relative abundances of
62.5% and 37.5%, respectively (Draine & Malhotra 1993). We
used a two-layer disk model, i.e., the disk interior, where the op-
tical depth in N band fulfills the condition τN > 1, contains dust
grains with a maximum particle size of amax = 1 mm. A maxi-
mum particle size of amax = 1 mm was found for several T Tauri
stars with millimeter observations using the Very Large Array
(Rodmann et al. 2006). Here, the optical depth τN is measured
for constant radii, from the disk atmosphere vertically to the
disk midplane. The surface regions consist of interstellar, non-
evolved dust with amax = 0.25 μm as found in the interstellar
medium (Mathis et al. 1977). In both the disk interior and the
disk surface layer a minimum grain size of amin = 0.005 μm and
a grain size distribution of a−3.5 for a ∈ [amin, amax] was adopted
(MRN grain-size distribution; Mathis et al. 1977).

After the temperature distribution was determined assuming
a density given by Eq. (1), the SED, the projected image of the
star, and its circumstellar environment, assuming an inclination
angle ϑ, were calculated. In the modeled images from which
the visibilities result, we generally used a spatial resolution of
<0.2 AU in the MIR range, which is a factor ∼10 higher than
the spatial resolution reached in our MIDI observations. For the
images from which we derived the NIR visibilities, we used a
resolution of <0.03 AU, i.e., a factor of 10 higher than the reso-
lution reached by any existing NIR interferometer.

Independent model parameters of our approach are the outer
radius Rout, the scale-height h100, the exponent β, and the inclina-
tion angle ϑ of the circumstellar disk3. Assuming a certain dust
mixture in the models, the disk mass is fixed predominantly by

3 An inclination angle of 0◦ corresponds to a face-on disk.

http://www.mpia-hd.mpg.de/MIDISOFT/
http://www.mpia-hd.mpg.de/MIDISOFT/
http://www.strw.leidenuniv.nl/~koehler/MIA+EWS-Manual/
http://www.strw.leidenuniv.nl/~koehler/MIA+EWS-Manual/
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Table 3. Parameters of the models that simulate the measured SED and MIR visibilities best.

Object (model-no.) Mdisk [M�] Rout [AU] Rin [AU] β h100 [AU] ϑ [◦] Ṁ [M�/a]

DR Tau (I) 0.10 2.0 × 10−8
(det.)

DR Tau (II) 0.1 90 0.10 0.75 15 20 8.0 × 10−8
(1)

DR Tau (III) 0.05 8.0 × 10−8
(det.)

GW Ori (I,II) 1.0 360 0.35 1.10 22 10 2.5 × 10−7
(2)

HD 72106 B 0.005 40 0.50 1.30 8 60 No Accretion

RU Lup 0.1 100 0.10 0.90 20 28 1.0 × 10−8
(3)

HBC 639 0.1 120 0.10 1.00 10 65 No Accretion

S CrA N (I)
0.03 120 0.05

1.10 9
10 4.0 × 10−8

(det.)

S CrA N (II) 0.90 12 45

S CrA S 0.03 100 0.10 1.05 8 30 4.0 × 10−8
(det.)

References: (1): Akeson et al. (2005); (2): Calvet et al. (2002); (3): Herczeg et al. (2005).

the flux in the millimeter wavelength range. Considering a stel-
lar temperature T�, the quadratic distance law, a mean dust sub-
limation temperature of 1500 K, and the specific absorption co-
efficients κ of the adopted dust set, the temperature of single dust
grains at each radius can be determined. However, our approach
is only valid for optically thin media. For optically thick me-
dia, the grain temperature at the inner-disk edge is even higher
because back radiation from outer dust grains produces an ad-
ditional heating of the grains at the inner edge. The resulting
sublimation radius Rsub is the initial value of Rin in our modeling
approach.

Initially, the simulation grid of independent parameters is
scanned coarsely during modeling. Simultaneously, we consider
parameter values that were derived in preceding studies. By
means of manual modifications of the model parameters, we
search for the model that reproduces most successfully the mea-
sured SED and MIR visibilities, simultaneously. The SED and
the MIR visibilities that we try to model are complex functions
of many different disk and dust parameters. However, the effects
of any modification of the parameters on modeled SED and vis-
ibilities can be estimated. A manual modification is necessary
because a disk model with a specific SED and images at differ-
ent wavelengths4 takes about an hour to compute. In our search
for the best-fit model the uniqueness of our final models cannot
therefore be proven. However, we verified whether the modeling
results can be improved by varying the model parameters using
the following step widths:

ΔL� = 0.1 L�, ΔMdisk = 0.5 Mdisk,

ΔRout = 10 AU, ΔRin = 0.05 AU,

Δβ = 0.05, and Δh100 = 1 AU.

Considering the error bars of the measurements, the modeling
results could not be improved using finer step widths. The step
widths can be considered as the precision to which the local min-
imum in the χ2-surface can be determined. The determination of
the modeling errors would require a fit of the χ2-surface in the
simulation grid to the independent parameters around the deter-
mined local minimum.

4 Used for the calculation of the modeled visibility.

4. Results

All scientific targets could be well resolved, i.e., the visibili-
ties are lower than unity. Table 3 presents the parameters re-
sulting from our effort to model the circumstellar disks of seven
YSOs.Values that are marked with (det.) in the list are deter-
mined in this study. In the following, we present and discuss
our modeling results for each object in our sample, in detail.
Previous observations, including photometric measurements, are
mentioned in Appendix A.

4.1. DR Tau

Considering the low gradient of the SED at wavelengths λ �
1 μm (Fig. 1), it is evident that the (measured) SED of DR Tau
is represented by a black body with the stellar temperature of
T� = 4050 K and an additional radiation source. The accre-
tion process is the other strong influence on the radiation emit-
ted in this wavelength range. In addition to the stellar luminosity
and the accretion rate, the parameters of the model (I) of our
approach confirm the values derived in the previous study of
Akeson et al. (2005) using long-baseline NIR interferometry
from the Palomar Testbed Interferometer (PTI). However, they
found a stellar luminosity of L� = 0.9 L�, which is a factor of
∼2 lower than the value found in our model. Simultaneously,
the accretion rate of their model, i.e., Ṁ = 8 × 10−8 M� yr−1, is
four times higher than the value determined in our first model.
However, SED and MIR visibilities can also be reproduced by
a model (II) by considering the stellar luminosity and the ac-
cretion rate found by Akeson et al. (2005) while keeping all
other model parameters constant. Both models similarly fit MIR
visibilities and SED to within the error bars. We conclude that
the intrinsic stellar luminosity and the accretion luminosity can-
not be disentangled considering SED and MIR visibilities, only.
The derived accretion luminosity Lacc depends on the applied
accretion rate Ṁ: the model (I) has an accretion luminosity of
Lacc = 0.19 L� for Ṁ = 2 × 10−8 M� yr−1 while an accretion lu-
minosity of Lacc = 1.0 L� for Ṁ = 8×10−8 M� yr−1 is emitted by
the model (II). The sum of the intrinsic stellar luminosity L� and
the accretion luminosity Lacc in both models equals ∼1.9 Lsun.
Finally, we mention that Mohanty et al. (2005) derived an ac-
cretion rate of Ṁ = 2.2 × 10−7 M� yr−1 analysing Ca II lines.
Robitaille et al. (2007) determined a lower and upper limit to Ṁ,
i.e., 6.9 × 10−9 M� yr−1 � Ṁ � 1.0 × 10−6 M� yr−1 assuming
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Fig. 1. SED and MIR visibilities for a projected baseline of B = 60 m obtained from the measurements and our models (I), (II), and (III) of DR Tau.
The model parameters are listed in Tables 1 and 3. Upper row: SED and an enlargement showing photometric data from the visible up to the NIR
wavelength range. The curves are ascribed to the specific models by numbers. Real photometric data are plotted with error bars. The dashed lines
represent the intrinsic stellar flux of models (I), (II), and (III). Lower-left figure: the modeled visibilities were derived from the corresponding
model images for the wavelengths of 8.5 μm, 9.5 μm, 10.6 μm, 11.5 μm, and 12.5 μm. The colored bars represent intervals that limit the MIR
visibilities V(λ) for different position angles but the same inclination of the models (I: dark grey) and (III: light gray). For clarity, the visibilities
obtained from model (II) are not shown but they are located between the results of model (I) and model (III). The measured data are included with
error bars (black, solid line). Lower right figure: NIR visibilities as a function of the projected (effective) baseline length B of an interferometer
derived for a wavelength of 2.2 μm that result from model (III: light gray). Model (III) is the only model that fit all available data sets. The dark
grey line represents the output of model (I) and (II), respectively. The measured NIR visibilities obtained with the PTI (Akeson et al. 2005) are
included with error bars.

the SED, only. If the NIR visibility data obtained by Akeson
et al. (2005) is simultaneously taken into account, we find that
the disks of models (I) and (II) appear too spatially resolved, re-
sulting in too low NIR visibilities. Only an additional reduction
in the inner disk radius to Rin = 0.05 AU improves our fit to
the NIR visibility data in the model (II). A similar improvement
cannot be reached in model (I) by reducing its inner disk radius.
Our model of DR Tau with L� = 0.9 L�, Ṁ = 8 × 10−8 M� yr−1,
and Rin = 0.05 AU is called model (III). The lower right panel in
Fig. 1 shows measurements and model output for the NIR vis-
ibility of model (III). We note that the fit to the MIR visibility
data at wavelengths of 12.5 μm becomes poorer in model (III)
and deviates from the measured data by <7% as the gradient
of the modeled MIR visibility curve decreases. We summarize
that model (III) is the only model that reproduces all available
data sets apart from slight deviations in the MIR visibilities at
∼12.5 μm.

As we mentioned in Sect. 3, the sublimation radius is approx-
imated considering a stellar temperature of T� = 4000 K and the
absorption coefficients of the dust composition that we used in

our two-layer disk model. This approach is only an approxima-
tion because we assume an optically thin disk in determining
of the sublimation radius Rin. The true sublimation radius Rin
should be larger because the back radiation of adjacent grains is
neglected. We obtain a sublimation radius of Rsub ≈ 0.06 AU
even for the dust for which amax = 1 mm because of a low
number of large grains with a > 0.25 μm. Since the inner ra-
dius Rin of the modeled disk is slightly smaller than the sublima-
tion radius, this value of Rsub could imply that larger grains exist
in the disk, in the innermost disk in particular, than the MRN
grain-size distribution predicts (Mathis et al. 1977). This result
is also found in Sect. 5 and predicted by Isella & Natta (2005).
However, the hint for larger grains is only weak since the large
error bars of the NIR data still allow a slightly larger inner-disk
radius Rin than we have assumed in model (III).

As the disk crosses the line of sight of the observer with
increasing inclination angle, the NIR flux at ∼2.2 μm of the
model of DR Tau decreases by 38% in steps of Δϑ = 5◦ for
small inclinations. Therefore, the inclination angle can be de-
termined with high accuracy. If the measured visual extinction
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Fig. 2. SED and MIR visibilities for the projected baselines of B = 56 m and B = 88 m obtained from the measurements and our model of GW Ori.
The results of two different models are plotted that differ in the stellar luminosity (dark gray: L� = 40 L�, light gray: L� = 62 L�). The increasing
visibility of the longest baseline B = 87 m, which cannot be reproduced by our modeling approach, could point to a bright, truncated density
structure in the inner disk region (<5 AU), although different scenarios are also possible.

AV ≈ 1.6 mag (Muzerolle et al. 2003) can be ascribed exclu-
sively to the circumstellar disk around DR Tau that crosses the
line of sight of the observer, an inclination of ϑ ≈ 20◦ can be
derived. If the extinction is also caused by interstellar media
outside the system, which is not considered in the model, the
derived inclination angle is correspondingly smaller.

Our observation of DR Tau with MIDI achieved a theoret-
ical spatial resolution of <∼17 mas (∼2 AU). To this limit, the
visibility data do not provide any evidence of a companion
with a brightness ratio close to unity, which would have pro-
duced a characteristic sinusoidal signature in the visibility (e.g.,
Schegerer et al. 2008). We note that the detection of a close bi-
nary is difficult when the binary is oriented nearly orthogonal to
the baseline vector of our interferometric observations.

Our finding confirms the results of former speckle-
interferometric measurements in the NIR range (Ghez et al.
1997), where a theoretical spatial resolution of 53 mas could
be achieved. Two previously unpublished lunar occultation data
sets of high quality (S NR ≈ 20–40) are available for DR Tau
from the 3.5 m telescope in Calar Alto, the first one recorded
in November 1997 with an InSb fast photometer and the sec-
ond one in September 1999 with the IR array OmegaCass in fast
readout for a 32 pixel window. A detailed analysis allows us to
conclude that the source appeared point-like with an upper limit
of (2.70 ± 0.65) mas, i.e., (0.4 ± 0.1) AU and (5.0 ± 0.4) mas,
i.e., (0.7 ± 0.06) AU in both data sets. Upper limits can also be
set to the flux because of a possible circumstellar emission, and

they are �5% over 160 mas and �2.5% over 420 mas, for both
observations.

4.2. GW Ori

As former millimeter measurements have shown (Mathieu et al.
1995) and can be confirmed by this study, the circumstellar
disk around GW Ori is very massive, i.e., Mdisk = 1.0 M�.
Furthermore, compared to other objects in this study, the disk of
GW Ori has the largest outer radius Rout. Besides the luminosity,
all other stellar parameters and the accretion rate found in this
study are consistent with the result of Calvet et al. (2004), who
analyzed the UV spectrum of this source. The accretion luminos-
ity is Lacc = 5 L� in our model. If an intrinsic stellar luminosity
of L� = 62 L� is used, as was determined by Calvet et al. (2004),
the resulting flux in K band would exceed the photometric mea-
surement by 20%. In Fig. 2, the SED and MIR visibilities of a
model with a stellar luminosity of L� = 62 L� is also shown
(model (II): gray curves/visibility bars). Although both the SED
and the visibilities for B = 56 m can be reproduced, no model
could be found that reproduces simultaneously the visibilities
of a baseline of B = 88 m. For spectroscopic measurements,
Mathieu et al. (1997) found that GW Ori has a stellar compan-
ion at a projected separation asep between asep = 1.08 AU and
asep = 1.18 AU and of stellar mass between M� = 0.5 M� and
M� = 1 M�. According to Mathieu et al. (1997), this compan-
ion creates a dust-free ring in the circumstellar disk between
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r = 0.17 asep and r = 3.0 asep. By means of a theoretical in-
vestigation, Artymowicz & Lubow (1994) determined an inner
radius of ∼2.3 asep for the circumbinary disk of the system. They
claimed that each component has its own circumstellar disk of
outer radii of 0.46 asep and 0.20 asep.

In our approach, the inner disk radius equals the sublimation
radius (Rin = Rsub). We do not consider a dust-free inner gap as
proposed by Mathieu et al. (1997) and Artymowicz & Lubow
(1994). However, in another model a dust-free, ring-shaped gap
is cut in our disk model. We assumed the same disk parame-
ters β and h100 for the circumbinary and circumstellar disk. The
disk gap extends from the radius 0.5 AU to 3.0 AU. In the latter
model, we obtained the following results (not shown in the fig-
ure): the NIR flux obtained from this model decreases by 70%
and cannot fit the NIR range of the SED anymore. Although the
modeled visibilities V(λ) for the long baseline B = 87 m corre-
spond to a positive gradient, the visibilities for the short baseline
B = 56 m decrease by 20% across the complete N band. Any
modifications of the radii that limit the disk gap could not even
improve our model considering the measurements.

We assume that the disk gap is probably neither dust-free nor
ring-shaped. In a theoretical study, it was shown that material
streams between the circumbinary and the circumstellar disks
guarantee the accretion onto each component (Günther & Kley
2002). Even the stellar companion that is not implemented in
our approach could affect the MIR visibilities and SED. A strong
concentration of MIR intensity in the innermost disk regions that
could not be spatially resolved with MIDI and an abrupt trunca-
tion of the MIR intensity distribution potentially caused by a disk
gap result in the increase of the MIR visibility on long baselines.

To reveal the innermost disk region of GW Ori, more compli-
cated modeling approaches as well as additional interferometric
observations are essential. Measurements with the NIR interfer-
ometer AMBER at the VLTI, for instance, could provide infor-
mation about the small-scale structures of the innermost regions
that potentially deviate from axial symmetry.

4.3. HD 72106 B

HD 72106 B is the least well-studied object in our sample. In
our modeling approach, we use a luminosity of L� = 28 L�.
This value results directly from a fit by a Planck function of
temperature T� = 9500 K (Schütz et al. 2005) to the photomet-
ric measurements in U-, V- and R-band. Two properties make
HD 72106 B a special object in our sample:

First, with an age of 10 Myr, HD 72106 B is a relatively old
T Tauri object with weak infrared excess. The equivalent width
of the Hα line that is smaller than 10 Å (Vieira et al. 2003) is a
sign of weak accretion. Our model of HD 72106 B consists of a
passive disk without considering any accretion effects. For sev-
eral T Tauri objects of similar age (e.g., TW Hya; s. Calvet et al.
2002) an inner, dust-free gap in the range of �1 AU, i.e., larger
than the sublimation radius could be detected. However, because
the SED and MIR visibilities of HD 72106 B can be simulated by
assuming that the inner edge of the (dust) disk equals the subli-
mation radius, a shift in the inner-disk edge to larger radii is not
obvious.

Second, HD 72106 B is the infrared companion of
HD 72106 A with a projected distance of 280 AU. HD 72106 A
has already developed into a main-sequence star (Wade et al.
2005). The main component is probably responsible for the
truncation of the outer disk around the B component considering

an outer radius of 40 AU. The small outer radius of the disk
finally produces a strong decrease in the FIR flux (s. Fig. 3).

4.4. RU Lup

As Lamzin et al. (1996) has shown, RU Lup was at least tem-
porarily a strongly accreting object. By analyzing its SED, they
derived an accretion rate of Ṁ = 3 × 10−7 M� yr−1. In this
context, Reipurth et al. (1996) found that the Hα emission has
broad wings of up to 900 km s−1 in width. Furthermore, the Hα
emission of RU Lup shows one of the broadest equivalent widths
among T Tauri stars (Giovannelli et al. 1995). However, by con-
sidering SED and MIR visibilities, we can exclude such a high
accretion rate Ṁ. We determine a maximum value of Ṁ = 1 ×
10−8 M� yr−1 with an accretion luminosity of only Lacc = 0.1 L�.
Herczeg et al. (2005) found that Ṁ = (5 ± 2) × 10−8 M� yr−1

which supports our result. A higher accretion rate produces a
decrease in the MIR visibility because the irradiation of the disk
increases. Simultaneously, the NIR and MIR flux would exceed
the photometric measurements. Figure 4 represents our best-fit
model with Ṁ = 1 × 10−8 M� yr−1 (black curve/visibility bars).
The stellar luminosity of L� = 1.27 L� corresponds to a value
derived by Gras-Velázquez & Ray (2005). It represents the av-
erage of previous measurements (Herczeg et al. 2005: 0.49 L�;
Nürnberger et al. 1997: 2.2 L�). A model that simulates the flux
in the N band, i.e., the silicate feature, could not be found. The
relative deviation in the MIR range is 37%. The visibilities ob-
tained on the baselines B = 61 m and B = 65 m and for similar
position angles significantly differ, which could be due to a mea-
surement error.

Based on spectro-astrometric observations, Takami et al.
(2001) suggested that an inner gap in the circumstellar disk of
RU Lup exists between ∼2 AU and ∼4 AU (20–30 mas) as jus-
tified by the following arguments. Because of the positional dis-
placement of the extended wings, the emission of forbidden lines
such as [OI] and [SII] in the spectra of RU Lup is assumed to
arise in a collimated large-scale outflow. The apparent lack of
redshifted line components results from an obscuration of the
dorsal outflow by the circumstellar disk (Eislöffel et al. 2000).
Takami et al. (2001) found that the Hα line in the spectrum
of RU Lup, which is evident predominatly in the innermost re-
gions, shows both blueshifted and redshifted wings. This find-
ing is explained by an inner disk gap that allows regions behind
the disk to be observed. The gap could be evoked by an unseen
(planetary) companion. Since the wings of the Hα line shows
the same positional displacement as the forbidden lines, Takami
et al. (2001) suggested that the Hα line originates predominantly
in the outflow.

Similar to our modeling approach of GW Ori, we defined
a dust-free gap in the disk model that is presented in Fig. 4
(Tables 1,3). The gap size was varied using values of Rin of up to
3 AU for the inner gap radius, and 3 AU and 5 AU for the outer
gap radius. An outflow was not considered in our model. The
resulting changes can be summarized as follows: as shown in
Fig. 4, a gap lowers the NIR flux by ∼7%. We note that the NIR
flux is highly variable during a year (Giovannelli et al. 1995).
Previous photometric measurements (Giovannelli et al. 1995)
would be consistent with lower NIR fluxes. A disk gap as used
here would even lower the MIR flux and slightly improve our fit
to the N band. The MIR visibility simultaneously decreases at
wavelengths <10.5 μm as the relative MIR flux contribution of
outer disk regions in relation increases. For longer wavelengths
>10.5 μm, the disk becomes more compact as the visibilities
slightly increase. Our visibility measurements are inconsistent
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Fig. 3. SED and MIR visibilities for the projected baselines of B = 88 m and B = 127 m that results from the measurements and our model of
HD 72106 B. Dotted curves represent remnants of the telluric ozone band that could not be eliminated by the data reduction.

with a disk gap and an inner radius of r = Rin, only, but a gap
of between 2 AU and 4 AU fits the visibility data as well as the
model without gap.

Although there are observational hints for a disk gap, we are
unable to conclude whether the model with a disk gap of inner
radius �2 AU or a model disk without gap provide a closer fit to
the data. Further interferometric observations and simultaneous
photometric measurements in the NIR wavelength range would
allow a final confirmation or rejection of the presence of a gap
in the disk of RU Lup.

4.5. HBC 639
Apart from HD 72106 B, the source HBC 639 is the only object
where accretion has not been considered. Although HBC 639
has an age of between 1 and 3 million years (Gras-Velázquez
& Ray 2005), we can neglect the derived accretion rate (Prato
et al. 2003), for which we estimate an upper limit of Ṁ <
1 × 10−8 M� yr−1. Since the equivalence width of the Hα line
is smaller than 10 Å, HBC 639 is not a classical T Tauri star but
belongs to the class of weak-line T Tauri stars.

The parameter combination listed in Table 3 could reproduce
the MIR visibilities. However, this model produces a strong de-
cline in the FIR flux and is therefore unable to reproduce the pho-
tometric upper limits in the FIR range. HBC 639 has an infrared
companion at a projected distance of 320 AU (s. Appendix A).
The strong decline in the FIR flux could be explained by the
presence of an infrared companion that truncates the outer-disk

region of the main component. In the latter case, the measured
flux in the FIR (s. Fig. 5) can mainly be ascribed to this infrared
companion. The companion is again a binary, as well, and deeply
embedded in a circumbinary envelope.

A larger value for the disk parameter β results in a more
flared disk. Outer disk regions can be more effectively heated
and the intensity distribution in the MIR range therefore de-
creases less strongly. A consequence is a decrease in the MIR
visibilities. Figure 5 also shows the results of a model with
β = 1.1 for which none of the other parameters were modified.
We note that the visibilities decrease by at least 10% for all base-
lines and the FIR flux increases by almost a factor of 2.

4.6. S CrA N

Only the photometric measurements in the NIR and MIR range
can exclusively be ascribed to the Northern component of this
binary. All other photometric measurements could not spatially
resolve the individual components of the binary system. The
visual extinction AV and the effective stellar temperature T�
used in the model are within the 1σ-deviations (1.0 mag and
400 K) of the previously derived results of Prato et al. (2003).
The NIR flux that results from our model deviates by 60% from
the measurements (s. Fig. 6). The accretion luminosity is equal
to Lacc = 0.7 L�.

A second model for S CrA N (grey curve/bars in Fig. 6) with
β = 0.90 and h100 = 12 AU does not reproduce the visibility
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Fig. 4. SED and MIR visibilities for the projected baselines of B = 46 m, B = 55 m, B = 61 m, and B = 64 m obtained from the measurements and
our model of RU Lup. For comparison, the light gray and dark gray colored curves/bars are results from two different models with and without disk
gap, respectively. The black region of the visibility bars represents an intersection. The gap – if present – stretches from 2 AU to 4 AU according
to Takami et al. (2001).

measurements as well as the first model (deviations from the
measurements are 6%) but the SED for λ < 14 μm can be simu-
lated more accurately. In contrast to HBC 639, the FIR flux must
then originate in the Southern component. Furthermore, to re-
produce the visual wavelength range, the second model still al-
lows an inclination angle of up to ϑ � 45◦, while only lower
inclinations angles of ϑ < 10◦ can be used in the first model.

4.7. S CrA S

The Southern component of S CrA is the fainter component in
the NIR and MIR wavelength range. An investigation of the Brγ
line showed that this component is as active as the Northern
component (Prato & Simon 1997). A value for the accretion
rate had not yet been derived. The accretion luminosity in our
model is Lacc = 0.2 L�. The corresponding accretion rate of
Ṁ = 4 × 10−8 M� yr−1 is already an upper limit because higher
values would produce an increase in the disk irradiation and a

decrease in the visibilities. If accretion is not considered in our
model, the MIR visibilities increase by only 2%. Figure 7 repre-
sents our best-fit model.

5. Radial gradient of the dust composition
in circumstellar disks around T Tauri stars

For each single interferometric observation with MIDI and for
each single telescope, one uncorrelated N band spectrum can
be obtained. For each interferometric observation, we also ob-
tained a correlated spectrum reflecting the flux emitted by re-
gions that are not spatially resolved by the interferometer. An
increasing effective baseline length B of the interferometer re-
sults in a higher resolution. The uncorrelated, i.e., single-dish
spectra as well as the correlated spectra contain spectral con-
tributions of the N band from the entire disk, while the contri-
butions from the hotter and brighter, i.e., inner regions increase
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Fig. 5. SED and MIR visibility for the projected baselines of B = 59 m, B = 65 m, and B = 74 m obtained from the observations and the model
of HBC 639. We assume that the photometric measurements in the FIR range are ascribed to the infrared companion. The light gray curves/bars
represent a model with a disk parameter β = 1.1 instead of using β = 1.0 (grey colored curves/bars).

with increasing effective baseline length B assuming a homoge-
neous, axial-symmetric disk. It was shown by Schegerer et al.
(2008) that the local silicate dust composition in the circumstel-
lar disk around RY Tau depends on the radial distance from the
star, i.e., the relative contribution of crystalline and large dust
grains increases towards the star5. Small and large dust grains
are assumed to have a radius of 0.1 μm and 1.5 μm, respectively.
In the following, we investigate whether a corresponding corre-
lation between radial location and dust composition can also be
found in the T Tauri stars of our sample.

The (averaged) uncorrelated spectra and the correlated spec-
tra are shown in Fig. 8. All uncorrelated and correlated spec-
tra exhibit the silicate emission feature apart from the correlated
spectra of HD 72106 and HBC 639 that were obtained with the
longest interferometric baseline. The uncorrelated spectra ob-
tained during different nights differ in absolute flux scale by 4%
for S CrA N and up to 35% for GW Ori, while the shape of the
spectra does not change. We assume that the variation in the ab-
solute flux scale of a spectrum is caused by an erroneous pho-
tometric calibration during data reduction. Przygodda (2004)
indeed confirmed that the scale factor of the photometric cal-
ibration can vary by more than 15% during a single night.
If available, spectra acquired by the Thermal Infrared Multi

5 In this study, crystalline and large grains are called evolved dust
grains.

Mode Instrument 2 (TIMMI 2) at ESO’s observatory La Silla
(Przygodda et al. 2003; Schegerer et al. 2006) are also plotted
in Fig. 8. The spectra obtained with TIMMI 2 can be used in the
following comparison. With respect to the TIMMI 2 data, the
shapes of the uncorrelated MIDI spectra are largely preserved
for GW Ori (deviation: 6%), RU Lup (9%), S CrA N (18%), and
S CrA S (25%) and differ only in absolute scale. However, the
shapes of the spectra of DR Tau, and of HBC 639 in particular,
differ significantly in a way that could be due to an intrinsically
temporal variation. We note that the TIMMI 2 spectra were ob-
tained ∼3 years before our MIDI observations. However, the dif-
ference could also be caused by a doubling of the spatial reso-
lution power using a 8.2 m-single-dish of MIDI in contrast to
the 3.6 m-telescope of TIMMI 2. Therefore, observations with a
single-dish of the VLTI allows us to observe exclusively more
central regions of the source, where more evolved grains are as-
sumed to exist. We should mention that a spatial resolution of
∼43 AU at a distance of ∼140 pc can theoretically be achieved
with a single-dish observation with the VLT. With respect to
the TIMMI 2 spectrum, the flattening of the MIDI spectrum of
HBC 639 could originate from an increase in the mass contribu-
tion of large silicate grains in the more central regions consider-
ing their specific absorption efficiency κ (Dorschner et al. 1995).
Our latter assumption is also confirmed by the correlated spec-
tra of the objects HD 72106 B and HBC 639 obtained with the
longest interferometric baseline. These spectra are flat and do
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Fig. 6. SED and MIR visibilities for the projected baselines of B = 56 m, and B = 70 m obtained from the observations and the model of S CrA N
(dark grey line/colored bars). A second model with β = 0.90, and h100 = 12 AU (light gray lines/colored bars) can even improve the reproduction
of the NIR fluxes.

Fig. 7. SED and MIR visibilities for a projected baseline of B = 72 m obtained from the measurements and our best model for S CrA S.

not show any silicate emission band. We refer to a study of Min
et al. (2006), where it was found that the silicate band disappears
if the averaged dust grain size exceeds ∼4 μm.

The origin of the evolved dust contributing to the TIMMI 2
spectra can be derived by considering the following compari-
son with the MIDI spectra. A black body B(ν, T ) that represents
the putative underlying continuum (Schegerer et al. 2006) and
is fitted to the extended wings of the emission features F(ν) of

TIMMI 2 as well as correlated and uncorrelated MIDI spectra, is
subtracted from N band. We derive normalized features using:

Fnorm(ν) = 1 +
(F(ν) − B(ν, T ))

B(ν, T )
· (4)

This normalization procedure preserves the shape of the emis-
sion feature (Przygodda et al. 2003). According to Schegerer
et al. (2006), the contributions of amorphous and crystalline dust
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Fig. 8. Uncorrelated and correlated N band spectra obtained from the objects that were observed with MIDI for this study (black lines). Correlated
spectra are designated by the additional information about the baseline length B (Table 2). Because of the remaining ozone band in several spectra
the wavelength interval from ∼9.3μm up to ∼9.9 μm is cut and underlaid with gray color. The gray lines represent data formerly obtained with
TIMMI 2 (Przygodda et al. 2003; Schegerer et al. 2006).
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Fig. 8. continued.

to the TIMMI 2 spectra are determined using a χ2 fitting routine,
where the absorption efficiencies κ of dust are linearly combined.
In the context of the latter findings, we additionally subtract
the contribution of small amorphous dust from the normalized
TIMMI 2 spectra and compare the resulting spectra with the nor-
malized uncorrelated and correlated MIDI spectra6. In Fig. 9,
we only compare the normalized TIMMI 2 spectra with both the
normalized uncorrelated and normalized correlated MIDI spec-
tra obtained with the longest effective baseline length. With re-
spect to our results, all sources can be divided into three classes:

i. The normalized TIMMI 2 spectra reproduce well the normal-
ized uncorrelated and normalized correlated MIDI spectra.
The evolved grains that contribute to the TIMMI 2 spectra
originate therefore in more central regions. Since the normal-
ized TIMMI 2 spectra similarly correspond to the normalized
uncorrelated and normalized correlated MIDI spectra, a fur-
ther evolution of dust in regions that MIDI is able to study,
cannot be determined. DR Tau and S CrA N belong to this
class.

ii. The normalized TIMMI 2 and MIDI spectra of HBC 639 dif-
fer at ∼10.8 μm, where the crystalline compound enstatite
generally shows a specific emission feature. If the remain-
ing feature at ∼10.8 μm in the normalized TIMMI 2 spec-
trum can be ascribed to enstatite, our comparison suggests
that enstatite has its origin in more outer disk regions. These
outer regions can already be resolved with a single-dish of
MIDI and do not appear in the MIDI spectra. S CrA S could
also be ascribed to this class by considering its correlated,

6 For simplicity, the modified TIMMI 2 spectra after normalization
and after subtraction of the contribution of small amorphous grains are
called normalized TIMMI 2 spectra.

normalized spectra. This result is based on the assumption
that the spectral resolution power of MIDI is high enough to
resolve the ∼10.8 μm feature of enstatite in the inner regions.

iii. An increasing flattening of the emission feature and an in-
creasing amplitude of the forsterite feature at 11.3 μm with
increasing baseline length B suggest grain evolution towards
more central regions (e.g., GW Ori). The comparison with
the corresponding normalized TIMMI 2 spectra shows, how-
ever, that the contribution of small amorphous dust grains,
emitting a triangular emission feature with the maximum at
9.8 μm, is still large even in the correlated spectrum that were
obtained with the longest baselines. GW Ori, RU Lup, and
S Cr A S belong to this class.

We note that all of these findings are based on the assumption
that the underlying continuum of the emission feature can be
represented by a single black body. This procedure is circum-
stantially discussed in Schegerer et al. (2006).

Considering a measurement error in the visibility of σ ≈ 0.1
as well as the low signal-to-noise ratio of ∼4 and the low spectral
resolution reached, we avoid fitting the uncorrelated and corre-
lated MIDI spectra using a linear combination of different-sized,
amorphous and crystalline silicate grains. The latter procedure
was presented by Schegerer et al. (2006) and Schegerer et al.
(2008). However, we conclude that the local silicate dust com-
position in the circumstellar disks around the T Tauri objects of
our sample depends on the radial disk location. Features of crys-
talline and large silicate grains indeed originate predominantly
in more central disk regions of several AUs in size. However,
the features of enstatite could originate in more outer regions,
and the spectral contribution of small, non-evolved dust grains
from the inner disk region could remain high.
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Fig. 9. Uncorrelated and correlated MIDI spectra after sub-
traction of a black body that represents the underlying con-
tinuum and is fitted to the extended wings of the emission
features (black lines). The gray curves represent TIMMI 2
data (Przygodda et al. 2003) after subtraction of a black
body and the spectral contribution of small amorphous dust
grains found in the preceeding study of Schegerer et al.
(2006). For clarity, we only show the results obtained for
the single-dish spectra and the correlated spectra that were
obtained for the longest effective baseline length. The verti-
cal lines designate features of enstatite (at 9.2 μm, 10.8 μm,
and 11.1 μm) and forsterite (at 11.3 μm).
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6. Summary

We have presented MIR visibilities of seven pre-main-sequence
stars observed with MIDI at the VLTI. We modeled the SEDs
and the spectrally resolved MIR visibilities of these YSOs, and
in particular T Tauri objects. The density distributions of the cir-
cumstellar disks were derived using the parametrized approach
of Shakura & Sunyaev (1973, Eq. (1)). The results of this study
are:

i. All objects could be spatially resolved with MIDI.
ii. We showed that the results of highly spatially resolved ob-

servations in the MIR range probing small-scale structures
in the range of several AUs, and the SED from the visual to
the millimeter wavelength range can simultaneously be re-
produced by a single model except for one source (see vi.).
We note that the SED does not generally provide any spa-
tial information. The number of models that simulate the
SED, solely, can be strongly reduced by the measurements
with MIDI. Furthermore, the results of previous investiga-
tions based on large-scale observations in the range of sev-
eral 10 AUs, were confirmed by our modeling results in most
cases. Any differences between the results of previous mea-
surements and our modeling approach (e.g., the accretion
rate of RU Lup) could be caused by a time-dependent varia-
bility.

iii. For five of seven objects, the modeling approach of a purely
passive disk is insufficient to reproduce the SED and the MIR
visibilities of the sources. The implementation of accretion
effects also significantly improves the simulation of the mea-
surements.

iv. For two objects in this study, i.e., HD 72106 B and HBC 639,
the approach of a passive disk without accretion is sufficient.
HD 72106 B is 10 million years old and its low accretion rate
and high mass contributions from crystalline and large dust
grains, have already been mentioned in previous investiga-
tions (Vieira et al. 2003; Schütz et al. 2005). In contrast,
HBC 639 is still a relatively young object (Gras-Velázquez &
Ray et al. 2005) but belongs to the class of weak-line T Tauri
stars.

v. For some targets (e.g., DR Tau, and S CrA N), the MIR data
do not constrain all model parameters. However, further
modeling constraints can be obtained from additional mea-
surements, e.g., NIR visibilities as shown for our model-
ing approach for DR Tau, where PTI data were additionally
taken into account.

vi. The modeling result for the source GW Ori illustrates the
need for an individual extension to our approach. According
to Mathieu et al. (1997), GW Ori has a stellar companion
at a (projected) distance of ∼1 AU. Therefore, in a second
model we considered a combination of a circumstellar and
circumbinary disk. The circumstellar and circumbinary disk
are determined by the same disk parameters β and h100 and
are seperated by a dust-free gap. However, a model that re-
produces all the measurements could not be found. We rec-
ommend acquiring additional high spatial resolution obser-
vations including phase measurements to clarify the complex
inner-disk structure of this object.

vii. Our measurements of RU Lup can be simulated equally with
an active disk model with or without a dust-free gap. A disk
model with a gap was formerly proposed by Takami et al.
(2001) based on spectro-astrometric observations.

viii. Each single component of the binary system S CrA could
be seperately observed with MIDI. Considering inner disk
regions on small scales that could be resolved with MIDI,

basic differences between this binary system and other ob-
jects in our sample without a companion could not be found.
Only the SEDs of the sources HD 72106 B, HBC 639, and
S CrA N that decline strongly at λ > 10 μm support the idea
that a stellar companion truncates the outer disk regions of
these sources.

ix. The relative mass contribution of evolved dust in the systems
of fainter T Tauri objects is higher in the inner disk regions
close to the central star than in the outer regions. However,
enstatite could already be enriched and stimulated in outer
disk regions and the spectral contribution from non-evolved
dust grains could still be high in the inner regions.
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Appendix A: Previous measurements:

DR Tau: The 2.5 million-year-old object DR Tau belongs to
the Taurus-Auriga star-forming region at a distance of ∼140 pc
(Siess et al. 1999). Numerous publications illustrate that DR Tau
is one of the most well-studied T Tauri objects. Strong veiling
has been found in the visual and NIR wavelength range: the flux
in V band, for instance, exceeds the intrinsic stellar flux by a
factor of five (Edwards et al. 1993). Apart from the excessive
flux in the visual, the profiles of several emission lines, such as
the Pfγ-line, points to material accreting onto the central star
while the profiles of further emission lines such as the He I line
(Kwan et al. 2007) and the Hα lines (Vink et al. 2005) are ev-
idence of outflowing stellar/disk winds. Based on a modeling
study, Edwards et al. (1993) determined an accretion rate of Ṁ =
7.9× 10−6 M� yr−1, while a mass of Ṁwind = 2.5× 10−9 M� yr−1

is lost by stellar/disk winds. A strongly collimated outflow was
also found by Kwan & Tademaru (1988). DR Tau is photometri-
cally and spectrally variable on short terms, i.e., in the range of
weeks (ΔV = 1.3 mag; Grankin et al. 2007; Eiroa et al. 2002;
Smith et al. 1999). This variability is also ascribed to the for-
mation and movement of stellar spots on this star (Ultchin et al.
1997).

GW Ori: GW Ori, also known as HD 244138, belongs to the
star-forming region B 30 in a ring-shaped molecular cloud close
to λ Ori. According to Dolan & Mathieu (2001), the ring shape
has its origin in a central supernova explosion 1 million years,
ago. As GW Ori is ∼1 million years old (Mathieu et al. 1991),
the supernova explosion could cause the formation of this ob-
ject. Considering a stellar luminosity of several tens of solar
luminosities (Mathieu et al. 1997; Calvet et al. 2004), GW Ori
is one of the most luminous YSOs with a spectral type of G0.
Using theoretical evolutionary tracks, a stellar mass of 2.5 M�
(Mathieu et al. 1991) and 3.7 M� (Calvet et al. 2004) could be
derived. GW Ori is a spectroscopic binary (Mathieu et al. 1991).
The companion with a mass of 0.5 M� up to 1 M� orbits the pri-
mary at a projected distance of ∼1 AU in 242 days. Mathieu et al.
(1997) used two different modeling approaches to reproduce the
SED of this system. In their first approach, the secondary cre-
ates a (gas and dust free) gap between 0.17 AU and 3.3 AU.
Their second modeling approach, where the circumbinary disk
was replaced by a spherical envelope, disagreed with subsequent
millimeter measurements at the James Clerk Maxwell Telescope
(Mathieu et al. 1995). A disk mass of 0.3 M� could be derived
using the latter set of millimeter measurements, where the ob-
ject could be spatially resolved. An outer radius of 500 AU and
an inclination angle of ϑ ≈ 27◦ were determined. Artymowicz
& Lubow (1994) showed that the disk gap of GW Ori proposed
by Mathieu et al. (1991) cannot be explained by a theoretical
modeling study of tidal forces. Calvet et al. (2004) measured an
accretion rate of Ṁ > 2.5 × 10−7 M� a−1, but the source does
not reveal any veiling in the visual. To stabilize a high accretion
rate for several 100 000 years, Gullbring et al. (2000) proposed
the existence of an additional massive envelope where an inner
cavity enables the observation of the inner disk edge. GW Ori
is only weakly variable (ΔV = 0.2 mag; Grankin et al. 2007).
Mathieu et al. (1991) pointed to a second companion with a pe-
riod of 1000 days that was found by the movement of the center
of gravity in the system.

HD 72106 B: The object HD 72106 is a visual binary (angu-
lar distance 0.78′′, PA = 199.8◦) in the Gum nebula at a dis-
tance of 288+490

−204 pc (Torres et al. 1995; Hartkopf et al. 1996;
Fabricius & Makarov 2000). The Hα-emission as well as the
infrared excess are ascribed to the visually fainter B-component

(ΔV = 0.8 mag), while the A component already belongs to the
main sequence (Vieira et al. 2003; Wade et al. 2005) and shows
a strong magnetic field that was found with spectropolarimetry
(Wade et al. 2005; Wade et al. 2007). The faint Hα emission line
as well as the broad 10 μm silicate emission band that can be
compared with the silicate band of the comets Hale-Bopp and
Halley point to the advanced evolutionary status of the B com-
ponent as a YSO (Vieira et al. 2003; Schütz et al. 2005). In par-
ticular, Schütz et al. (2005) found larger amounts of enstatite
(∼50%) that effectively contributes to the silicate band. This
large spectral contribution of enstatite has only been found for
the evolved Herbig Ae/Be objects, HD 100546 and HD 179218,
so far. Folsom (2007) intensively studied this binary system.

RU Lup: RU Lup is a classical T Tauri star in the star-forming
region Lupus. Visual and millimeter measurements showed that
the object does not have a (remaining) circumstellar envelope
(Giovannelli et al. 1995; Lommen et al. 2007). A secondary
could not be found with speckle interferometry down to a mini-
mal distance of 0.1′′ in the NIR range (Ghez et al. 1997) and with
the Hubble Space Telescope (Bernacca et al. 1998). Broad visual
emission lines as well as flux variations in the U and V band
are evidence of accreting material. Lamzin et al. (1996) deter-
mined a mass accretion rate of Ṁ = 3 × 10−7 M� yr−1. The stel-
lar magnetic field of the object has a strength of 3 kG (Stempels
et al. 2007). Absorption lines shifted to longer wavelengths re-
sults from an outflowing stellar wind (Herczeg et al. 2005).

HBC 639: HBC 639, also known as DoAr 24 E, belongs to the
star-forming region ρ Ophiuchi. It is a class II object (McCabe
et al. 2006) with an age of between 1 and 3 million years
(Gras-Velázquez & Ray 2005). Because the Hα line reveals an
equivalent width of ∼5 Å, HBC 639 is a weak-line T Tauri ob-
ject, where the circumstellar material has evolved more rapidly
than in classical T Tauri stars of similar age. However, the in-
frared excess points to a remaining circumstellar disk in the sys-
tem. The accretion rate inferred from the width of the Paβ and
Brγ lines is low: Ṁ = 6 × 10−9 M� yr−1 (Natta et al. 2006).
HBC 639 has an infrared companion at an angular distance of
2′′ (320 AU for 160 pc) and a position angle of PA = 150◦ mea-
sured from North to East (Reipurth & Zinnecker 1993). The
brightness of the secondary increases in the infrared and ex-
ceeds the brightness of the primary already in L band (Prato
et al. 2003). Chelli et al. (1988) assumed that the primary effec-
tively contributes only to the NIR and MIR flux of the system.
Polarimetric measurements in the K band showed that both com-
ponents have a circumstellar disk with almost identical position
angles (PA ≈ 12, 5◦; Jensen et al. 2004). The companion is a
class I object and active (Prato et al. 2003). Using the speckle-
interferometric technique in K band, Koresko (2002) found a
second companion close to the secondary. Both latter compan-
ions have a similar brightness in K band.

S CrA: The source S CrA belongs to the Southern Region of the
Corona Australis Complex (e.g., Chini et al. 2003). The source
was already defined as a T Tauri object by Joy et al. (1945)
who pointed to an infrared companion at a projected distance of
169 AU and at a position angle of PA = 149◦ (Joy & Biesbrock
1944; Reipurth & Zinnecker 1993). Highly spatially resolved ob-
servations in the NIR wavelength range showed that both objects
have an active circumstellar disk (Prato et al. 2003). The spec-
tral lines of both objects indicate that they have similar shapes
and depths. Both components are probably coeval (Takami et al.
2003). S CrA is a YY Ori object, i.e., the emission lines are
asymmetric and shifted to longer wavelengths. These lines arise
from material that accretes onto the central star. The measured
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Table A.1. Photometric flux measurements of DR Tau.

Wavelength [μm] Flux [Jy] Ref.
0.36 0.038 ± 0.021 1
0.44 0.050 ± 0.049 1
0.55 0.083 ± 0.060 1
0.64 0.13 ± 0.06 1
0.79 0.21 ± 0.01 1
1.25 0.45 ± 0.01 2
1.65 0.77 ± 0.04 2
2.20 1.13 ± 0.02 2
3.50 2.07 ± 0.82 1
3.60 1.86 ± 0.20 7
4.50 1.89 ± 0.15 7
4.80 2.41 ± 1.10 1
5.80 1.27 ± 0.01 3
8.00 1.77 ± 0.20 7
12.0 3.16 ± 0.25 4
25 4.30 ± 0.29 4
60 5.51 ± 0.54 4
100 6.98 ± 0.63 4
200 3.98 ± 0.84 5
450 2.38 ± 0.17 6
729 0.40 ± 0.08 8
850 0.53 ± 0.01 6
1300 0.16 ± 0.01 6

References – 1: Kenyon & Hartmann (1995); 2: 2 MASS cata-
logue (Cutri et al. 2003); 3: Hartmann et al. (2005); 4: Gezari cat-
alogue (1999); 5: ISO data archive; 6: Andrews & Williams (2005);
7: Robitaille et al. (2007); 8: Beckwith et al. (1990).

Table A.2. Photometric flux measurements of GW Ori. The value that
is marked with the symbol “↓” is an upper flux limit.

Wavelength [μm] Flux [Jy] Ref.
0.36 0.068 ± 0.014 1
0.44 0.21 ± 0.02 1
0.55 0.43 ± 0.02 1
0.70 0.61 ± 0.03 1
0.90 0.82 ± 0.05 1
1.25 1.31 ± 0.04 2
1.65 1.47 ± 0.04 2
2.20 1.47 ± 0.04 2
3.50 2.45 ± 0.09 3
4.80 2.7 ± 1.2 4
18 17 ± 3 5
25 20.5 ± 1.2 6
60 31.5 ± 4.1 6
100 35↓ 6
350 5.0 ± 0.6 7
450 3.5 ± 0.4 7
800 0.9 ± 0.1 7
850 1.0 ± 0.1 7
1100 0.29 ± 0.03 7
1360 0.26 ± 0.06 7

References – 1: Calvet et al. (2002); 2: 2 MASS catalogue (Cutri et al.
2003); 3: Rydgren & Vrba (1983); 4: Cohen & Schwartz (1975);
5: Cohen (1973); 6: IRAS catalogue (1985); 7: Mathieu et al. (1995).

spectral variability is another hint of non-continuous accretion
process. Prato & Simon (1997) showed that only an infalling
circumbinary envelope provides enough material for accretion
in the long-term.

Table A.3. Photometric flux measurements of HD 72106 B. The value
that is marked with the symbol “↓” is an upper limit.

Wavelength [μm] Flux [Jy] Ref.
0.36 0.80 1
0.44 1.67 1
0.55 1.45 1
0.79 1.32 1
0.90 0.89 1
1.23 0.61 3
1.25 0.67 ± 0.01 2
1.63 0.45 3
1.65 0.50 ± 0.02 2
2.19 0.41 3
2.20 0.43 ± 0.01 2
3.78 0.39 3
4.66 0.44 3
8.36 1.74 3
9.67 1.45 3
12.0 2.23 ± 0.13 3, 4
25 3.62 ± 0.21 3
60 1.88 ± 0.11 4
100 16.8↓ 4

References – 1: Torres et al. (1995); 2: 2 MASS catalogue (Cutri et al.
2003); 3: Gezari et al. (1999); 4: IRAS catalogue (1985).

Table A.4. Photometric flux measurements of RU Lup.

Wavelength [μm] Flux [Jy] Ref.
0.36 0.016 1
0.44 0.073 1
0.55 0.115 1
0.64 0.184 1
0.79 0.290 1
1.25 0.51 ± 0.01 2
1.25 0.72 ± 0.02 3
1.25 0.41 ± 0.01 3
1.65 0.76 ± 0.03 2
1.65 1.02 ± 0.03 3
1.65 0.62 ± 0.02 3
2.20 0.89 ± 0.02 2
2.20 1.29 ± 0.02 3
2.20 0.75 ± 0.03 3
3.50 1.16 4
3.50 1.77 ± 0.07 3
3.50 1.0 ± 0.10 3
4.80 1.5 4
4.80 1.5 ± 0.2 3
4.80 0.6 ± 0.3 3
15 2.22 5
20 2.80 5
25 4.64 4
60 4.68 4
100 5.70 4
1300 0.197 ± 0.007 6
1400 0.159 ± 0.010 7

References – 1: Gahm et al. (1993); 2: 2 MASS catalogue (Cutri et al.
2003); 3: Giovannelli et al. (1995); 4: Gezari catalogue (1999); 5: Gras-
Velázquez & Ray (2005); 6: Nürnberger et al. (1997); 7: Lommen et al.
(2007).
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Table A.5. Photometric flux measurement of HBC 639. The flux can be
ascribed to the main component up to wavelengths in L band.

Wavelength [μm] Flux [Jy] Ref.
0.36 0.0001 1
0.44 0.0008 1
0.55 0.0053 1
0.64 0.018 2
0.79 0.065 2
1.25 0.33 ± 0.10 3
1.65 0.77 ± 0.16 3
2.20 0.92 ± 0.09 3
3.50 0.75 ± 0.07 4
4.80 0.98 5
7.70 0.60 5
10.0 1.06 5
12.0 1.87 5
12.8 2.57 5
15.0 2.41 5
20.0 2.30 5
25 5.91 6
60 35 6
100 40 6
800 0.037 ± 0.008 7
1300 0.065 ± 0.019 8

References – 1: Bouvier & Appenzeller (1992); 2: Rydgren (1976);
3: Prato et al. (2003); 4: Mc Cabe et al. (2006); 5: Gras-Velazquez
& Ray (2005); 6: Gezari Catalogue (1999); 7: Jensen et al. (1996);
8: Nürnberger et al. (1997).

Table A.6. Photometric flux measurement of S CrA N and S CrA S. For
the photometric observations of wavelengths λ < 0.64 μm and λ >
12 μm, both components could not be spatially resolved.

S CrA N S CrA S
Wavelength [μm] Flux [Jy] Flux [Jy] Ref.
0.44 0.0089 1
0.55 0.13 2
0.64 0.09 1
1.25 0.57 ± 0.02 0.28 ± 0.02 3
1.65 1.02 ± 0.04 0.50 ± 0.03 3
2.22 2.44 ± 0.21 0.74 ± 0.09 4
3.50 3.99 ± 0.23 1.15 ± 0.03 4
8.80 2.90 ± 0.20 1.59 ± 0.17 4
10.6 3.19 ± 0.20 1.27 ± 0.06 4
12.0 3.97 5
12.0 4.88 ± 0.59 5
12.5 1.50 ± 0.10 5
25 9.21 ± 0.64 5
25 8.52 5
60 1.81 ± 0.16 5
60 2.7 ± 4.5 6
60 3.32 ± 3.1 6
90 2.87 ± 2.85 6
100 2.79 ± 0.75 5
170 8.29 ± 22.24 6
450 2.75 ± 0.38 7
800 0.77 ± 0.05 7
1100 0.36 ± 0.03 7

References – 1: Denis data base (2005); 2: Takami et al. (2003); 3: Prato
et al. (2003); 4: Mc Cabe et al. (2006); 5: IRAS catalogue (1985); 6: ISO
data archive; 7: Jensen et al.(1996).
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