
Abstract. The responsiveness or excitability of the
central nervous system (CNS) to external or internal
stimuli is systematically altered corresponding to tran-
sient changes of the EEG background activity, mainly in
the alpha range. We hypothesise that a transient alpha
power increase is due to an underlying increase in
synchronisation or coupling strength between various
neuronal elements or cortical networks. Consequently,
the `network' of the CNS may be more ordered
and, hence, less complex in the case of high spectral
density, and vice versa. The goals of the present paper
are (1) to prove the inverse covariation between spectral
density and correlation dimension for a set of human
EEG data, (2) to falsify the null hypothesis that the
observed relationship is a random one, and (3) to
propose a neuronal approach which may explain the
observed correlations. A sliding computation of the
spectral density and correlation dimension [Grassberger
P, Procaccia I (1983) Physica D 9:189±208] of mid-
occipital EEG recordings derived from eight awake
subjects with eyes closed was performed. The similarity
between the two time courses was quanti®ed by similar-
ity measures and descriptive correlation coe�cients. The
temporal pattern of dimensional complexity showed an
inverse relationship with simultaneously computed spec-
tral power changes most pronounced in the alpha range.
The group means of similarity measures and correlation
coe�cients were compared with the corresponding
means of a sample set established by 20 Gaussian
random signals. Statistically signi®cant di�erences were
obtained at the 0.1% level, rejecting the null hypothesis
that the observed relationship is a random one. The
results support the idea that the dynamics of the EEG
signals investigated re¯ect a chaotic deterministic pro-
cess with state transitions from `high-dimensional' to
`low-dimensional' non-linear dynamics, and vice versa.
Adequate neuronal models and approaches to interpret
the disclosed transients and the inverse covariation

between spectral density and dimensional complexity are
proposed, giving additional insight into the integrative
functioning of the CNS with respect to the strategy of
information processing.

1 Introduction

Since the ®rst numerical analysis of the electroenceph-
alogram (EEG) by Dietsch (1932), a number of proce-
dures for the quanti®cation of the EEG signal have been
developed. Besides the conventional methods in the time
or in the frequency domains, such as zero-crossing
techniques, interval amplitude analysis and spectral
analysis which are based on the linear system theory,
non-linear approaches modelling the underlying dynam-
ical system of the brain have been presented (Babloyantz
and Destexhe 1986a; Mayer-Kress and Holzfuss 1987;
Mayer-Kress and Layne 1987; RoÈ schke and Basar
1989). Extensive surveys were given by Basar (1990a),
and Pritchard and Duke (1992a). Most of the proce-
dures quantify the information content of the EEG
signal with respect to the distribution of amplitudes and
frequencies, dimensional complexity and topography of
the measured parameters. However, the temporal struc-
ture of long-term recordings is not quanti®ed optimally
when consecutive segments of the signal are analysed
separately. Thus, the introduction of the sliding analysis
with overlapping segments, previously applied to EEG
signals (Keidel et al. 1987a,b, 1990a; Tirsch et al. 1988),
has given insight into the temporal ®ne structure of long-
term EEG recordings, taking the non-stationarity of the
time series into account.

Figure 1 shows an example of an EEG recording with
a duration of 4 min which was used in the present paper.
When visually inspecting the temporal structure of the
EEG curve, only the well-known alpha spindles are evi-
dent, but no information about long-lasting ¯uctuations
of the signal's activity can be established. Underlying
systematic, oscillatory changes of the neuronal activity
in the 1-min range can be detected by appropriate
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computer-assisted procedures such as the previously
mentioned sliding analysis.

In various investigations (Keidel et al. 1987a,b,
1990a; Tirsch et al. 1988) which were based on spectral
parameters, we demonstrated that the bioelectrical ac-
tivity of the human brain as the output of the sponta-
neously active nervous `network' is not maintained at a
static level. Rather it shows an oscillating behaviour
with a well-ordered change of activity and synergy over
time. The described cyclic variations of the spontaneous
awake EEG at rest were not caused randomly; they were
related to changes of ®nger and muscle tremor as a
mechanical correlate of the motoneuronal activity
(Keidel et al. 1987b, 1989, 1990a; Mayer-Kress et al.
1988). The discerned period lengths of the oscillations in
spectral power and coherence were in the range 20±70 s.
These ®ndings were in line with the results of Koepchen
et al. (1980), Lips et al. (1988), and Galambos and
Makeig (1988).

From these results, we have concluded that the cen-
tral nervous system (CNS), with its responsiveness to
external and internal stimuli, periodically alters the level
of activity and degree of `synergy' (Haken 1977) between
di�erent parallel processing structures and systems
rather than maintaining a steady state. These conclu-
sions also agree with Basar's (1983b) concept of con-
tinuously spontaneous changing states of the brain.
Thus, we assume that a power increase in the main
frequency range may be due to an increase in syn-
chronisation or coupling strength between various neu-
ronal elements within cortical networks generating the
derived signals, and vice versa. This assumption is in line
with the concept of synchronising oscillations at the
cellular and neuronal network level from Lopes da Silva
(1991) and the model of synchronisation and desych-
ronisation of coupled self-oscillatory networks from
Basar (1983a). Consequently, the `network' of the CNS
may be more ordered and, hence, less complex in the
case of high spectral density, and vice versa.

In recent years, methods of non-linear, dynamical
system theory have been developed to estimate the
complexity of EEG time series. The commonly used
concept was to measure the dimension of the attractor in
the phase space of the underlying dynamical system

which provides the widely used measure of the correla-
tion dimension D2 (Grassberger and Procaccia 1983).
Following the reports of Farmer et al. (1983), the mea-
sure of dimensionality denotes the minimum number of
essential variables needed to model the dynamics of a
general dynamical system. Especially for a dynamical
system, such as the brain, Mayer-Kress and Layne
(1987), and Mayer-Kress et al. (1988) suggested that the
dimensionality is related to the number of active co-
herent modes modulating the underlying process. An
increase of dimensionality could correspond to an in-
crease in the number of independent or incoherent os-
cillating subsystems or modes. Related to linear systems,
this number may correspond to the number of inde-
pendent frequencies in the power spectrum of the EEG
signal which implies that, for example, a sharp peak and
a fairly broad peak are correlated with a low and a high
dimensionality, respectively.

Taking into consideration the temporal pattern of the
dynamics of the ongoing spontaneous EEG activity, we
hypothesise an inverse relationship between the cyclic
dynamics of spectral density and correlation dimension
during long-term analysis of EEG recordings, i.e. an
increase of the spectral density may involve a decrease of
the correlation dimension, and vice versa. The concept
of the sliding calculation of the correlation dimension
applied here is supported by the reports of Havstad and
Ehlers (1989). Following the ideas presented by Keidel
et al. (1987b), they suggested that for non-stationary
dynamical systems small successive but overlapping data
segments in which the system is approximately station-
ary should be preferred. They demonstrated the ability
of such data sets to follow ¯uctuations in dimension
with su�cient accuracy which enables studies of di-
mension as a function of time in non-stationary dy-
namical systems.

The goals of the present paper are (1) to prove the
postulated covariation between spectral density and
correlation dimension by means of real EEG data, (2)
to falsify the null hypothesis that the observed rela-
tionship is a random one by means of pseudo-random
signals and statistical test procedures, and (3) to pro-
pose a neuronal approach which may explain the ob-
served correlations.

Fig. 1. 4-min record of EEG
activity derived from the mid-
occipital region (Oz) of subject
101
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2 Materials and data acquisition

Eight healthy young volunteers (mean age: 23.5 � 2.5
years) were examined. The data acquisition was per-
formed in a reduced sound and electrically shielded
room. The subjects were in a waking state and in a
supine position with eyes closed. Unipolar scalp-EEG
recordings were obtained from left and right motor
cortices (C3/C4), from mid-frontal (Fz) and mid-occip-
ital regions (Oz) corresponding to the 10/20 system and
referred to linked earlobes. Only the occipital deriva-
tions were investigated in the present study. Signals were
recorded for 4 min continuously and A/D converted
using a sampling rate of 500 Hz. To suppress artefacts,
the data were submitted to a band-pass ®lter with a
frequency range of 1±40 Hz using a Butterworth ®lter of
tenth order in a parallel con®guration. Phase shifts were
eliminated by forward and backward ®ltering.

3 Methods

3.1 Spectral analysis

As a classical method, spectral analysis was applied to
EEG periods which were taken from the 4-min recording
and divided into segments of 2.56 s, overlapping each
other by 1.28 s. After elimination of linear trends and
tapering, each segment was submitted to fast Fourier
transform, resulting in spectral power values with a
frequency resolution of 0.391 Hz. In order to increase
the number of degrees of freedom, the segmental spectra
were averaged within one period according to the
segmentation procedure of Welch (1967). For data
reduction, the mean of power values within the alpha
range of 7.4±12.5 Hz was calculated. This is due to the
fact that we have observed striking changes of amplitude
in the alpha range of the ongoing EEG activity.

3.2 Non-linear dynamical analysis

3.2.1 Geometrical reconstruction of ``strange attractors''
In contrast to the preceding analysis, which describes the
spectral properties of the signal and which is based on
the superposition of harmonic and linear periodic
oscillators, procedures and measures were introduced
characterising the local structure of the post-transient
phase-space orbits, i.e. the so-called strange attractors.
With respect to the brain dynamics, `these attractors do
not directly provide an adequate model, rather they may
be interpreted as the result of self-organizing processes
within the brain which produce coordinated states or
pattern activity' (Gregson et al. 1990).

The dynamical approach of non-linear modelling
described here is to interpret the measured single scalar
time series from one electrode position on the scalp as
the one-dimensional projection of a multi-dimensional
phase-space trajectory of an underlying non-linear
dynamical system, which is as yet unknown. Based on a
geometrical view of the underlying process and follow-

ing the delay scheme of Packardt et al. (1980), a tech-
nique was used which reconstructs the phase-space
trajectory by `embedding' the time series into a higher-
dimensional space. This technique, by which time signals
can be interpreted as multi-dimensional geometrical
objects and reconstructed as phase-space vectors, is a
basic tool for the characterisation of a dynamical system
such as the human brain.

Let the variable y(ti) with i=1,...,N sample points
represent the time series of the EEG signal derived from
one lead on the scalp. The general form of the
reconstructed phase-space vector of the `embedding'
dimension d at time ti is given by:

~yi � fy�ti�; y�ti � s�; y�ti � 2s�; . . . ; y�ti � �d ÿ 1�s�g :

Following this formula, the instantaneous state of the
system is represented by a point in the multi-dimensional
phase space. With increasing discrete time index from 1
up to N, the consecutive data points describe a
geometrical object on which the trajectories of the
system move. The reconstructed trajectories may ®ll out
the entire phase space or converge to a limited subset,
i.e. the attractor derived from the time series.

For the reconstruction of an attractor in a pseudo-
state subspace with the `embedding' dimension d, the
following assumptions are made: (1) the pseudo-state
subspace is a su�cient reconstruction of the original
state space, as long as d >2D+1 (where D is the true
fractal dimension of the attractor), following de®nite
embedding theorems (Whitney 1936; ManÄ eÂ 1981;
Takens 1981). Then, the reconstructed attractor is dif-
feomorphic to the original attractor; both have the
same metric properties; (2) as long as d >D (Eckmann
and Ruelle 1985), the dimensions of the reconstructed
and the original attractors will be nearly the same; and
(3) the dynamics of the signal may be described by a set
of d variables which are derived from the time series by
introducing a time lag s (Packardt et al. 1980).

The reconstructed trajectories can be plotted as phase
portraits in di�erent projections. Their shape corre-
sponds to the dynamics of the system and depends
markedly on the time lag s. Various values of s are
possible in practical applications. In order to ®nd the
suitable time delay, the mutual information content of
the time series is taken into account.

3.2.2 Mutual information content
To estimate time delays in non-linear systems, several
procedures have been proposed. In addition to ap-
proaches using autocorrelation functions, the procedure
of mutual information content has been widely applied.
This measure describes the relation between input and
output of non-linear systems, providing the amount of
information about a random vector coupled with
another vector. Based on Shannon's information theory
(Shannon and Weaver 1948) and on Shaw's idea (1985)
to predict a time series vector at time t � s if the
measurement at time t is known, a procedure was
developed which computes the average amount of
mutual information (Mars and Arragon 1982; Fraser
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and Swinney 1986). This is a measure for the redundan-
cy of a vector measurement at time t � s, which is
generally expressed in bits when the used logarithm for
calculation is taken to the base of two.

With respect to higher-dimensional attractor recon-
structions, the available two-dimensional formulations
were improved and extended taking four-dimensional
time-delayed vectors into account and using a subspace
of the embedding-dimensional phase space. Our inves-
tigations with EEG data had revealed that a dimension
of four is su�cient related to the embedding dimension
used and that this procedure provides a signi®cantly
higher resolution of information about the statistical
dependencies within the time series investigated. In the
four-dimensional discrete case, the stochastic variables
X, Y, Z, and V with the ®nite sets of realisations {xi},
{yj}, {zk}, and {vl}, i, j, k, l = 1,...,M, respectively, are
considered. The elements xi, yj, zk, and vl are derived
from the corresponding time series: x�t�; x�t � s�;
x�t � 2s�, and x�t � 3s�. Then, the average amount of
mutual information is given by:

I �
XM

i;j;k;l�1
Pxyzv xi; yj; zk ; vl

ÿ � � ln Pxyzv�xi; yj; zk ; vl�
Px�xi� � Py�yj� � Pz�zk� � Pv�vl� ;

in which

Px(xi) probability of occurrence of {xi} derived from the
time series vector x(t),

Py�yj� probability of occurrence of {yj} derived from the
time series vector x(t � s),

Pz(zk) probability of occurrence of {zk} derived from
the time series vector x�t � 2s�,

Pv�vl� probability of occurrence of {vl} derived from the
time series vector x�t � 3s�,

Pxyzv joint probability of occurrence of (xi, yj, zk, vl),
M number of cells.

This method enables the optimal time delay to be
determined for constructing an `attractor' from a limited
time-series. This value is based on the criterion that the
mutual information content reaches the ®rst signi®cant
minimum in the graph of I versus s; in this case the
phase-space coordinates are approximately uncorrelated
and independent. Compared to the decorrelation time
derived from the autocorrelation function, the latter
time delay is larger (Fraser and Swinney 1986).

3.2.2 Dimensional analysis
The basic idea for the characterisation of chaotic
dynamical systems is to calculate the dimension of their
attractors measuring their self-similar structure. Initial
reports on this subject were published by Farmer et al.
(1983). This measure has been widely used in the ®eld of
non-linear dynamical analysis to estimate the number of
independent variables needed to model the dynamical
process and to discriminate between a deterministic and
a random activity. The dimensionality is also a measure
of the complexity related to the number of independent
oscillators of modes modulating the process (Eckmann
and Ruelle 1985) and the number of active degrees of

freedom of the system, which is re¯ected by its entropy
(Theiler 1990). According to the entropy concept of
Basar (1983a), the entropy is also a measure of the order
of the system, i.e. an increased order involves a lower
entropy, and vice versa. Thus, it can be deduced that the
order of the system is associated with its dimensional
complexity. To compute the dimensionality of an
attractor, the procedure introduced by Grassberger
and Procaccia (1983) usually has been applied, utilising
the scaling structure of the attractor. It can be quanti®ed
by measuring the spatial correlation between pairs of
randomly chosen points (yi, yj) on the attractor. This
requires the introduction of an additional concept: the
correlation integral providing a measure for the prob-
ability of pairs of phase-space vectors to be separated by
a distance less or equal to a prior de®ned value.

The discrete form of such an integral is given as:

C�r� � 2

N 2 ÿ N

Xn
i�1

XN

j�i�W

H�r ÿ j~yi ÿ~yjj� ;

in which N denotes the number of sample points.
H denotes the Heaviside function which is de®ned as:
H�x� � 0 for x � 0 and H�x� � 1 for x > 0, r denotes a
de®ned distance, yi the phase-space vector and W > 1
the correction variable introduced by Theiler (1986). For
W � 1, a standard calculation of the correlation integral
is performed.

For a su�ciently large number N of data points and
for small distances r, this function has the following
scaling property which is due to the exponential diver-
gence of trajectories:

C�r� � r D2 or log�C�r�� � D2 log�r� � c

in which the exponent D2 is the correlation dimension.
It has been shown that the correlation exponent is a

useful measure of the local structure of a strange at-
tractor (Grassberger and Procaccia 1983). Considering
the latter relation with its power law, the exponent
D2 can consequently be obtained as the slope of the
straight line ®guring the logarithmic plot of C versus r.
However, dealing with physiological data sets from liv-
ing systems, this ideal function may not be apparent and
graphs in which di�erent regions are nearly linear are
usually evident (Gregson et al. 1990). Moreover,
Eckmann and Ruelle (1985), Theiler (1986), Pritchard
and Duke (1992a) and Jeong et al. (1998) pointed out
the occurrence of distortions or `knees' in the correlation
integral due to the e�ect of autocorrelations and noise
contamination within the time series. Applied to the
EEG data investigated here, Theiler's correction was
successful only for W=2, but led to an unnecessarily
overestimated value of the correlation dimension.

3.2.3 Localisation of the optimal ®tting centre
The problem now is to determine the most linear scaling
region which is essential for the condition that the
reconstructed attractor is self-similar and fractal. For
this purpose, a procedure was developed which auto-
matically localises the corresponding optimal ®tting
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centre within the graph of the correlation integral (see
Fig. 2). For the localisation of the ®tting centre,
consecutive sections in the curve with equal length (in
our case 12% of the total length of the curve) are
considered. Thus, walking along the graph, the starting
point of the sections is shifted by increments of one.
Each section corresponds to a window with di�erent
increment length in which a regression line based on
perpendicular distances is ®tted to the curve. From the
resulting sequence of residual variances, the ®rst,
second, and third minima are determined, the incre-
ments of which represent the ®rst, second, and third
best-®tting centres, respectively.

Through the ®rst ®tting centre, which is generally the
optimal one, several regression lines with variable
lengths are ®tted; the slope of the regression line with
minimum residual variance is denoted as the correlation
dimension D2. Application to EEG data revealed that
this algorithm is rather robust against the distortions
described above and that only very rarely the values
from the second ®t, but never from the third ®t must
be used. Compared to hitherto existing ®tting proce-
dures, the approach adopted involves a substantial
improvement.

3.2.4 Saturation and limitations
The procedure is performed stepwise by considering
successively higher values of the embedding dimension.
For a su�ciently large value, the dimension of the
attractor will be obtained as the saturation value of this
procedure. This is guaranteed even if model attractors
are considered. However, for a physiological time series
such as the EEG, the slope values of the dimension do

not saturate in all cases, which is due to ®nite length of
time series and superimposed noise. This problem was
especially pointed out by Mayer-Kress and Layne
(1987), Pritchard and Duke (1992a), and Ding et al.
(1993). Since the correlation dimension was automati-
cally determined for a large number of EEG epochs, no
attention was paid to saturation and, subsequently, no
epoch was discarded.

With respect to the theorem of Takens (1981), the
embedding dimension should be greater than j2D2 � 1j,
where D2 is the true correlation dimension of the at-
tractor. Following the theoretical considerations of
Eckmann and Ruelle (1990), D2 is limited by:

D2max � 2 log10 N
log10�1=p� with p � rmin

D2
;

in which N denotes the number of sample points, rmin

the minimum distance, and D the diameter of the
reconstructed attractor. Using N � 5000 data points and
p � 0:1, the upper limit of D2 is 7.4 for the present study,
resulting in a minimum embedding dimension of 16,
which was used for further analysis.

3.3 Sliding analysis

In contrast to conventional analysis techniques consist-
ing of the consecutive evaluation of de®ned periods, we
used the sliding technique. This technique provides the
detection of systematic, oscillatory changes in the
signal's activity more clearly. A sliding shifting of a
de®ned period is performed like a `running' analysis
window over the whole record length using a time shift
Dt. Following the results of the sliding spectral analysis
applied to human neurobiological signals (Tirsch et al.
1988) and of the sliding dimensional analysis applied to
EEG signals (Keidel et al. 1990b), the period length was
selected for 10 s and time shift for 1 s in the present
study. These values had revealed the best results in
disclosing temporal patterns from the signals. Using an
EEG recording of 4 min, this procedure produces time
series of 230 values for spectral power and correlation
dimension. With respect to the computation of the
mutual information content, a sliding analysis was also
performed, providing time delays for each period
separately.

3.4 Similarity between the shapes of two time series

When processing biosignals, in many cases there arises
the question whether or not, or to what extent, the shapes
of two time series are similar. One method for solving this
problem is to calculate the correlation coe�cient r
between the two time series, which should be considered
as a descriptive measure. Another method represents a
more empirical approach which quanti®es the similarity
between the two time series following their cyclic
alterations. Local similarity coe�cients ranging between

Fig. 2. Sliding ®tting of various regression lines with di�erent lengths
through the graph of the correlation integral. The points A, B, C, ...
denote the coordinates of n function values according to the
equidistant abscissa values a, b, c, ... with index 1±n. The distances
A-A¢, B-B¢, .... denote equal curve sections on the graph (determined
by length measuring) with a de®ned length. By means of this
procedure a sequence of ®tting windows {aa¢}, {bb¢}, ... with the ®tting
centres (a¢-a)/2, (b¢-b)/2, ... and variable increment length depending
on the steepness of the graph is revealed. For each window,
a regression line is ®tted through the number of comprising data
points. The point (*) represent the best ®tting centre for window {ee¢}
based on the minimum residual variance of the regression
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)1 and +1 can be derived as the normalised quotient of
the slopes of the two regression lines ®tted in steps of one
increment along the two curves which is denoted as:

q � Minfjb1j; jb2jg
Maxfjb1j; jb2jg ;

in which b1 and b2 are the slopes of the two regression
lines.

The global similarity coe�cient is then de®ned as the
measure:

g � n� ÿ nÿ
n� � nÿ

;

in which n+ and n) are the numbers of positive and
negative local similarity coe�cients, respectively, using a
cut-o� level of 0±1.

A further possibility to investigate the similarity be-
tween two time courses is to apply a spectral analysis to
the time series and to compare, for example, the corre-
sponding peak frequencies and period lengths in the
power spectrum. An alternative method, looking for the
endogenous auto-rhythm within the time series, was also
used. The principle of this procedure is to approximate
the given time series by a sinusoid function with de®ned
period T. Amplitude and phase were calculated by
means of a least-square ®tting ± a technique which was
taken from the so-called cosinor procedure of Halberg
et al. (1967). Then, various sine functions with stepwise
increasing period lengths ranging over 5±90 s were ®tted
in the search for an optimal ®t. This was obtained by
taking into account the minimum residual variance, i.e.
the mean quadratic deviation between the time series

and the resulting ®tted sine wave. The resulting optimal
period lengths derived from the two time series were also
compared with each other. In contrast to spectral anal-
ysis, in the case of relatively small data sets with only 230
points, the frequency resolution of this method is con-
siderably higher. This is advantageous for further anal-
ysis in which solely period lengths were processed.

4 Results

4.1 Similarity between the shapes of the time series
of spectral density and complexity

4.1.1 EEG data
Firstly, the sliding spectral analysis was applied to each
of the 4-min EEG epochs derived from eight subjects.
For each frequency step, the resulting time courses of
230 spectral densities were smoothed by an autoregres-
sive low-pass ®lter and drawn as chronospectrograms. In
Fig. 3, an example of such a chronospectrogram for
subject 101 is illustrated. The dominant power in the
alpha range and the pronounced rhythmic variations in
power densities with periods of about 30±40 s are clearly
evident.

Furthermore, the sliding dimensional analysis was
applied to the same EEG data set. In the upper graph of
Fig. 4, the smoothed time courses of 230 sliding com-
putations of the correlation dimension for the same
4-min epoch as above are shown. The embedding di-
mension increases from 11 up to 20. The numeric range
of the correlation dimension is comparable with speci®c
®ndings in the literature (Babloyantz and Destexhe

Fig. 3. Pseudo-three-dimensional chronospectrogram of sliding spectral density derived from the 4-min EEG epoch (Oz) of subject 101. The
spectral frequency with a resolution of 0.391 Hz is marked on the abscissa. The time in seconds and the number of shifts (Dt � 1 s) are drawn on
the z-axis
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1986a; Dvorak and Siska 1986; Basar et al. 1989b;
Pritchard and Duke 1992b; Pritchard and Duke 1997).
In contrast to consecutive analyses, the rhythmic varia-
tion of dimensional complexity becomes evident just by
the sliding analysis.

The time course of the spectral density in the total
frequency band of 1±40 Hz derived from the same
EEG data is shown below. Comparing the cyclic
structure of the two graphs, an inverse covariation
between spectral density and complexity is evident.
This correlation is demonstrated more clearly in
Fig. 5. For this purpose, the time courses of the
complexity according to the embedding dimension of
16 and of the spectral density were normalised be-
tween ±1 and +1 and superimposed (Fig. 5, upper
graph). For clear evidence of the inverse covariation

between the two graphs, the time series of the spec-
tral density was inverted.

The inverted spectral density, represented by the
dotted line, clearly follows the cyclic alterations of the
complexity. The similarity of the two graphs was quan-
ti®ed by a simple procedure described previously result-
ing in 79 positive and 24 negative similarity coe�cients
with a cut-o� level of �0.5 and a similarity measure of
g=0.53 (Fig. 5, lower graph). The great majority of
positive similarities and the high correlation coe�cient of
r=0.84 indicate a high degree of congruence between the
two graphs, and a high negative correlation between the
dimensional complexity and non-inverted spectral den-
sity of the signal. This ®nding is due to the improved
spectral properties of the EEG signal, resulting in a
pronounced cyclic activity with sharp peaks in the alpha

Fig. 4. Synopsis of sliding dimen-
sional analysis and spectral analysis
derived from the same EEG epoch
as shown in Fig. 1. Upper graph
Smoothed time courses of dimen-
sional complexity over 230 windows
using time delays of 24±40 ms.
Embedding dimension ranging over
11±20. The length of analysis win-
dow is 10 s (5000 data points) which
is shifted by 1 s. Lower graph Time
series of spectral amplitude (as the
square root of spectral density) in
the alpha frequency band at 7.4±
12.5 Hz. Note the reciprocal behav-
iour of the two graphs indicating
that an increase of correlation di-
mension involves a decrease of
spectral density, and vice versa
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band as shown in the chronospectrogram of Fig. 3. The
covariation between the time series of complexity and
spectral density was also investigated for the remaining
seven cases, resulting in di�erent similarity measures with
�g � ÿ0:33� 0:20 and correlation coe�cients with
�r � ÿ0:50� 0:28 (see Table 1).

4.1.2 Random data
With respect to a statistical substantiation of the
observed inverse covariation between the spectral den-
sity and correlation dimension in the sense that this
relationship is not a random one, the following null
hypothesis (which is based on a rather heuristic ap-
proach) was formulated: ``the observed covariation is
not EEG-speci®c and can also be generated by a random
process''.

For this purpose, a sample set of 20 random signals of
4-minutes duration taken from a normal Gaussian dis-
tribution was generated by means of a standard pseudo-
random number generator with a mean equal zero and a
de®ned standard deviation using di�erent starting
points. In Fig. 6, an example of such a random signal is
given. In analogy to the investigated EEG signals, the
random data were ®ltered by the same band-pass ®lter.

In Table 1, the similarity measures g and correlation
coe�cients r between the two graphs of spectral density

and correlation dimension calculated for the ensemble of
20 random signals are summarised. The resulting dis-
tribution with a mean value of about zero approximately
follows a normal Gaussian distribution which was con-
®rmed by an adequate statistical test (Kolmogoro�-
Smirnow). The mean values of g ()0.05 � 0.15) and r
()0.07 � 0.14) were compared with the corresponding
means ()0.33 � 0.20 and )0.50 � 0.28) of the data set
established by eight EEG signals. The equality of the
means was tested by two-sided t-tests, resulting in sig-
ni®cances P < 0.001, i.e. the null hypothesis that the
means of g and r of the EEG sample set are identical
with the corresponding means of the random sample set
was rejected. This implies that the observed EEG co-
variation between the spectral density and correlation
dimension is not a random one.

In addition, the g and r values of each EEG data set
were tested to determine whether they are not random
but rather EEG-speci®c by means of two-sided z-tests.
For this purpose, a measure of signi®cance was calcu-
lated as the di�erence between a value derived from the
EEG data of one subject and the mean value derived
from the random data divided by the standard deviation
s of the random distribution. This signi®cance measure
is dimensionless and expressed in units of s. In most of
the cases the signi®cances for g and r were beyond the

Fig. 5. Relationship between sliding
dimensional and spectral analysis
derived from the same EEG epoch
as in Fig. 1. Upper graph Normal-
ised time series of dimensional com-
plexity (embedding dimension = 16)
and spectral density in the alpha
frequency band at 7.4 ±12.5 Hz
(dashed line). For better evidence of
the relationship, the time series of
spectral density is inverted. Lower
graph Time series of 79 positive and
24 negative coe�cients describing
the similarity between the two
graphs at each increment. The high
degree of congruence between the
shapes of the two time series is
expressed by the great majority of
positive similarities and the high
correlation coe�cient (r=0.84)
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Fig. 6. Example of a Gaussian pseudo-random signal with a duration of 4 min. The random signal was smoothed by the same band-pass ®lter as
used for the EEG data (1±40 Hz)

Table 1. Similarity measures g and correlation coe�cients r derived from the time series of complexity (embedding dimension = 16) and
spectral density in the alpha band. Comparison between the results derived from 8 EEG signals and 20 pseudo-random signals taken from a
normal Gaussian distribution. The di�erences of means were tested by two-sided t-tests resulting in signi®cances of P < 0.001. The
signi®cances Pg and Pr indicate the error probability when rejecting the null hypothesis that one EEG result originate from the approxi-
mately normal distribution of the pseudo-random sample (two sided z-test)

Case EEG signal Pseudo-random signal
(normal Gaussian distribution)

ID g Pg r Pr g r

1 101 )0.53 < 0.01 )0.84 < 0.001 )0.18 )0.45
2 201 )0.19 n.s. )0.11 n.s. )0.15 )0.04
3 301 )0.59 < 0.001 )0.65 < 0.001 )0.10 )0.13
4 401 0.03 n.s. )0.19 n.s. )0.19 )0.02
5 501 )0.31 n.s. )0.71 < 0.001 )0.09 )0.06
6 601 )0.35 < 0.05 )0.60 < 0.001 )0.09 0.01
7 701 )0.22 n.s. )0.22 n.s. )0.24 )0.05
8 801 )0.46 < 0.01 )0.68 < 0.001 )0.04 0.15
9 )0.15 )0.15
10 0.11 0.13
11 0.16 )0.25
12 )0.03 0.01
13 )0.19 )0.26
14 )0.03 )0.07
15 0.19 )0.18
16 )0.18 0.01
17 )0.01 0.13
18 0.13 0.03
19 0.02 )0.07
20 )0.39 )0.05

Mean )0.33 )0.50 )0.05 )0.07
Std. dev 0.20 0.28 0.15 0.14
P-value <0.001 <0.01
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5% level coming down to 0.1% and rejecting the null
hypothesis that the EEG results are random, i.e. they
originate from the normal distribution of the pseudo-
random sample set. It is pointed out that the signi®-
cances based on the correlation coe�cients are much
better than those based on similarity measures. Never-
theless, the correlations should be considered descrip-
tive.

Furthermore, it is stressed that the statistical com-
parison of the EEG data with Gaussian random data, as
described in the above procedure, does not present any
test of the dynamical model underlying the EEG signals.

4.2 Similarity between the cyclic alterations of the
time series of the spectral density and complexity

The observed closed relationship between the two time
series can also be con®rmed by the application of the
previously described sine-wave-®tting technique (Sect.
3.4) that considers the temporal order of systematic
changes in complexity and spectral density. In Fig. 7(left
part), the time series of dimensional complexity (derived
from the EEG of subject 101) according to an embed-
ding dimension of 16 is plotted together with the optimal
sine waves corresponding to the ®ts of the ®rst to third
order; in the same way, the time series of spectral density
is presented (see Fig. 7, right part). Comparing the
results of sine wave ®tting derived from the two methods
of analysis, the period lengths of either the ®rst or
second ®t are identical, indicating both a 41-s periodicity
and an identical temporal order of the two time series.

To determine whether the observed conformity in
temporal order is also valid for the EEG data from other
subjects, the sine-wave-®tting technique as well as the
spectral analysis were applied to the two time series de-
rived from seven subjects corresponding to the same mid-
occipital lead as in the previous case. The period duration
according to spectral analysis was calculated as the re-
ciprocal value of the main peak frequency in the
smoothed power spectrum. Figure 8 shows an example
for such a spectrum derived from subject 101. In Table 2,
the period lengths corresponding to the time courses of
complexity and spectral density are summarised for the
eight subjects. A matched pairs t-test was applied to the
sample sets of period lengths derived from the sine wave
®ts and the power spectra. The high P values (P1) indi-
cate that there are no signi®cant di�erences between the
two period lengths and suggest that an equivalence test
should be applied. The corresponding alternative hy-
pothesis is that the di�erence of the means is outside a
given interval. In the case of sine-wave-®tting data, the
revealed P value (P2) suggests that the alternative hy-
pothesis (on the 5% level) that the means di�er more
than �15% should be rejected. In contrast, for the pe-
riod lengths derived from power spectra, the alternative
hypothesis is supported due to the lower temporal reso-
lution of the power spectral procedure.

5 Discussion

The approach of sliding spectral and dimensional
analysis revealed a systematic relationship between

Fig. 7. Results of sine wave ®tting technique. Left part upper graph Time series of complexity (d=16) derived from the same EEG recording as in
Fig. 1. Lower graph Optimal ®ts of sine waves of ®rst (T=41 s, solid line), second (T=33 s, dashed line), and third order (T=24 s, dashed line).
Right part upper graph Time series of spectral density in the alpha band. Lower graph Optimal ®ts of ®rst (T=25 s, solid line) and second order
(T=41 s, dashed line). Note that the period lengths derived from complexity are nearly identical with those from the spectral density
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rhythmic variations in the spectral density and correla-
tion dimension for long-term EEG recordings exhibiting
that the CNS is not maintained at a static level but
operates in a dynamic oscillatory mode. The temporal
pattern of dimensional complexity was found to display
an inverse covariation with simultaneously computed
spectral power changes most pronounced in the alpha
activity of the occipital lead. The results are in line with
other reports describing similar phenomena. RoÈ schke
and Basar (1989) studied the dynamics of human brain
activity in di�erent states and considered the power
spectra to be a feature with complementary properties to
the correlation dimension. In addition, based on the
evaluation of consecutive EEG epochs from sleep data,
RoÈ schke and Aldenho� (1991) concluded that the
correlation dimension provides an additional tool with
results being comparable to those obtained by spectral
analysis. Pritchard and Duke (1992b) found a similar
but not identical pattern of e�ects between the results of

spectral analysis and dimensional analysis within a
multi-subject, factorial study investigating selected no-
task human EEG epochs. Across the entire data set, he
observed a high negative correlation between alpha
power and the correlation dimension expressed in a
correlation coe�cient of r=)0.622. A step further, in
our novel approach, we investigated the temporal
pattern of covariation between the spectral density and
dimensional complexity in the EEG dynamics of indi-
vidual subjects, mainly in the alpha range. Using a
special software developed by our group, we found a
temporal ordered cyclic non-stationarity of alpha power
and related complexity with periods of approximately
50 s during the resting (no-task) EEG state. Comparable
results have not been described before, because appro-
priate algorithms as well as powerful computer systems
have not been available. During these cycles, the
relationship between power and complexity was main-
tained at a stable level showing high correlations.

Table 2. Comparison of period lengths calculated by sine-wave-®tting technique and spectral analysis applied to the time series of
complexity with embedding dimension = 16 (T1) and alpha power (T2) derived from eight EEG signals. P1 represents the P-value
calculated by a matched pairs t-test between the period lengths derived from the two time series. The high value indicate that there are no
signi®cant di�erences. P2 represents the P-value calculated by an equivalence-test rejecting the alternative hypothesis that the means di�er
more than 15%

Case Sine wave ®tting Power spectrum

T1 (sec) T2 (sec) DT T1 (sec) T2 (sec) DT

101 41 41 0 38 38 0
201 65 38 27 57 38 19
301 33 34 )1 32 32 0
401 46 51 )5 46 46 0
501 78 80 )2 76 76 0
601 25 22 3 46 23 +23
701 33 46 )13 38 46 )8
801 72 76 )4 76 76 0

Mean 49.13 48.50 0.62 51.12 46.87 4.25
Std. dev 19.95 20.14 11.64 17.04 19.44 10.75

P1 0.88 0.30
P2 0.02 0.20

Fig. 8. Smoothed power spectrum derived
from the time series of dimensional complex-
ity as used in Fig. 7. Frequency resolution is
0.00434 Hz. The main peak at frequency step
= 6 is corresponding to a period length of
38.3 s; the additional lower peak is corre-
sponding to a period length of 25.5 s. The
two peaks nearly agree with the ®ts of ®rst
and third order resulting from the sine-wave-
®tting technique
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Moreover, adequate statistical test procedures with
use of pseudo-random data were carried out to reject the
null hypothesis that the observed relationship is a ran-
dom one revealing maximum signi®cances at the 0.1%
level. Furthermore, the period lengths of the endogenous
rhythm derived from the time series of the spectral
density and complexity were compared with each other,
indicating that there are no signi®cant di�erences and
that there exists an identical temporal order of the two
time series.

Our results con®rm the previously de®ned hypothesis
that cyclic alterations of spectral density are associated
with corresponding variations of dimensional complex-
ity during long-term analysis of EEG recordings in the
minute range. The observed inverse covariation indi-
cates that the spectral density of the EEG signal inves-
tigated here increases with decreasing complexity or
increasing order of the underlying dynamical system.
This may be due to an enhanced neuronal synchroni-
sation with an increase of subsystem coherence, i.e. in-
phase coherent oscillators causing a lower complexity of
the CNS. The e�ects of an increase or decrease of
spectral density are summarised in Fig. 9. The possible
existence of `synchronised phase-locked groups of neu-
ronal oscillators and statistically unrelated phasors' be-
ing responsible for changes in EEG activity was the
subject of a fundamental question raised by Nicolis
(1987).

In addition, we propose a simple, more heuristic ap-
proach, i.e. a noise-based model which may explain the
inverse relationship between the changes in spectral
density and complexity observed for an EEG signal with
distinct alpha activity. In this approach, an internal
constant level of random-like, irregular activity, such as
the thermic noise of electrical resistances, is superim-
posed by a deterministic, regular and oscillatory activity
with varying amplitude like the alpha rhythm. An in-
crease of regular activity (and spectral power) may re-
¯ect an increase of neuronal synchronisation and
involves a decrease in the complexity of the entire signal.
In the case of a decrease of regular activity which re¯ects

a decrease of neuronal synchronisation, the random-like
activity will play a more dominant role and, conse-
quently, the entire signal may become more complex.
Finally, the complexity of the system's output activity is
a function of the signal-to-noise ratio. It is pointed out
that this model is only valid for EEG signals with dis-
tinct alpha activity and not for Gaussian random sig-
nals, which is con®rmed by the statistics in Sect. 4.1.2.
Besides this simple heuristic model, there are further
competitive models, e.g. non-linear deterministic ones
which we have not considered in the present paper.

Another model which may explain the described
changes in complexity is reported by Basar (1983a). In
the model of coupled oscillators, he suggested that the
dimension of a neuronal dynamical system depends on
the number of uncoupled independent oscillators within
a large ensemble of coupled oscillators representing the
neuronal populations of the brain. Accordingly,
RoÈ schke and Aldenho� (1991) deduced for EEG sleep
data that an increased dimensionality during sleep stages
I, II and rapid eye movement (REM) may be caused by a
dominance of weakly coupled oscillations of neuronal
networks with independent frequencies. In contrast, a
decreased dimensionality observed in slow wave sleep
stages such as stage IV may be due to an increased
number of strongly coupled oscillators.

Moreover, the reduced dimensionality could re¯ect an
enhanced `synergetic self-organisation' with fewer de-
grees of freedom and lower entropy (Haken 1977, 1988;
Theiler 1990) which synchronises some of the sub-sys-
tems (oscillators) and cortical networks, and leads to
state transitions from `high-dimensional' to `low-dimen-
sional' non-linear dynamics, re¯ecting states with high
and low entropies (Basar 1983b; Babloyantz and De-
stexhe 1986b; Keidel et al. 1987a; RoÈ schke and Al-
denho� 1991). The transients in complexity are in line
with Basar's (1990b) `operative states', which were in-
terpreted as functional operators of the EEG activity
describing the degree of synchronisation and desyn-
chronisation in various EEG frequencies in the brain.
This concept also agrees with Accardo's assumptions

Increase of spectral density involves:

± Increase of order of the underlying system
± Increased neuronal synchronisation
± Increase of in-phase coherent oscillators (subsystems)
± Decrease of dimensional complexity

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ
Decrease of spectral density involves:

± Decrease of order of the underlying system
± Increased neuronal desynchronisation
± Increase of out-of-phase incoherent oscillators (subsystems)
± Increase of dimensional complexity

Fig. 9. Model of interpretation according
to the observed inverse covariation be-
tween spectral density and dimensional
complexity for long-term EEG signals
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about brain dynamics (Accardo et al. 1997). Besides the
well-known ®ndings of the latter authors mainly related
to external stimuli, changes of sleep stages and to eyes
open/closed conditions, our results claim an additional
autonomous cyclic alteration of the degree of syn-
chronisation which may be driven by a central pattern
generator with an assumed location in the brain stem or
diencephalic system (Keidel et al. 1987a, 1990a,b). Our
®ndings are supported by the reports of Basar et al.
(1989b), who observed large ¯uctuations in the correla-
tion dimension ranging over 5±8 during 30-min EEG
recordings with distinct alpha activity derived from re-
laxed but awake subjects with eyes closed. In contrast to
our study, he used consecutive EEG epochs of 3 min
duration which could not disclose the well-ordered tem-
poral pattern of the transients in complexity.

The existence of such transients con®rms the con-
clusions of Lopes da Silva (1991) in an experimental
manner. He suggested that changing states in a neuronal
network of the brain may be related to transitions from
a random type of activity to an oscillatory mode which
corresponds to the previously proposed noise-based
model. Furthermore, he concluded that `brain processes
information in a parallel fashion' which makes sense in
the state of a random-like, incoherent activity in which
each neuron or neuronal population is ®ring or acting
independently (Basar 1983b).

Accordingly, it may be deduced that transient periods
of high complexity of the brain with independent active
di�erent areas may allow a fast parallel information
processing mode, because numerous processes from
sensory and cognitive `channels' would be executed si-
multaneously, which may be related to active informa-
tion processing (Accardo et al. 1997). This idea discussed
by Keidel et al. (1987a), is in line with the computer
metaphor of Nelson and Bower (1990) including parallel
distributed processing and with the models of rapid in-
formation processing of Townsend (1990) involving
parallel operations. In contrast, interposed periods of a
central information processing mode with a high cou-
pling strength between di�erent brain structures (in-
cluding hemispheres and subcortical-cortical
connections) resembling a lower complexity of the brain
may facilitate the data transfer to (and retrieval from)
`higher' association areas or between the hemispheres. In
this case, the brain may be maintained in a `resting' state
with reduced responsiveness corresponding to Basar's
(1983b) considerations and identi®ed previously by
Berger (1938) as a rather `passive' state contrasting with
an `active' state of the brain. It could be argued that the
brain shows endogenous cyclic changes between these
two processing modes; this is re¯ected in the changes of
the chaotic dynamics of the spontaneous EEG activity
and ®ts within the processing-load hypothesis of
Pritchard and Duke (1992b) and the information pro-
cessing paradigm of Pritchard and Duke (1992a).

In conclusion, the occurrence of the formerly men-
tioned cyclic transients expressed by the inverse covari-
ation between the spectral density and dimensional
complexity seems to be an intrinsic property of the CNS
with respect to the strategy of information processing

which might be responsible for higher mental functions,
information storage and retrieval (Adey 1966; Keidel
et al. 1987a; Llinas 1988; Basar et al. 1989a). The non-
linear modelling of the EEG as used in this paper and
the interpretation of the inverse covariation between the
spectral density and dimensional complexity as well as
the conclusions about the resulting cyclic transients give
additional insight into the integrative functioning of the
brain.
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