
Abstract. Most of current neural network architectures
are not suited to recognize a pattern at various displaced
positions. This lack seems due to the prevailing neuron
model which reduces a neuron's information transmis-
sion to its ®ring rate. With this information code, a
neuronal assembly cannot distinguish between di�erent
combinations of its entities and therefore fails to
represent the ®ne structure within a pattern. In our
approach, the main idea of the correlation theory is
accepted that spatial relationships in a pattern should be
coded by temporal relations in the timing of action
potentials. However, we do not assume that synchro-
nized spikes are a sign for strong synapses between the
neurons concerned. Instead, the synchronization of
Syn®re chains can be exploited to produce the relevant
timing relationships between the neuronal signals.
Therefore, we do not require fast synaptic plasticity to
account for the precise timing of action potentials. In
order to illustrate this claim, we propose a model for
translation-invariant pattern recognition which does not
depend on any changes in synaptic e�cacies.

1 Introduction

An explanation for translation-invariant pattern recog-
nition in biological systems still poses a major challenge.
Although structured neural network architectures (Fu-
kushima and Myaki 1982) may solve the task for a
limited number of objects, we still lack a conclusive
understanding of the abilities of the brain. In the most
common approach, a very speci®c feature detector is
distributed spatially over all positions in the input layer
(retina). All copies of this detector converge onto a
single hierarchical higher cell in order to enable an
invariant reaction. The combinatorial explosion of
patterns in the stream of visual impressions, however,
requires an astronomic number of di�erent specialized

detector cells. Therefore, this spatial convergence of a
distributed detector may not be extended to real world
situations and, very likely, does not re¯ect the strategy
used in a biological visual system.

These considerations led Von der Malsburg (1981) to
propose his correlation theory: Neurons in close prox-
imity ®re synchronously whenever they react to features
of the same object. Therefore, these neurons bind their
activity into a distinguished cell population or ensemble,
which is characterized by its correlated discharges. This
idea replaces the combinatorial number of feature de-
tector cells because the short-term coherence of cells
may switch with every new input pattern. For each dif-
ferent stimulus, a neuron may participate in another
ensemble of cells, where it codes a feature common to
several patterns. The correlated activity of the cell
population itself forms a new characteristic signal as-
sociated with the pattern represented. Specialized neu-
ronal circuits will easily detect such spatiotemporal
patterns of action potentials.

In anatomical studies of the brain, synchronized ac-
tion potentials often imply a strong excitatory synaptic
connection between the neurons. Therefore, it is gener-
ally accepted that a synapse is labelled by correlated ac-
tivities of the neurons involved. The correlation theory
adopted the inherent assumption of this methodology
and added an extension. According to correlation theory,
the synapses between cells rapidly change their e�cacies
in the course of information processing. The short-term
correlation of cell ensemble activities mirrors the strength
of connectivity between neurons of the ensemble. For
every new stimulus in pattern recognition, a tremendous
change in synaptic e�ects is required. The new connec-
tivity evolves through a so-called short-term synaptic
plasticity in conjunction with random correlated dis-
charges. Chance correlations are reinforced by a growing
synaptic gain between the cells. Recent experimental
evidence supports the idea of reversible short-term plas-
ticity (Markram and Tsodyks 1996; Abbot et al. 1997;
Magee and Johnson 1997; Markram et al. 1997).

Synchronized action potentials may evolve without
anatomical synapses between the cells, as experimental
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data (Aertsen et al. 1989; Vaadia et al. 1995) prove. The
`joint-peristimulus time scatter diagram' emphasizes the
change in the correlation of action potentials whenever
di�erent stimulus con®gurations are used. This `dynamic
of e�ective connectivity' cannot be explained within the
concept of a bridging synapse. Engel et al. (1991) report
that varying stimulus con®gurations in¯uence the cor-
relations of action potentials. Spike time coordination
was involved in auditory stimulus representation (de
Charms and Merzenich 1996). The precise timing of
coincidences in several experiments (Abeles et al. 1993a;
Vaadia and Aertsen 1992) initiated an alternative ex-
planation for synchronized action potentials. Abeles
(1982, 1991) developed the theoretical concept of neu-
ronal structures called Syn®re chains. Within this con-
cept, the correlated input from one ensemble of cells
drives several other neurons simultaneously towards
their ®ring threshold (see also Gerstner et al. 1993).

Based on the theory of Syn®re chains, we developed a
scheme to produce synchronized action potentials
(Arnoldi and Brauer 1996). Two Syn®re chains are
coupled by synaptic connections as suggested in
Bienenstock (1991). Due to the systematic interactions
between both chains, their Syn®re activities synchronize
and proceed in a stable construct. Whenever two cou-
pled chains are started within a time interval of about
40 ms, the activities in the last nodes of both chains are
correlated. This e�ect was utilized to develop a system
for translation-invariant pattern recognition. The cen-
tral idea remains the same as in correlation theory.
Within an ensemble, neurons signal their inner rela-
tionship through correlated discharges. When they ®re
together, two neurons include important information for
further processing. This synchronized activity, however,
is due to interactions of Syn®re chains and not to re-
versible short-term synaptic plasticity. Therefore, it
seems biologically more plausible.

Our system does not yet address rotation or size in-
variance, but the general principle might be extended
similarly to implementations in dynamic link architec-
ture (Lades et al. 1993). We chose a di�cult example in
pattern recognition where two patterns, a cross and a
square, consist of the same very simple parts. These
parts, however, are di�erently arranged for both pat-
terns. This example also illustrates that coupled oscilla-
tors will fail to create a remarkable di�erence in
responses to both patterns. With our system, we would
like to draw attention to the capabilities of correlated
activity as an information format. We therefore propose
an alternative to reversible and drastic changes of syn-
aptic e�cacies on a short-term time scale.

2 Synchronization of Syn®re activity

The concept of Syn®re chains was introduced by Abeles
(1982, 1991). A Syn®re node consists of several neurons
and represents the central entity within a chain. All
neurons in a node ®re together. Each neuron receives
excitation from several neurons of the previous node and
projects its action potentials onto several neurons in the

next node. A structured neural network develops with
this connection scheme where the signal from one
neuron diverges onto several cells in the next node. At
the same time, the signal from several neurons in one
node converges onto one neuron of the next node.
Coincidences in the ®rst node of a chain are thus
transmitted through the chain to the last node. In order
to combine Syn®re chains, Bienenstock (1991) extended
this concept by adding synaptic connections between
two chains in a systematic fashion. Node i in one chain
projects to node i+1 in the other chain. The interchain
connectivity therefore imitates the overall connection
scheme within chains. The intrachain connectivity,
however, is far more pronounced than those connections
between chains. Two coupled chains do not simply
combine into a bigger Syn®re chain because each single
chain may become active without the other.

Propagation of Syn®re activity is generally assumed
to involve a ®xed time lag between the consecutive ac-
tivations of nodes. According to this concept, all neu-
rons within a node discharge synchronously and initiate
neuronal responses in the next node after a given time
interval (e.g., 1 ms). In contrast to a ®xed propagation
speed, Arnoldi and Brauer (1996) introduce the idea
that each Syn®re chain may propagate its activity at
di�erent levels of speed. The neuron model is based on
the e�ects of conductivity G and capacity C at the
membrane and uses a membrane time constant (=C/G)
of 10 ms. Due to this membrane characteristic, the
synaptic strengths of a connection between two nodes
will severely in¯uence the propagation time in a chain.
In the simulations, the following `integrate-and-®re'
equation was used:

C
dV �t�

dt
� �Erevÿ V �t��G�t� � �Erest ÿ V �t��G

Erev (0 mV for excitatory synapses or )70 mV for
inhibitory synapses) denotes the reversal potential at a
synapse and Erest ()70 mV), the resting potential at the
membrane. The membrane potential V(t) changes with
every presynaptic spike according to an a-function G(t)
where the amplitude A represents the strength of a
synaptic connection, and s0 (�1 or 3 ms) determines the
time constant of the excitatory postsynaptic potential
(EPSP).

G�t� � Aeÿt=s0

The change in synaptic e�cacies G(t) in¯uences a
postsynaptic cell after a time delay of 1 ms, starting
with the presynaptic action potential. Any cell ®res
whenever the membrane potential hits the ®ring thresh-
old. This threshold ¯uctuates around )45 mV using a
standard deviation of 5 mV. Additional refractory
e�ects are simulated following each action potential.
Figure 1 illustrates the simulation results in a chain of
500 nodes and stresses the large variability in propaga-
tion delays. Syn®re activity will propagate within 500 ms
through a chain of 500 nodes at maximum speed because
each connection between two nodes must introduce a
delay of 1 ms. With the time constant s0 = 1 in G(t),
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another millisecond delay between two nodes is added,
when we assume that neurons in the following node ®re
when G(t) reaches its amplitude value. Each node
consists of 100 neurons where each neuron connects to
25 neurons in the following node. Using an EPSP
amplitude within reasonable ranges (Fig. 1), the Syn®re
chains propagate the activity within 1300±2000 ms.

Two coupled Syn®re chains will in¯uence each other
through their connectivity. A very important e�ect
concerns the speed of propagation in the chains. Imagine
two chains are started with a certain timing o�set.
Syn®re activity in the earlier started (®rst) chain will
increase the membrane potential of neurons in the sec-
ond chain. This in¯uence yields signi®cant consequenc-
es. Neurons of the second chain receive excitatory input
shortly before a Syn®re activity reaches the respective
node. Due to this depolarization, the node increases the
speed of the Syn®re propagation. Any positive deviation
from the average membrane potential ()60 mV) intro-
duces an e�ect on propagation speed in a node. In case
of depolarization, this e�ect must be similar to an en-
hancement of synaptic strengths between the nodes. A
node will transmit Syn®re activity faster whenever the
propagation process starts with a depolarized mem-
brane. The excitation simply takes less time to hit the
®ring threshold. In a network of coupled Syn®re chains,
two Syn®re activities will synchronize through this ef-
fect. The excitatory in¯uence from the ®rst chain speeds
up Syn®re propagation in the second chain. Therefore,
the accelerated second chain will decrease the initial
timing o�set between the Syn®re activities with every
node, ending in a con®guration in which both Syn®re
activities propagate together through the chains. Within
a strict mathematical and statistical framework,

Bienenstock (1995) proved this `clued' propagation
forms a stable construct.

In our neural network simulations, we tested the ca-
pabilities of the synchronization mechanism for di�erent
timing o�sets with which the Syn®re chains are started.
For a positive simulation result, both Syn®re activities
had to reach the last node within a ®xed time interval
(e.g., 3 ms). Of course, this measurement of near-syn-
chrony may be changed. For the simulation results in
Fig. 2, we stress that no dependence on any other sim-
ulation parameter exists. The same noncyclic Syn®re
chains are used as in Fig. 1. The propagation time for
the longest chain with 500 nodes is given there. One may
therefore conclude that after 1.5 s a delay of 40 ms will
be synchronized using two chains with 500 nodes. Two
chains with 100 nodes will synchronize a 25-ms delay
after 300 ms.

An explicit description of the synchronization mech-
anism is presented in Arnoldi and Brauer (1996), where
it provides the ®rst biologically plausible explanation for
the development of correlated activity in the cortex.

3 The neural network architecture

Our network for translation-invariant pattern recogni-
tion consists of two main modules, namely a perceptual
system (Sect. 3.1) and a memory structure (Sect. 3.2).
The synchronization of Syn®re chains will be exploited
to correlate activities in one module with neuronal
discharges in the other (Sect. 3.3). With this essential
functionality, the synchronization of Syn®re chains
addresses the following problem in brain research: Few
connections might regulate the interactions between

Fig. 1. Propagation time in Syn®re chains. The y-axis denotes the millisecond delay after which the Syn®re activity reaches node 500. The
strength of a synapse between two neurons of consecutive nodes is given on the x-axis. A time constant of 1 ms is used for each EPSP. A Syn®re
chain with an EPSP amplitude of less than 0.82 mV cannot transmit a stable activity. Several simulations are averaged at each data point. Bar
represents the standard deviation in arrival time, multiplied by 10, to visualize the decreasing variability with stronger synaptic connections
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di�erent cortex regions when structured in a systematic
fashion. The example from pattern recognition repre-
sents an explanation of the formation of correlation-
based information processing.

3.1 The detector cube for visual perception

The well-known design of orientation columns suggested
the structure for the perceptual input system. Hubel and
Wiesel (1968) reported a layered model for the visual
cortex where the selectivity of cells gradually changes
with the penetration of a microelectrode. Our perceptual
network mimics the functional structure of the visual
cortex found in textbooks (Kandel et al. 1991). It is
primarily concerned with a systematic transformation of
the visual world into neuronal signals. Cells react to
light-dark contrasts on the retina and therefore code an
object's `Gestalt' with their activity. In the model, every
point on the retina is ®ltered by several detector nodes.
All detectors for horizontal edges are grouped in one
layer. Activity in adjacent layers represents lines with a
tilt of 45 or )45 deg, respectively. This principle of an
increment of 45 deg produces a total of 8 layers. These
layers have nothing in common with the anatomical
layers (I±VI) of the visual cortex. They are inspired by a
technical application of the hypercolumn concept. All
layers together form a 3-dimensional cube which shall be
called the detector cube in the following. The x- and y-
coordinates in the detector cube determine the position
of the receptive ®eld which in¯uences all neurons in a
node. Following the z-axis of the cube, the optimal edge

stimulus for each node gradually rotates around its
center. Figure 3 illustrates the detector cube used in our
network. Note that our detector cube implies a clear
di�erence between a change from a dark region into a
bright region and the opposite change. Most of the cells
in visual cortex V1 ignore this distinction when they
react to both the right and the left margin of an object.
The di�erence in our model, however, seems to be
neither critical nor fundamental. For technical
disambiguation, slightly more speci®c features were
revealed to be more convenient than those represented
by simple line detectors. In theory, a Syn®re node

Fig. 2. Synchronization of Syn®re activities. Timing o�set at the start of both Syn®re chains is given on the x-axis. Each line illustrates the results
for a Syn®re chain, using another number of nodes. Fluctuations of the membrane potential produce synchronization failures in several
con®gurations. The y-axis reveals statistically in how many of 100 experiments the synchronization succeeded. Longer Syn®re chains yield better
results. This e�ect, however, seems to saturate with a length of 500 nodes. The gain from adding another 100 nodes is drastically reduced
compared with the di�erence between a chain of 100 or of 200 nodes. The in¯uence of excitatory postsynaptic potentials (EPSPs) has most
probably disappeared after 40 or more ms. Therefore, chains started with this or a larger delay run independently

Fig. 3. Schematic view of the detector cube. The x- and y-coordinates
of each node of neuron code the center of the receptive ®eld on the
retina. The z-axis determines the orientation selectivity of the node.
The optimal line pattern gradually changes with each layer
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consists of several neurons, each with a di�erent
response characteristic.

All eight feature detector nodes sharing their x- and y-
coordinates represent a distinct group. They excite a
common inhibitory neuron, and in turn they are inhibited
by the action potential of this neuron. This inhibitory cell
in our model corresponds to that 20% of stellate (in-
hibitory) cells in the cortex which act locally and rapidly.
For information processing, this inhibition serves two
functions. On the one hand, the negative feedback im-
plements a winner-takes-all competition between edge
detectors at the same position (or in one group). Only the
optimally activated detector may react to the visual in-
put. All other detectors at this position are silenced by
negative feedback. On the other hand, the inhibitory
neuron introduces an oscillatory component into neural
processing. As inhibition acts on all detectors in a group,
this includes the node of neurons which match the stim-
ulus best (the winner). Therefore, this detector cannot
produce activity for a ®xed period of time. The duration
of this silent interval may be adjusted through the time
constant parameter of the inhibitory postsynaptic
potential (IPSP) (Gerstner and van Hemmen 1992).
A single but strong inhibitory potential decays over a very
long time scale and prevents the excitatory neuron from
®ring again for an appropriate period of time. Therefore,
an isolated inhibitory spike turns o� the excitatory
neuron. For the current model, an interval of 30 ms was
chosen in accordance with experimental results in the
visual cortex (Gray and Singer 1989).

The existence of oscillatory activity in the cortex still
produces a controversy among experimentalists. Arnoldi
and Brauer (1996) argue against an overall neural in-
formation processing based on coupled oscillators (see
Discussion). In the connectivity of the visual cortex (or
our detector cube), however, it might be more acceptable
that the neurons show a periodical behavior due to the
prevailing local inhibitory activity (Nischwitz and
GluÈ nder 1995). For the current technical application,
namely translation-invariant pattern recognition, a
scheme proved very useful where neurons ®re reliably.
Oscillatory interactions open a convenient framework
for an application because they provide a very e�cient
method to synchronize activity in close proximity. One
simply has to introduce several connections between
nodes of the detector cube. With oscillatory activity in
our detector cube, the neurons correlate their action
potentials whenever coupled with excitatory synapses.
These important couplings were chosen according to a
well-known principle of the Gestalt theory (Wertheimer
1923; Rock and Palmer 1990): Two neighbor nodes
share synaptic connections exclusively when both react
to neighboring parts in the shape of a pattern. For ex-
ample, a certain node detecting a horizontal dark-to-
light contrast will exchange synaptic signals with its left
and right neighbors in the same layer. Other detectors in
this layer, however, which react to horizontal dark-to-
light contrasts on top or on bottom of this node will not
be connected to it. The visual world fails to include
shapes consisting of two horizontal dark-to-light con-
trasts stacked on top of each other. The intention in this

connection scheme may be replicated in all layers of the
detector cube. Synaptic connections also exist between
layers. A curved shape, for example, may be assembled
from several straight lines which gradually change their
orientation. All interlayer synapses, however, are limited
to neighboring layers in the detector cube. The visual
world and the existing shapes severely limit possible
combinations of line segments in close proximity.

Currently, several researchers support the hypothesis
that Gestalt laws manifest in the correlated activity of
visual cortex cells (Singer 1994). Our model transfers this
idea into a possible architecture. Nevertheless, this
transfer does not include that all neurons ®re synchro-
nously whenever they represent one shape. Instead,
correlated activity is restricted to a limited neighbor-
hood of shape segments. Figure 4 presents di�erent
spatiotemporal patterns of action potentials. Both pat-
terns are produced by an object consisting of 8 line
segments. In a visual shape, neighboring line segments
have more in common than further distant ones. Dif-
ferent activity correlations of the respective cells express
this fact. With such a code, the sequence of all spikes
contains information about speci®c line segments and
about the neighbor relationships of these line segments.
This distribution of correlated activity covers more in-
formation compared with a synchronized burst of all the
neurons concerned. Strict synchronization of all neuro-
nal answers misses relevant information (e.g., how close
two cells are related spatially). For recognition, an
overall synchronization bears no information about the
inner structure of the pattern.

3.2 The memory module

The second important component of the network is
realized in the memory module which might be located in
associative cortices. In contrast to the concept of the
cardinal cell (Barlow 1972), we use a cell population to
represent a pattern. Every node of cells in this population

Fig. 4A,B. Action potentials in two di�erent simulations using a
pattern of 8 line segments (the octagon in Fig. 5). Each arrow
symbolizes the time-axis in milliseconds, and a bar on this axis
represents a cell signal. Neighboring cells (drawn on neighboring
arrows) answer with correlated activity. A Chance correlations
between the fourth and the last cell lose the exact temporal
relationship in the course of time. B This spatiotemporal pattern
was common in the simulations. Activity of the ®rst and of the last cell
is correlated as the activity pattern spreads over a time interval of
30 ms. Note that simultaneous and parallel sensory input does not
imply synchrony at the level of action potentials in the higher cortices
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codes a short segment in the shape of the pattern.
Therefore, each node's selectivity is reduced to simple
edge detection. The underlying scheme is exactly the
same as in the detector cube. A signi®cant part of infor-
mation stored about a pattern consists of the number and
orientation of the line segments employed. Additional
structural information about the pattern is incorporated
in the synaptic connections within a population. Two
nodes exchange excitatory synaptic potentials whenever
they code neighboring line segments in the shape of the
pattern. Figure 5 illustrates this memory module using
an octagon as an example structure.

Every node in pattern memory is accompanied by an
inhibitory neuron. The interactions with this cell pro-
duce oscillatory activity in the node. Activity in the node
leads to a spike of the inhibitory cell. The resulting in-
hibitory synaptic potential silences the node. The time
constant of this IPSP is again chosen to prevent activity
in the node for a time interval of 30 ms. Therefore, the
cells answer periodically.

Each neuronal population in memory stores a pat-
tern. The topology of excitatory connections in a node
population was explicitly constructed for the simula-
tions. In principle, however, such a population and its
topology will develop through Hebbian learning. In an
initial network of neurons, all connected to each other,
appropriate synaptic connections simply have to be re-
inforced to form a distinctive population. In the course
of learning, one neuron might even participate in several
memory storages. Note that a neuronal population does
not constitute a Syn®re chain. Synapses between mem-
ory nodes are far too weak to propagate a stable Syn®re
activity. These connections are meant to synchronize the
action potentials of neighboring nodes but not to gen-
erate activity by themselves. Memory nodes correlate
their activity through reciprocal synaptic connections.
Most oscillator models (Sporns et al. 1989; KoÈ nig and
Schillen 1990; Neven and Aertsen 1992; Ritz et al. 1994)
propose that the respective neurons all ®re synchro-
nously. In our model, the correlation of activity is lim-
ited to neighboring line segments in the shape of a
pattern. No synchronization is required for nodes at
distant positions of the pattern. Tight synchronization
of all memory nodes never occurred in the simulations.

Few inhibitory synapses between distant nodes in the
shape minimize correlations and prevent total synchro-
nization very e�ciently.

3.3 Application of Syn®re synchronization

A detailed description of how the detector cube and the
memory module are biologically realized has not yet
been done because it seemed to be of minor relevance.
The main contribution of the present work is given by
the combination of neural activities in separated net-
works. The synchronization of Syn®re chains is applied
to match the spatiotemporal activity patterns of both
our network modules.

For the recognition process, a well-known approach
was chosen to compare a visual stimulus with a pattern
in memory. Of course, all patterns in memory have to be
matched successively in order to ®nd the best ®t. Our
system shares this disadvantage with several more
prominent pattern recognition systems. From the bio-
logical point of view, a `deus ex machina' searching the
memory system seems problematic. At the current state
of simulations, conclusive data are missing, about how
the system could utilize spontaneous activity in the
memory module. A visual pattern might induce addi-
tional activity in memory through the Syn®re connec-
tions. This results in a enhanced and concentrated
activity in one pattern population. No change in the
network architecture is required except for one reason.
All neurons of the memory module must be tuned to
conserve a constant and low spontaneous activity at a
level of two spikes per second. This noise, however, must
be a robust equilibrium, easy to change from outside but
very stable to return to whenever an external in¯uence
ceases again. Using the Syn®re connections, very weak
in¯uences from the detector cube might then be able to
create an appropriate response in the memory module.

Let us turn to the recognition process. Neurons or
nodes in the detector cube react with a characteristic
spatiotemporal sequence of action potentials whenever a
visual stimulus appears on the retina. At the same time,
the system chooses a pattern with which it wants to
compare the current input. Our implementation there-
fore uses a central controlling unit to serially step
through a database of known patterns. This unit acti-
vates a population of nodes externally which represents a
certain shape in pattern memory. These nodes also
generate a typical spatiotemporal pattern of action po-
tentials. In order to compare these signals, our system is
designed to build up precise correlations between both
spatiotemporal patterns. The result of this comparison
will be intuitively positive when corresponding nodes in
the cube and in memory ®re together. In this case, a node
coding a horizontal line in a pattern generates synchro-
nous action potentials with a memory node representing
the line segment at the same position. The temporal
structure of neuronal answers produces an assignment
between pattern memory and detector cube. Synaptic
interaction within the detector cube or within the pattern
memory also supports this assignment. In both network

Fig. 5. Representation of an octagon in pattern memory. The system
exclusively codes the shape (edges) of a pattern. For illustrative
reasons, the population (structure of nodes) in memory is arranged
similar to the respective feature detector nodes in V1. The nodes,
however, may be distributed arbitrarily in any of the associative
cortices. Neighboring nodes in pattern representation are connected
by excitatory synapses
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modules, neighboring nodes tend to correlate their ac-
tivities. Imagine a node in the detector cube being cor-
rectly assigned to a memory node. The respective cells
®re together, and at the same time these activities are
correlated with spikes of neighboring nodes. Therefore,
the synchronization process in the neighborhood of a
correct assignment is tremendously facilitated. Once two
partners are related, this assignment will spread to their
local neighborhood. Nevertheless, a wrong assignment
(e.g., a horizontal line in pattern memory with a vertical
line in the cube) will also spread. Therefore, interactions
within each network module must be tuned to act with
similar force as interactions between detector cube and
pattern memory. Then the comparison of spatiotempo-
ral patterns is based on their structure as well as on their
components. Incompatible components or a di�erent
arrangement of the same components both prevent sta-
ble correlations. Isolated line segments might form sta-
ble assignments, but the whole system remains in a state
of low correlation. The interactions in the system signal
a missing global a�nity. Optimal resonance must be
limited to those cases with an overall ®t.

The realization of our matching mechanism is closely
related to the synchronization of Syn®re chains. Every
node in the detector cube and in pattern memory starts a
Syn®re chain. These chains were designed in the imple-
mentation to feed back to their starting node after 10
nodes. The results of the following developmental pro-
cess were therefore hard-wired into the network. For
illustrative purposes, we pick node A with Syn®re chain
SA. Remember that the respective neurons in the nodes
®re periodically every 30 ms. After this time interval, the
Syn®re activity from SA has reached node B. A simple
`Hebbian' learning will construct a feedback from B to
the starting node A. A small but repeated change in
synaptic e�cacies produces a Syn®re `reverberation'
(Abeles et al. 1993b) where Syn®re activity in SA runs in
a closed loop. The transmission time of this loop is given

by the repetition interval of node A activity. The Syn®re
chain is therefore tuned to re¯ect the periodic behavior
of activity. More importantly, however, Syn®re chains
like SA may bridge the gap between detector cube and
pattern memory. With a few, systematically placed
synapses in the network, Syn®re chains started in the
detector cube are connected to the respective chains
from pattern memory and vice versa. A simple connec-
tion scheme, ®rst proposed by Bienenstock (1991), is
used for all synaptic interactions between Syn®re chains:
Node i+1 in one chain receives synaptic potentials from
node i in the other chain (see Fig. 6).

The following synchronization process develops in
our network: Two Syn®re chains, one in the detector
cube and the other in pattern memory, share synaptic
connections and synchronize their activities. This syn-
chrony feeds back to the starting points of both chains.
Therefore, a node in the detector cube and one in pat-
tern memory generate simultaneous action potentials.
With these spikes, the nodes initiate Syn®re activities
which proceed together. The feedback results in a tem-
poral assignment of the starting nodes. This correlation,
however, must match the interactions with neighboring
nodes. Synaptic in¯uences within the cube or within
memory always a�ect the exact timing of action poten-
tials. A node in the cube repeatedly ®res together with a
memory node only if the respective neighbors also cor-
relate their activities. Otherwise, the feedback of Syn®re
synchronization breaks down. Without a perfect match
of both spatio-temporal patterns, a detector in the cube
continuously receives contradictory synaptic in¯uences
which confuse the rhythm of its answers. A stable con-
struct requires a cooperative resonance between Syn®re
feedback and neighbor interactions. Then the energy
provided by the synaptic potentials settles into an opti-
mal con®guration.

The connectivity between Syn®re chains is limited to
chains representing similar features. A detector for

Fig. 6. Syn®re chains are connected in a
systematic fashion. Therefore, the chains syn-
chronize their activities. Nodes in pattern
memory start to ®re synchronously with their
partners in the detector cube due to the
feedback of their Syn®re chains. In both
network modules, neighboring nodes also
correlate their activities through excitatory
synapses. As a consequence, coherent interac-
tions develop
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horizontal lines in the cube may synchronize with a
memory node coding a horizontal line which requires
both of their Syn®re chains to be connected. Neverthe-
less, a vertical line segment will not match a horizontal
line, and therefore the respective Syn®re chains shall not
interact. The task of pattern recognition persists as
ambiguous because each memory node may be mapped
onto several detectors at di�erent positions. A pattern
may appear all over the retina and may excite di�erent
detectors of the same kind. Translation invariance re-
quires the possibility of synchronizing a memory node
representing a horizontal line with any of the horizontal
line detectors in the cube. The connection scheme in
Fig. 7 achieves this invariance. All Syn®re chains from
the same cube layer are connected to one Syn®re chain
from pattern memory. This connectivity between Syn®re
chains represents the gist of translation invariance in our
system. The assignment of cell activities may vary
dynamically with each new presentation of a pattern.

4 Simulation results

For introduction, a very simple pattern will illustrate the
capabilities of our system. An octagon (see Fig. 5)
provides an unique situation where exactly one detector

in each layer of the cube will be activated. Eight nodes
represent an octagon in memory. Cells in these nodes
generate action potentials due to an external signal.
They initiate eight di�erent Syn®re activities which shall
bind to Syn®re waves from the detector cube. The
required assignment develops straightforwardly as every
memory chain is connected to one active pendant only.
Synchronization happens very rapidly, and neighbor
interactions within the cube and within pattern memory
support the resulting correlations. The system acts
consistently as illustrated in Fig. 8.

A simple scheme should help to monitor the time
course of correlations. A quantitative measurement
ranging from 0 to 5 points separates di�erent cases of
`near synchrony'. The scheme rewards two nodes ®ring
synchronously with 5 points. A delay of 1 ms reduces
this reward to 4 points. An increasing delay further
decreases the reward points. Finally, a correlation with a
5 ms distance does not contribute any points to the ®nal
sum. Eight pairs of nodes may generate 40 points with
optimal synchronization. In Fig. 9, each data point
comprises 4 cycles of periodic action potentials during
130 ms. With maximum performance, eight node pairs
produce 160 points in this time interval. Figure 9 shows
a system started randomly where correlations soon
stabilize at a very high level. Each node pair ®res

Fig. 7. Connectivity between detector cube and pattern memory. All nodes (squares) in one layer of the cube respond to a horizontal line. The
node in pattern memory also represents a horizontal line. Arrows symbolize Syn®re chains. This connection scheme enables the network dynamics
to synchronize the activity of a single node with any of the activities in the layer. Binding through correlated activity may therefore happen
translation-invariantly. Not all Syn®re chains and their connections are shown. Note the important di�erence between a node and a grandmother
cell: In a node, several cells with similar selectivity ®re together. Each cell might participate in various nodes
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synchronously, which signals the success of the pattern
recognition mechanism.

All nodes ®ring together also produce a high number
of correlated spikes. This con®guration, however, seems
counterproductive as it destroys important information,
namely the structure in the pairing of nodes. Few in-
hibitory synapses between distant cells in pattern mem-
ory avoid global synchronization. In the simulations,
one may check the correlations of neighboring nodes for
control. Eight neighbor pairs exist in pattern memory,
and correlations should be limited there. Figure 10
illustrates the results in a simulation when all nodes in
pattern memory are activated simultaneously. The time
course of our arti®cial assessment scheme suggests that
correlations drop from a very high level and stabilize at
an intermediate value. At the same time, correlations
between node pairs in the detector cube and memory
develop according to Fig. 9. In conclusion, the system

detects the similarity between the spatiotemporal pat-
terns in memory and in the cube. Nevertheless, it does
not repeat a single burst of action potentials.

Can we extend the proposed system for translation-
invariant pattern recognition to more complicated pat-
terns? Whenever several Syn®re chains start from the
same layer in the detector cube, the system may en-
counter di�culties in resolving the many-to-many
mapping with chains from the memory structure. An
important issue for the implementation of the network
concerns the adjustment of synaptic connections be-
tween chains. The synchronization of Syn®re activities
works better the stronger the synapses are between the
chains. Nevertheless, the in¯uence of one chain must not
generate Syn®re activities in another chain by itself.
Activities initiated through extremely strong interactions
between chains destroy the information processing in the
network. Therefore, adjusting the connectivity between
Syn®re chains has to satisfy two di�erent con¯icting
objectives: Firstly, to provide a robust synchronization
mechanism with strong synapses between the chains and
secondly, to prevent any spontaneous Syn®re activity
with weak synapses between the chains. Finding the
optimal con®guration may require several try-and-error
iterations or an adaptive process.

Imagine a network connectivity being adjusted so
that synchronization between chains is working and
none of the Syn®re activities produces casual Syn®re
waves in any other chain. What happens when two or
three active Syn®re chains together project to a fourth
chain? Several waves of activity will be generated, cre-
ating a situation where the search for optimal resonance
between detector cube and memory system is disturbed.
Another instance of the general normalization problem
in neural networks might be discovered in this example.
We would like to draw your attention to the nontrivial
task for a neuronal structure to constantly keep activity

Fig. 8. Abstract result for an octagon pattern. White circles represent
memory nodes, while black circles symbolize nodes in the detector
cube. The octagon shape consists of eight edges, each with a di�erent
orientation. Every corresponding pair of edge representatives is
connected through a dotted line. This line sketches two coupled Syn®re
chains which synchronize their activities

Fig. 9. Development of correlations
with an octagon pattern. As the numbers
on the axis represent arti®cial measure-
ments, we did not label the axis. Alto-
gether 13 s are shown because every
point on the x-axis summarizes 130 ms
of simulation. A node ®res every 30 ms
(four times in 130 ms). The system adds 5
points for perfect synchrony of a node
pair. A millisecond delay corresponds to
4 points. The reward decreases until no
points are added at 5 ms distance. Eight
pairs in an octagon may gain maximally
160 points (the highest value on the y-
axis) in a given time interval. In our
example, the correlations develop very
rapidly into a stable con®guration with
highly synchronized action potentials
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at a low level. Using a local process, the right amount of
inhibition is hard to adjust. The importance of further
investigations on this topic seems evident.

Our system chooses a straightforward approach to
inhibition: a competition between Syn®re chains ac-
companies the search for appropriate partners. All
Syn®re chains from the detector cube compete with each
other when trying to bind with partners from memory.
Inhibitory interactions between these competitors neu-
tralize any excessive amount of excitation. Imagine one
chain A out of the cube synchronizes with a memory
chain B. All other Syn®re chains emerging from the
same layer of the cube receive excitation from memory
chain B. The cube chain A, however, cancels through its
inhibition this excitation from B. Within the group of
competitors, the inhibitory potentials of chain A neu-
tralize the excitatory potentials of its partner chain B.
Simply copying the basic structure of the Syn®re chains
realizes this competition. The overall principle of Syn®re
chains also de®nes the rivalry between the nodes. Node i
in a chain from the detector cube inhibits nodes i+1 in
every other chain emerging from the same layer of the
cube. Whenever two chains compete to bind with a
partner, they exchange inhibitory signals in the typical
Syn®re mode: node i projects to node i+1. In pattern
memory, all Syn®re chains inhibit each other when at-
tached to cells representing similar features. Figure 11
illustrates the connection scheme for two chains com-
peting to bind with a third chain. The following example
might help to illustrate information processing in such a
structure. A visual pattern activates three nodes coding
horizontal lines. At the same time, an external signal
excites three nodes representing horizontal lines in
memory. Therefore, six Syn®re chains become active,
and each receives excitation from three possible partner
chains. Nevertheless, the inhibition from two competi-
tors reduces the total amount of excitation in every
chain. It cancels any excess input beyond the EPSPs of

just one chain. Whenever two Syn®re chains have bound
together, both proceed synchronously. This construct,
however, will not in¯uence another chain and may
therefore be ignored. In a stable composition, every
chain compensates the excitatory potentials of its
partner.

We now turn to an extremely di�cult task in a neural
network approach. The example is carefully chosen to
stress an important advantage of our network architec-
ture. Two patterns, a square and a cross in Fig. 12,
represent di�erent combinations of the same compo-
nents. A signi®cant change in the reaction of a cardinal
cell (Barlow 1972) is very unlikely because both patterns
share the same features. A rate-coded cell cannot dis-
tinguish between re-structured combinations in its input.
In order to produce distinct response patterns for cross
and square, new detector layers are required in the

Fig. 10. Results for neighboring cells in
pattern memory. The same arti®cial scale
as in Fig. 9 is used on the x- and y-axes.
At the beginning, all eight nodes ®re
together, which represent an octagon in
memory. Therefore, the system starts
from a very high level of synchroniza-
tion. These strong correlations, however,
drop drastically to an intermediate level
around 100 points. After a while, neigh-
boring nodes ®re with a time delay of 1
or 2 ms. We may conclude that activity
in the network di�ers from a trivial
spatiotemporal pattern which consists
of one synchronous burst

Fig. 11. Competitive connectivity between Syn®re chains. Two chains
(gray) are started in the same layer of the detector cube. Both chains
compete to synchronize with the white chain from pattern memory.
The winner of this competition propagates its activity together with
the white chain. Through inhibitory connections between gray chains,
all excitatory potentials from the white chain will be neutralized in
that chain losing the competition
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network. Thus, several neural networks investigate an
incremental improvement with new feature detectors.
This includes the beginning of our own work (Was-
chulzik et al. 1990). A major counter-argument against
such an approach is given by the combinatorial explo-
sion of patterns. Our visual world contains too many
di�erent objects to reserve layers of feature detectors for
each novel stimulus. Detectors in our system are there-
fore restricted to a minimal set for which experimental
evidence exists. Di�cult discrimination tasks may still be
solved together with information about the spatial re-
lationship of these detectors.

Critics might argue that coupled oscillators may
achieve the same synchronization e�ects as our more
complicated network. Substituting the Syn®re chains
through excitatory connections between oscillatory de-

tector and memory nodes will fail, however, in the
square and cross example. An oscillator approach misses
the capability to synchronize the respective node pairs
independently. Instead, all oscillators will produce a
single burst of action potentials which destroys the
possibility to distinguish cross and square answers.
Looking at experimental results in neurophysiology, it
seems rather implausible that such an oscillatory net-
work codes pattern information in its oscillation fre-
quency (its rate).

For the pattern recognition process, a population of
neurons in the memory system is chosen and activated.
At the same time, the retina re¯ects a square image. In
reaction to this visual input, detectors in the cube start
to produce a speci®c spatiotemporal spike pattern.
Figure 13 presents the development of correlations

Fig. 12. Two visual patterns with identical features.
Below one can see the center of action potentials for
the respective detector nodes. The same subset of feature
detectors generates a di�erent spiking pattern for each
stimulus. The arrangement of nodes determines the
spatio-temporal activity pattern which clearly distin-
guishes between cross and square. A hierarchical higher
neuron using rate coding or coupled oscillators, however,
may not separate di�erent combinations of the same
components. It misses information about the spatial
relationships of features within a pattern. Again we
assume that in the higher cortices, parallel sensory input
does not imply synchronous action potentials of the
neurons concerned

Fig. 13. Correlation result with a
square. Figure 9 explains the arti®cial
scale at the x- and y-axes with one
di�erence: As 12 node pairs are involved,
the best result is reached with 240 points.
At the beginning, the correlations be-
tween nodes rise steadily to an enhanced
level. This stable correlation value
around 210 points proves an optimal
resonance between action potentials in
the detector cube and in pattern memory
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between these spikes and action potentials of a memory
population representing a square. The same evaluation
scheme is used as in Fig. 9. With the square pattern, 12
node pairs may produce a maximum of 60 points per
cycle. Every data point in Fig. 13 represents 130 ms or 4
cycles of simulation time. Therefore, the maximum
correlation value is given at 240 points.

The system of inhibition meets high demands when-
ever a cross pattern is used. Line segments with identical
orientation need absolutely independent processing. Any
indirect couplings between Syn®re chains from one layer
contradicts this independence. Therefore, inhibitory in-
teractions between Syn®re chains from the same layer
are required to function optimally. Due to these de-
mands, some of our cross-simulations do not produce
optimal correlations. The majority of node pairs is al-
ways correctly related, but sometimes several Syn®re
chains propagate without a partner. In these con®gura-
tions, a lasting source of contradictory in¯uences irri-
tates a perfect harmony between nodes. Yet the
contradiction generates a stable situation because the
system ®rst needs to decrease the number of node pairs,
especially those correlated incorrectly before the optimal
assignment between nodes might develop. Figure 14 il-
lustrates the results in two di�erent simulations, one
including the perfect match between nodes and the other
stuck in a local contradiction. In the later simulation, no
total resonance develops between memory and cube.
Some nodes receive contradictory signals from neigh-
bors and from the feedback of their Syn®re chains.
That's why they cannot ®t into an overall harmony with
the rest of the network.

An analysis of the problem involving the cross pat-
tern suggests several solutions. The network solves an
optimization task in which synaptic energy ought to be
exploited most e�ciently. A standard approach like
simulated annealing (Kirkpatrick et al. 1983) therefore

prevents simulations trapped in local minima. Our
model o�ers di�erent possibilities to manipulate random
in¯uences during information processing. Fluctuations
of the membrane potential with a standard deviation of
5 mV represent the standard noise level. In a straight-
forward extension of the simulation, one may start at a
higher level and slowly decrease ¯uctuations in the
course of processing. In biology, the random in¯uences
of distant neurons in the cortex also fade as the system
reaches its equilibrium. The system also produces an
`annealing' e�ect by manipulating synaptic connections
between Syn®re chains. It starts with extremely weak
synapses between the Syn®re chains and automatically
increases their in¯uence. Excitatory as well as inhibitory
synapses therefore reach their ®nal value during infor-
mation processing. This process was not simulated using
excitatory and inhibitory learning mechanisms. Instead,
a sequential procedure was used which increased the
synaptic weights linearly. Both of the proposed strate-
gies almost prevent any simulation trials terminating
incorrectly. One out of a thousand cross simulations
fails to generate perfect resonance between the detector
cube and pattern memory. In all other simulations, the
system ®nds the optimal correlations between nodes. It
recognizes the pattern. The synchrony of the respective
neuron pairs represents a perfect input for additional
Syn®re chains. In the simulations, we simply evaluated
the correlations.

Of course, we also tried to correlate a cross on the
retina with a square in memory and vice versa. The re-
sults are not worth mentioning (or an explicit display).
None of these simulations produce signi®cant correla-
tions between the spatiotemporal patterns. Some Syn®re
chains synchronize with changing partners, but the ex-
isting interactions within the detector cube and within
pattern memory destroy any lasting node pairs. The
network produces contradictory signals and generates

Fig. 14. Di�erent simulation results
with the cross pattern. See Fig. 9 for a
description of the scale on the x- and y-
axes. In the ®rst trial (0±100), the
network activity develops into a stable
constellation. The neurons exchange
their synaptic potentials optimally. In
the second trial, the network activity
enters a constellation with locally con-
tradictory signals. Some nodes ®re in
synchrony, but others cannot ®t into a
coherent rhythm of action potentials.
For an optimal constellation, the net-
work activity is required to traverse a
state with fewer correlations
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an overall situation of dissonance at a persistently low
level of correlations. The system is inconsistent.

Our system has not yet been tested with several other
di�cult tasks in pattern recognition. In particular, dis-
turbed and nonclosed patterns present a major chal-
lenge. Preliminary simulations with occlusion,
overlapping patterns, or missing parts suggest that the
performance of recognition will be reduced. However,
we experienced a graceful degradation and not a total
breakdown. In addition, it is always possible to structure
a pattern into several closed subpatterns. With appro-
priate connections of subpatterns in memory, the system
easily constructs more complicated spatiotemporal pat-
terns. Therefore, the system might be extended with
arbitrary combinations of patterns.

Pattern recognition has to work in close symbiosis
with pattern segmentation. A lack of feedback between
both tasks introduces persistent di�culties in any real-
world application. This knowledge and the idea of rec-
onciling recognition and segmentation requirements
dominated the design of our system. The ®nal simula-
tions test the success of these e�orts. An octagon and a
square are simultaneously projected onto the retina. At
the same time, the respective structures in pattern
memory are activated. At the beginning, all nodes ®re
randomly but with time the correct node pairs emerge
from the interactions between Syn®re chains and be-
tween neighbor nodes. A major obstacle in this process
is closely linked to the question of activity control in the
network. In some simulations, inhibitory interactions
fail to regulate the development of activity, and the
number of action potentials in the Syn®re chains ex-
plodes. The Syn®re interactions somehow ignore the
security mechanism of inhibition. Additional inhibitory
cells help to control network activity. With this exten-
sion, the simulations produce an error in three out of a
thousand simulations. Segmentation is therefore in-
cluded in our system. The automatic regulation of ac-
tivity, however, represents a key issue requiring further
investigations in neural network simulations. Otherwise,
information processing is always vulnerable to `epileptic'
attacks during which all neurons burst uncontrollably.

5 Discussion

No conclusive theory exists about how translation-
invariant pattern recognition can be accomplished in
vision. Neural network simulations o�er an interesting
methodology to investigate this task. Most neuronal
simulation architectures, however, depend on the ques-
tionable premise that a neuron's ®ring rate codes the
relevant information transmitted. There are several
theoretical reasons against this approach. Firstly, the
combinatorial explosion of patterns in the world implies
an astronomical number of neurons exclusively dedicat-
ed to the task of pattern recognition. Any relevant
coding scheme needs to take the relationships of
subpatterns into account in order to cope with the
growth of possible combinations. Rate-coded neurons
require a new cell for any slight change in such a

relationship. Secondly, those capabilities responsible for
translation invariance must somehow develop during an
adaptive process. Up to now, all neural networks
simulating this process either include shared weights
between neurons or require an exhaustive training of
each pattern at every position. Thirdly, we would like to
stress the need for a close feedback between segmenta-
tion and pattern recognition. Neural network models
using a rate code persistently fail to implement this
important interaction.

Von der Malsburg (1981) proposed the correlation
theory to overcome some of the limitations inherent in
rate coding. According to this theory, two neurons cre-
ate a novel relationship whenever they generate simul-
taneous action potentials. Correlations between
neuronal signals on a millisecond time scale create a new
information format. In correlation theory, synchronous
action potentials imply a very strong synaptic connec-
tion between the cells involved. These synapses produce
simultaneous discharges of the cells, and the e�cacy is
rapidly adapted to the requirements of individual con-
stellations in pattern recognition. In its current form, the
theory heavily depends on short-term plasticity on a
millisecond time scale in order to generate appropriate
correlations.

The Syn®re concept (Abeles 1982, 1991) o�ers an
alternative option for precise correlations of action po-
tentials. Within this concept, Arnoldi and Brauer (1996)
develop a scheme to provoke and manipulate synchro-
nous activities with similar capabilities as fast synaptic
changes. This scheme is applied to the general idea of
correlation theory, namely to code relevant information
in the timing of action potentials. Our model of a
translation-invariant pattern recognition system com-
pares two spatiotemporal patterns of action potentials
generated by a sensory and a memory module. The
system enters a state of optimal resonance when very
similar patterns are involved. In this state, the synaptic
energy at work is exploited most e�ciently. Sequences of
action potentials created by di�erent visual patterns,
however, cannot ®nd a global a�nity for each other.

Rate-coded neural network models as well as coupled
oscillators must fail at a discrimination task where the
same features are arranged di�erently. A cross and a
square pattern illustrate this situation. The synchroni-
zation of Syn®re chains produces distinguishable spatio-
temporal activity patterns for both visual inputs. Thus,
our system may recognize cross and square indepen-
dently, solving an important issue in pattern recognition.

The system incorporates several discrepancies com-
pared with the situation in neurobiology. A major point
of controversy concerns the oscillatory nature of the
neuronal signals. From a technical point of view, a
regularly repeating signal like an oscillation represents a
very advantageous tool. A modeler is inclined to use the
resulting design principle, although several experimental
reports do not con®rm the periodic character of cortical
signals in visual areas. In general, cell activity in the
cortex is well-known to correspond to a Poisson process
without rhythm. We adopt the argumentation that each
cell ®res irregularly but that certain populations of cells
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may produce answers in regular intervals whenever their
signal is isolated. Starting from this hypothesis, several
problematic features of our model receive more credi-
bility. Firstly, a Hebbian learning process combined
with rhythmic activity explains the development of
Syn®re reverberations. Secondly, the population concept
justi®es the nature of units in our detector cube. In the
visual cortex, most cells respond to the orientation of a
change from dark to bright and vice versa. These cells
react to the left and the right margins of a pattern. A
detector node in our model consists of a cell population
forming a special subset of all simple cells. The syn-
chronous activities of these cells form a new character-
istic signal which strictly distinguishes between left and
right margins.

In addition, the population idea solves an extremely
important task, namely to reconcile correlation coding
with rate coding of neuronal signals. In particular, pe-
ripheral areas dedicated to sensory or motor tasks are
famous for their graded responses re¯ecting the intensity
of a stimulus or a motor command. KoÈ nig et al. (1995)
discovered optimally and suboptimally stimulated cells,
all of which synchronize their action potentials. Those
cells with stronger stimulation systematically lead in the
regular outbursts of simultaneous activities. In the
model, each cell generates a single spike every 30 ms.
Theoretically, this response may vary between a burst of
spikes at every synchronous event and a few action po-
tentials separated by 60 or 90 ms. Technically, a graded
signal o�ers useful options for information processing.
Most applications in computer vision fail due to signal
noise or signi®cant changes in illumination. In real
world images, most ®lters produce boundary contours
all over a pattern, or they miss detecting important gray
level changes. For each position, interactions between
segmentation have to determine the probability of an
edge. The number of synchronized answers in a cell
population may re¯ect the degree of uncertainty.

The proposed system shares an important disadvan-
tage with many pattern recognition approaches includ-
ing dynamic link architecture (Lades et al. 1993). For
recognition, all known patterns have to be stored in a
database. In order to ®nd the optimal ®t, every item in
this database is successively compared with a pattern on
the retina. Psychophysical experiments imply that the
brain does not follow such a strategy. A casual reso-
nance between detector cube and memory system,
however, may extend our system. We propose looking
for an appropriate connectivity of the representational
structures in memory. Then the stimulation in the de-
tector cube and interactions between Syn®re chains
should be able to activate the correct population in
pattern memory. For this task, we hypothesize an on-
going weak activity to be required in the memory
module. Therefore, more e�orts will be concentrated on
the task of creating a persistent weak activity in mem-
ory. This activity resembles those random and `useless'
spikes in associative cortices.

In summary, two important features of our model are
worth mentioning in comparison with similar ap-
proaches. First of all, the system is inherently parallel.

The resonance between the respective spatiotemporal
pattern develops by distributed and parallel interactions
once the activity in the detector cube and in pattern
memory is initiated. The timing of cell activity results
from simultaneous synaptic inputs of several EPSPs. In
contrast, dynamic link architecture (Lades et al. 1993)
requires an attentional and therefore sequential mecha-
nism to set up the proper assignment between a pattern
and its stored pendant. Furthermore, our system ad-
dresses one of the key issues in a vision task. It incor-
porates segmentation and pattern recognition in a
continuous feedback. For this purpose, both perceptual
processes share the same information code. Correlation
of cell activities represents the basis of this code. Syn-
chronization of Syn®re chains o�ers a tool to manipu-
late its signals.

The current network was neither aimed at presenting
a persuasive explanation of biological pattern recogni-
tion nor at competing with other technical applications
of recognition systems. Biological systems require
150 ms (Thorpe et al. 1996) for recognition and there-
fore put severe constraint on any model. Instead, our
work introduces an alternative to fast synaptic changes
in correlation theory (Von der Malsburg 1981). Syn-
chronization of Syn®re chains might serve for this pur-
pose. More importantly, our network addresses the
important issue of how di�erent cortical areas might
interact with another. An example architecture is pre-
sented of how neuronal information in one part of the
brain might be combined with information elsewhere.
Di�erent specialized regions for color, shape, and
movement may communicate through correlated activ-
ity and thus fuse distributed activity into a coherent
whole.
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