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Abstract

We characterise the embedding of the spatial product of two Arveson
systems into their tensor product using the random set technique. An im-
portant implication is that the spatial tensor product does not depend on the
choice of the reference units, i.e. it is an intrinsic construction. There is a
continuous range of examples coming from the zero sets of Bessel processes
where the two products do not coincide. The lattice of all subsystems of the
tensor product is analised in different cases. As a by-product, the Arveson
systems coming from Bessel zeros prove to be primitive in the sense of [15].

1 Introduction
In a series of seminal papers in 1989 and 1990, ARVESON associated with ev-
ery E0-semigroup (a semigroup of unital endomorphisms) on B(H) its continu-
ous product system of Hilbert spaces, Arveson system for short. Briefly, it is a
measurable family of separable Hilbert spaces E = (Et)t≥0 with an associative
identification

Es⊗Et = Es+t , s, t ≥ 0.

ARVESON showed in [3] that E0-semigroups are classified by their Arveson sys-
tem up to cocycle conjugacy. By a spatial Arveson system we understand a pair
(E ,u) of an Arveson system E and a normalised unit u. The latter is a measurable
section u = (ut)t≥0 of unit vectors ut ∈ Et that factor as

us⊗ut = us+t , s, t ≥ 0.

For a thorough account on Arveson systems we refer to the monograph [4].
It is known that the structure of a spatial Arveson system (E ,u) depends on the

choice of the reference unit (ut)t≥0. In fact, TSIRELSON [30] and MARKIEWICZ
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AND POWERS [19] showed for example Arveson systems (Et)t≥0 with normalised
units (ut)t≥0 and (vt)t≥0 that there does not exist an automorphism of E that sends
(ut)t≥0 to (vt)t≥0. Thus we have to distinguish Arveson systems and spatial Arve-
son systems carefully.

The focus of the present paper is the spatial product of two spatial Arveson
systems (E ,u) and (F ,v). It is, as a subsystem of (Et⊗Ft)t≥0, formally given
by

(E u⊗vF )t = lim
(t1,...,tn)∈Πt

n⊗
i=1

((ut⊗ v⊥t )⊕ (Cut⊗ vt)⊕ (u⊥t ⊗ vt)). (1)

Here, the limit is taken over finer and finer partitions of [0, t]. This is exactly the
description of the product system arising from Powers sum of E0−semigroups,
see [22, 8]. It also arises as a special case of inclusion systems [9]. For this
structure, the two units u and v are glued together into one unit of the product.

Interestingly, [23] showed that a similar construction works for product sys-
tems of Hilbert modules, too. This was very important, since for general product
systems of Hilbert modules, the fibrewise tensor product need not yield a product
system. Unfortunately, the random set technique used below was not extended to
the module situation yet. Thus, we deal here with Arveson systems only.

Not spatial Arveson systems as such, but also their spatial product depends a
priori on the choice of the reference units of its factors. This immediately raises
the question whether different choices of references units yield isomorphic prod-
ucts or not. In [10] this question was answered in the affirmative sense. One aim
of the present papers is to show how this universality comes quite naturally from
the random set point of view on Arveson systems. Only after knowing the result
from a former version of the present paper, [10] achieved the same goal without
explicit reference to random sets. Meanwhile, there are follow-up papers [12, 20]
which generalise this result.

From (1) it is easy to see that the spatial product is a subsystem of the tensor
product system. Nevertheless, the nature of this embedding is not completely
clarified. Using the random set construction of [18], we characterise here the
embedding of the spatial product into the tensor product easily. These random set
structures arise naturally with any embedding G ⊆ E of Arveson systems in the
following way. Consider the projections

Ps,t = 1Es⊗PrGt−s⊗1E1−t ∈B(E1 = Es⊗Et−s⊗E1−t)

on E1. They fulfil the relation

Pr,sPs,t = Pr,t 0≤ r ≤ s≤ t ≤ 1

It was one of the results of [18], inspired by [28], to give the interesting part of
the (normal and separable) representation theory of these relations, identifying the
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projection Ps,t with multiplication by the {0,1}-valued random variable

Xs,t(Z) =
{

1 Z∩ [s, t] = /0
0 Z∩ [s, t] 6= /0

on the space C[0,1] = {Z ⊆ [0,1] : Z closed} equipped with a suitable probability
measure. Multiplicity is encoded in a direct integral of Hilbert spaces as usual,
see Theorem 9.3 below. Having the representation for such projections at hand, it
is quite easy to compute functions of those projections. In the present situation,
we want to compute the projection onto (E u⊗vF )1 which characterises E u⊗vF
completely. A few basic facts about the relevant measures then yield indepen-
dence of the construction from the reference units, solving a question raised by
Powers in [21]. This solution was presented also in [10] with a different proof not
using the random set structure explicitly. But that proof, unobviously, computed
just consequences of the random set structure without reference to it. We hope to
convince the reader that using random sets gives a much more clear derivation of
the results and that the present paper is worthwhile.

Note that there are examples that the two products form nonisomorphic prod-
uct systems, provided by [21] together with [2] based on the CP-flow technique.
Below, another series of examples is provided. Those examples use the Arveson
systems coming from the zero sets of Bessel diffusions as introduced already by
TSIRELSON [28]. Those examples are all of type II0 but nonisomorphic. As a by-
product, we show that those product systems are really primitive in the sense that
they contain only trivial subsystems. Thus they are also prime product systems
in the sense of [15]. Further, spatial products of the Bessel zero Arveson systems
have a quite similar structure, with a rich group of automorphisms, compared to
the behavior of type I1 Arveson systems under the (spatial) product. Still, we
do not know whether these examples really differ from those in [21]. Still, there
does not seems to be a proof that the spatial product is intrinsic using the CP-flow
technique.
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Molisse, Campobasso, 2009. Special thanks to M. Skeide for the warm hospitality
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Further, discussions with B.V.R. Bhat, K. Waldorf, D. Markiewicz and P. Moert-
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suggestions helped to improve the presentation.
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2 Continuous product systems of Hilbert spaces
Let us start with some definitions.

Definition 2.1 An Arveson system is a measurable family E = (Et)t≥0 of separa-
ble Hilbert spaces endowed with a measurable family of unitaries Vs,t : Es⊗Et 7→
Es+t for all s, t ≥ 0 which fulfils for all r,s, t ≥ 0

Vr,s+t ◦ (1Er ⊗Vs,t) =Vr+s,t ◦ (Vr,s⊗1Et ).

Definition 2.2 A unit u of an Arveson system is a measurable non-zero section
(ut)t≥0 through (Et)t≥0, which satisfies for all s, t ≥ 0

us+t =Vs,tus⊗ut = us⊗ut .

If u is normalised (‖ut‖= 1∀t ≥ 0), the pair (E ,u) is also called spatial Arveson
system. For any Arveson system E denote U1(E ) the set of all normalised units
of E .

Remark 1 We do not make the definition of measurability more explicit through-
out this paper. For a thorough discussion see [18], especially section 7 there.
Most importantly, by [18, Theorem 7.7] existence of a compatible measurable
structure for an Arveson system is determined by the algebraic structure (given
by the family (Vs,t)0≤s≤t) alone. The example Arveson systems introduced below
obey that condition.

Another distinction to [3] is the inclusion of the trivial 0- and 1-dimensional
product systems and of time 0. This way the order structure of Arveson subsystems
becomes simpler.

In the sequel we drop the operators Vs,t whenever there is no loss of precision.

Definition 2.3 Let additionally F be another Arveson system with unitaries (Ws,t)0≤s,t .

1. We say that θ = (θt)t≥0 is an isomorphism of product systems if θt : Et 7→Ft
is a unitary for all t ≥ 0 and for all s, t ≥ 0

θs+t ◦Vs,t =Ws,t ◦ (θs⊗θt).

If F = E , θ is called automorphism.

2. We call F a subsystem of E if Ft ⊆ Et for all t ≥ 0 and Ws,t = Vs,t |Fs⊗Ft
for all s, t ≥ 0.
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Then
Aut(E ) = {θ : θ is an automorphism of E }

is a group under pointwise composition, called gauge group of E .
According to [23], [8] we introduce now another product, the spatial product

of Arveson systems. For this and further use later, observe by [18, Theorem 5.7]
that for an Arveson system E the set

S (E ) = {F : F is an Arveson subsystem of E }

forms a (complete) lattice with respect to the fibrewise inclusion order. Thus
E ′∨F ′ denotes the smallest Arveson subsystem containing both E ′ and F ′. Un-
der slight abuse of notation, we identify normalised units u with the subsystem
(Cut)t≥0.

Definition 2.4 Let (E ,u) and (F ,v) be two spatial Arveson systems. We define
their spatial product as

E u⊗vF := (u⊗F )∨ (E ⊗ v)⊆ E ⊗F

For a more explicit definition (see e.g. [8]), let

Π
t = {(t1, . . . , tn) : n ∈ {1,2, . . .} , ti > 0, t1 + · · ·+ tn = t}

denote the set of interval partitions of [0, t] (in a suitable parametrisation). We
order Πt by (t1, . . . , tn) ≺ (s1, . . . ,sm) if n ≤ m and there is a strictly increasing
map ϕ : {1, . . . ,n,n+1} 7→ {1, . . . ,m,m+1} with ϕ(1) = 1, ϕ(n+ 1) = m+ 1,
and

ti = sϕ(i)+ · · ·+ sϕ(i+1)−1∀i = 1, . . . ,n.

Further, for any vector w in a Hilbert space denote w⊥ its orthogonal comple-
ment.

Proposition 2.1 ([10, Proposition 2.7]) Let (E ,u) and (F ,v) be two spatial Arve-
son systems. Define Hilbert spaces

Gu,v
t = ut⊗ v⊥t ⊕Cut⊗ vt⊕u⊥t ⊗ vt . (2)

Then for all t > 0

(E u⊗vF )t = lim
(t1,...,tn)∈Πt

Gu,v
t1 ⊗Gu,v

t2 ⊗·· ·⊗Gu,v
tn−1
⊗Gu,v

tn . (3)

Remark 2 The work on inclusion systems [9] is a direct generalisation of this
inductive limit technique.
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The main question now is whether the inclusion E u⊗vF ⊆ E ⊗F might be
proper. The answer is reported later.

For any (spatial) Arveson system we introduce its type I part

E U =
∨

u∈U1(E )

u,

the Arveson subsystem generated by its units. E is called type I, if E = E U ,
type II if E U 6= 0,E , and type III if E U = 0 or U1(E ) = /0. E U is isomorphic
to an Arveson system (Γ(L2([0, t],K )))t≥0 of symmetric Fock spaces for some
separable Hilbert space K [3]. dimK is an invariant called index of E . We
subclassify the types I, II according to their index. This means, e.g., that for n ∈N
an Arveson system of type In is isomorphic to ((Γ(L2([0, t],Cn))))t≥0 [3]. It is
easy to see that the index is additive under both the tensor product and the spatial
product.

3 Product Systems and Random Sets
If E is an Arveson system, there is an important unitary one parameter group
(τt)t∈R⊂B(E1) acting for t ∈ (0,1) with regard to the representations E1−t⊗Et ∼=
E1 ∼= Et⊗E1−t as flip:

τtx1−t⊗ xt = xt⊗ x1−t (x1−t ∈ E1−t , xt ∈ Et). (4)

The operators τt for t /∈ (0,1) are obtained by 1−periodic continuation. These
unitaries yield via

Θt(a) = τ
∗
t aτt (a ∈B(E1)),

a periodic one parameter automorphism group (Θt)t∈R on B(E1).
Observe that any Arveson subsystem G of an Arveson system E yields a fam-

ily (PG
s,t)0≤s<t≤1 of projections

PG
s,t = 1Es⊗PrGt−s⊗1E1−t ∈B(E1 = Es⊗Et−s⊗E1−t). (5)

This family fulfils the following relations

PG
s,tP

G
t,u = PG

s,u 0≤ s≤ t ≤ u≤ 1

PG
s+u,t+u = Θu(PG

s,t) 0≤ s≤ t ≤ 1,−s≤ u≤ 1− t.

The following theorem makes the rôle of (distributions of) random sets in
Arveson systems apparent. Thereby, let C[0,1] denote the space of closed subsets
of the unit interval. It is a compact metric space itself, with a corresponding σ -
field of Borel sets. We implicitly assume all probability measures on C[0,1] to be
defined on this σ -field.
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Theorem 3.1 ([18, Theorem 3.16]) Let E be an Arveson system, ω be a faithful
normal state on B(E1) and G be an Arveson subsystem of E .

Then there is a unique probability measure µω on C[0,1] with

µω({Z : Z∩ (
⋃

i

[si, ti]) = /0}) = ω(PG
s1,t1 · · ·P

G
sk,tk) (0≤ si < ti ≤ 1)

Further, there is a unique normal isomorphism jG ,

jG : L∞(µω) 7→ {PG
s,t : 0≤ s < t ≤ 1}′′ ⊂B(E1),

with
jG (1{Z∩[s,t]= /0}) = PG

s,t (0≤ s < t ≤ 1).

4 Stationary factorising measure types
We saw above that the space L∞(µω) seems to play a more fundamental rôle than
the measure µω itself. That means, equivalent measures yield the same structure.
We want to formalise this.

Recall that a measure type is an equivalence class of probability measures,
where equivalence of measures µ and ν (symbol µ ∼ ν) means that µ and ν have
the same null sets.

On C[0,1], we have the natural operations of restriction Z 7→ Zs,t = Z∩ [s, t] and
circular shift Z 7→ Z+t := Z + t (mod 1). The first gives rise to an image measure
µs,t , the second to the image measure µ + t. The convolution associated with ∪ is
denoted by ∗. These notions transfer naturally to measure types.

Definition 4.1 A measure type M on C[0,1] is stationary factorising if

Mr,t = Mr,s ∗Ms,t (0≤ r < s < t ≤ 1)
Mr,s + t = Mr+t,s+t (0≤ r < s < s+ t ≤ 1)

Theorem 4.1 ([18, Theorem 3.22 and Corollary 6.2]) In the situation of Theo-
rem 3.1,

M G = {µω : ω faithful }

is a stationary factorising measure type.

5 The embedding E u⊗vF ⊆ E ⊗F

We use also the following extension of Theorem 3.1:
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Proposition 5.1 ([18, Proposition 3.32]) Suppose for two subsystems G1,G2 of
an Arveson system that the projection families PG1 ,PG2 commute.

Then there exists for all normal states ω on B(E1) a unique probability mea-
sure µω on C[0,1]×C[0,1] with

µω(
{
(Z1,Z2) : Z j∩

⋃
i

[s j
i , t

j
i ] = /0

}
) = ω(∏

j
∏

i
PG j

s j
i ,t

j
i
).

The corresponding measure type is denoted M G1,G2 .
Further, there exists unique isomorphism JG1,G2 : L∞(M G1,G2) 7→B(E1) with

JG1,G2(1{(Z1,Z2):Z j∩[s,t]= /0}) = P j
s,t ( j = 1,2).

Denote for a closed set Z ⊆ R≥0 the set of its limit points by Ẑ. I.e.,

Ẑ =
{

t ∈ Z : t ∈ Z \{t}
}
=
{

t ∈ Z : ∃Z 3 tn 6= t,n ∈ N, t = lim
n→∞

tn
}
.

This means that Z \ Ẑ is the countable set of isolated points of Z.

Example 5.1 ([18, Proposition 3.33]) Consider G1 = Cu for a unit (ut)t≥0 and
G2 = E U . Then

JG1,G2( f ) = Ju,E U ( f ) = Ju(g)

where g(Z) = f (Z, Ẑ).

Proposition 5.2 For spatial Arveson systems (E ,u), (F ,v) it holds

PE u⊗vF
s,t = JE⊗v,u⊗F (1{(Z1,Z2):Z1∩Z2∩[s,t]= /0}) (6)

Remark 3 Compare this expression to [21, Theorem 2.1], which seems to com-
pute PG

0,1 in a special case. Observe that the latter projection identifies already
the corresponding Arveson subsystem.

Proof. We use Proposition 2.1. Using the notation (2) we derive

Gu,v
t ⊗E1−t⊗F1−t = JE⊗v,u⊗F (1{(Z1,Z2):Z1∩[0,t]= /0 or Z2∩[0,t]= /0}).

By normality of JE⊗v,u⊗F we obtain

PE u⊗vF
0,1 = lim

(t1,...,tn)∈Π1
PrGu,v

t1
⊗PrGu,v

t2−t1
⊗·· ·⊗PrGu,v

tn−tn−1

= lim
(t1,...,tn)∈Π1

JE⊗v,u⊗F (1{
(Z1,Z2):∀i:Z1∩[∑i

j=1 t j,∑
i+1
j=1 t j]= /0 or Z2∩[∑i

j=1 t j,∑
i+1
j=1 t j]= /0

})
= JE⊗v,u⊗F ( lim

(t1,...,tn)∈Π1
1{

(Z1,Z2):∀i:Z1∩[∑i
j=1 t j,∑

i+1
j=1 t j]= /0 or Z2∩[∑i

j=1 t j,∑
i+1
j=1 t j]= /0

})
= JE⊗v,u⊗F (1{(Z1,Z2):Z1∩Z2= /0}).
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Formula (6) for s 6= 0 or t 6= 1 follows immediately since PE u⊗vF
0,1 determines the

whole Arveson system E u⊗vF . This completes the proof.

Proposition 5.3 The relation E u⊗vF = E ⊗F is valid if and only if

Z1∩Z2 = /0 (M u⊗M v−a.s.) (7)

if and only if
Ẑ1∩ Ẑ2 = /0 (M u⊗M v−a.s.) (8)

Proof. The first assertion is clear. The second one follows from the fact that Z1 \ Ẑ1
and Z2 \ Ẑ2 are countable. Since (E ,u) and (F ,v) are spatial, both Z1and Z2 are
different from [0,1] almost surely. Then we know from [18, Proposition 4.4] that
such a stationary factorising random set almost never meets a countable set and
we conclude

Z1∩Z2 = Ẑ1∩Z2 = Ẑ1∩ Ẑ2 (M u⊗M v− a.s.)

This completes the proof.

Corollary 5.1 If the lattice S (E u⊗vF ) has finite depth and (7) is not fulfilled,
E ⊗F 6∼= E u⊗vF .

Proof. If (7) is not valid, E u⊗vF is a proper subsystem of E ⊗F . If both were
isomorphic, iteration of this observation would yield an infinite chain of Arveson
subsystems in S (E u⊗vF ).

Corollary 5.2 In the following cases we have that E u⊗vF = E ⊗F :

1. One of E or F is type I.

2. Z is countable M u-a.s. or M v-a.s.

Proof. 1. Suppose F is type I. Then Ẑ = /0 M v-a.s., since Z is M v-a.s. finite by
[18, Proposition 3.33]. (8) gives the desired conclusion.

2. [18, Proposition 4.4] yields again the conclusion.
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6 The spatial product does not depend on the units
A direct consequence of Proposition 5.3 is that E u⊗vF is intrinsic, i.e. it does
not depend on the choice of u and v. Another formulation of the proof without
explicit reference to random sets can be found in [10, Theorem 3.1].

Theorem 6.1 Let (E ,u), (E ,u′), (F ,v) and (F ,v′) be spatial Arveson systems.
Then

E u⊗vF = E u′⊗v′F .

Proof. We know from [18, Proposition 3.33] for f ∈ L∞(M u) that Ju( f ◦ ·̂) =
JE U ( f ). By Proposition 5.3 this shows

PE u⊗vF
s,t = JE⊗v,u⊗F (1{(Z1,Z2):Ẑ1∩Ẑ2∩[s,t]= /0})

= JE⊗FU ,E U ⊗F (1{(Z1,Z2):Z1∩Z2∩[s,t]= /0}).

The last expression is independent of u and v.

Corollary 6.1 It holds

E u⊗vF = (E U ⊗F )∨ (E ⊗FU ).

Thus, we use E ⊗U F as new symbol for E u⊗vF . This is also consistent
with the amalgamation procedure from [9]. Note that [10] introduced the symbol
E ⊗0 F .

7 From measure types to Hilbert spaces
Before we study special examples of Arveson systems, we want to present the
general mechanism for constructing those examples. It dates back to TSIRELSON

[28].
If µ ∼ µ ′ are two measures on the same space (here C[0,1]), the abelian von

Neumann algebras L∞(µ) and L∞(µ ′) coincide, and we observe a canonical space
L∞(M ) if M is the measure type of µ and µ ′. Now we want to present an intrinsic
construction of a Hilbert space L2(M ). In this we follow [28, 29] or originally
[1].

Define for any µ,µ ′ ∈M a unitary Uµ,µ ′ : L2(µ) 7→ L2(µ ′) through

Uµ,µ ′ψ(Z) =

√
dµ ′

dµ
(Z)ψ(Z) (ψ ∈ L2(µ),µ− a.a. Z ∈ C[0,1]). (9)
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Then

L2(M ) =
{
(ψµ)µ∈M : ψµ ∈ L2(µ)∀µ ∈M ,ψµ ′ =Uµ,µ ′ψµ∀µ,µ ′ ∈M

}
(10)

is a Hilbert space with the inner product

〈ψ,ψ ′〉L2(M ) =
∫

ψµψ
′
µdµ.

This inner product is independent from the choice of µ ∈M .
Now we obtain

Proposition 7.1 ([18, Proposition 4.3]) Let M be a stationary factorising mea-
sure type on C[0,1] different from

{
δ[0,1]

}
. Define operators Vs,t : L2(M0,s)⊗

L2(M0,t) 7→ L2(M0,s+t) for 0≤ s, t, s+ t ≤ 1 through

(Vs,tψ⊗ψ
′)µs∗(µ ′t+s)(Z) = ψµs(Z∩ [0,s])ψ ′µ ′t (Z∩ [s,s+ t]− s)

Then Vs,t are well-defined unitaries and give rise to an Arveson system E = E M =
(Et)t≥0 with Et = L2(M0,t) for 0≤ t ≤ 1.

One unit u ∈U1(E ) is determined by

(ut)µ0,t (Z) = µ0,t({ /0})−1/2 1{ /0}(Z)

for t ∈ [0,1]. Then M u = M .

All examples of such measure types used in this paper come from hitting sets
of strong Markov processes (Xt)t≥0. Basically, such sets are constructed by

Z = {t + τ : Xt = x∗}

where x∗ is a suitable point and τ is a random variable independent from (Xt)t≥0
with law equivalent to Lebesgue measure on R≥0. Please note that only almost
sure properties of these random sets are important, not the special probabilistic
structure. E.g., without loss of generality, we may assume τ ∼ Exp1.

If x∗ is a suitable point then there is a nonnegative right-continuous increasing
process (Ms)s≥0 with stationary independent increments upto a certain life time
such that conditional on X0 = x∗,

{t : Xt = x∗}= {Ms : s≥ 0}.

(Ms)s≥0 is called subordinator, see [5] for a thorough account on these processes
and their range.
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For a coarse classification of those random sets, remember the definition of
Hausdorff-dimension of a set Z. For α > 0 the α-dimensional Hausdorff measure
of a Borel set Z is defined as

Hα(Z) = sup
ε>0

Hα
ε (Z), (11)

where

Hα
ε (Z) = inf

{
∑
i∈N

∆(Bi)
α : (Bi)i∈N are sets with ∆(Bi)≤ ε and

⋃
i∈NBi ⊇ Z

}
,

(12)
denoting ∆(B) the diameter of B. Then the Hausdorff dimension dimH Z of a Borel
set Z is defined by

dimH Z = inf{α > 0 : Hα(Z)> 0} .

We consider even more special hitting sets, coming from Bessel diffusions:

Example 7.1 ([28]) Let
(

X (d)
t

)
t≥0

be a Bessel diffusion with parameter d > 0

starting in a point x0 > 0. This means
(

X (d)
t

)
t≥0

is a strong Markov (diffusion)

process on R≥0 with generator

dEx f (X (d)
t )

dt

∣∣
t=0 =

1
2

f ′′(x)+
d−1

2x
f ′(x).

Throughout this work, let Ex and Px denote the conditional expectation and con-
ditional probability given X0 = x respectively. For d ∈ N we could realise this
process via X (d)

t =
∥∥Bd

t
∥∥, where

(
Bd

t
)

t≥0 is d-dimensional Brownian motion. In
the general case, the Bessel process is also defined as the (unique) nonnegative
solution of the stochastic differential equation

dXt = dWt +
d−1

2
1
Xt

dt.

Then we write
(

X (d)
t

)
t≥0
∼ BES(d,x0).

According to the above mentioned scheme, define a random closed set Z ∈
C[0,1] by

Z =
{

t ≥ 0 : X (d)
t = 0

}
∩ [0,1]

Observe that in this case the subordinator is stable of index d [5]. This means

Ee−λMs = esλ d
.
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Moreover, for d ≥ 2 Z = /0 a.s. So we restrict to d ∈ (0,2) for the rest of the paper.
Then the measure type Md = {µ : µ ∼L (Z)}, which does not depend on x0,

is stationary factorising. Moreover, Md-a.s. the set Z has Hausdorff dimension
1− d

2 near every of its points. This means for all (s, t) with Z∩ (s, t) 6= /0 it holds
dimH(Z∩ (s, t)) = 1− d

2 .
As a consequence Z has no isolated points: Ẑ = Z. This immediately implies

that the Arveson system (Et)t≥0 determined by Et = L2(M0,t), t ∈ [0,1], is type
II0 [18, Corollary 4.7], [28]. In the sequel, we denote this Arveson system by E d .
Further, Ẑ = Z Md−a.s. also implies Md = M U . The latter measure type is an
invariant of E by [18, Theorem 3.22] and we conclude that E d 6∼= E d′ for d′ 6= d
(as long as both are < 2), see also [28].

One more construction is useful in the sequel: The local time of the diffusion
in 0. This local time, denoted (Lt)t≥0, is the inverse of the subordinator (Ms)s≥0:

Lt = sup{s > 0 : τ +Ms ≤ t}

Since t 7→ Lt is a random increasing nonnegative function, it is the cumulative
distribution function of a random measure. It is easy to see that the support of this
measure is just Z. By results of [13] this measure is just the restriction of a certain
Hausdorff measure to Z. Thus this random measure depends on Z only and we
write Lt(Z).

8 Bessel zeros yields primitive Arveson systems
Definition 8.1 A spatial Arveson system (E ,u) is called primitive, if S (E ) =
{0,u,E }.

A spatial Arveson system (E ,u) is prime (spatially prime), if for Arveson sys-
tems F ,G with F ⊗ G = E (F ⊗U G = E ) it follows that either F or G is
trivial, i.e. it is isomorphic to (C)t≥0.

According to [18, Proposition 4.32, Note 4.33] for all k = 1,2 . . . there are un-
countably many examples of type IIk Arveson systems which are prime and spa-
tially prime. We now focus on examples of prime type II0 Arveson systems.

In [15] there was derived a useful criterion for Arveson systems to be prime:

Proposition 8.1 If for a spatial Arveson system (E ,u) the lattice S (E ) is totally
ordered then E is both prime and spatially prime.

Especially, primitive Arveson systems are both prime and spatially prime.

Proof. Analogous to [15].
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The aim of the present section is the proof of

Theorem 8.1 E d is primitive for all 0 < d < 2.

Remark 4 This solves a question raised in [18, Example 5.16]. To our knowl-
edge, these are the first proven nontrivial examples of primitive Arveson systems.

For a proof, we still need some more structure.

Definition 8.2 Suppose M is a stationary factorising measure type on C[0,1].
Then an M -local stationary opening is a measurable map ϕ : C[0,1] 7→ C[0,1] with

(i) ϕ(Z)⊆ Z for all Z ∈ C[0,1],

(ii) ϕ(Z + t) = ϕ(Z)+ t for all t ≥ 0 and M -a.a. Z, and

(iii)
ϕ(Z∩ [s, t]) = ϕ(Z)∩ [s, t]

for all 0 < s < t ≤ 1 for M -a.a. Z.

Remark 5 The name “opening” for operators with property (i) is common in
mathematical morphology, see e.g. [14].

The importance of this notion lies in

Proposition 8.2 ([18, Lemma 5.14]) Let M be a stationary factorising measure
type on C[0,1] and E = E M the associated Arveson system. Suppose E is type II0
and F 6= 0 is a subsystem of E .

Then there exists an M -local stationary opening ϕ such that

PF
s,t = 1{Z:ϕ(Z)∩[s,t]= /0} (0 < s < t ≤ 1).

Conversely, every M -local stationary opening gives rise to a nonzero Arveson
subsystem this way.

The next proposition is concerned with the probabilistic characterisation of
Arveson subsystems of E d , or more generally Arveson systems arising from mea-
sure types of hitting sets of strong Markov processes. For a stochastic process
(Xt)t≥0 on a probability space (Ω,Σ,P) introduce the canonical (augmented) fil-
tration ΣX ,

Σ
X
t =

⋂
ε>0

σ({Xs : s≤ t + ε}∪{B ∈ Σ : P(B) = 0})
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Proposition 8.3 Let (Xt)t≥0 be a strong Markov process with a.s. continuous
paths in Rm such that for some x∗ ∈ Rm the distribution of

ZX = {t ∈ [0,1] : Xt = x∗} ∈ C[0,1]

is quasistationary and quasifactorising with measure type M .
If the filtration ΣX is right continuous then any M -local stationary opening

fulfils either ϕ(Z) = /0 P-a.s. or ϕ(Z) = Z P-a.s.

Proof. For realisations with ZX = /0 there is nothing to prove. We introduce the
random variable τ = inf{t > 0 : Xt = x∗} such that Xτ = x∗. Then the random
variable

Y =

{
1 τ ∈ ϕ(ZX)
0 τ /∈ ϕ(ZX)

is well-defined. Now by the strong Markov property, the process
(
X̃t
)

t≥0, X̃t =

Xτ+t , is distributed according to Px∗ . By definition and locality of ϕ , Y is
⋂

ε>0 ΣX̃
ε -

measurable. Thus, by the Blumenthal 0-1 law, P(Y = 1)∈ {0,1}. Moreover, from
[17, Theorem 22.13] we know that

ZX = {Ms + τ : s≥ 0}∩ [0,1]

where (Ms)s≥0 is the subordinator associated with X and x∗ which is independent
of τ . It follows from the time symmetry of subordinators that we can apply the
same arguments to the set T − ZX

0,T . This means for τT = sup{t < T : Xt = x∗}
that P(τT ∈ ϕ(ZX)) ∈ {0,1}, too. Introduce for all q ∈Q∩R≥0 random variables
Y±q ∈ {0,1}:

Y+
q =

{
1 if inf(ZX ∩ (q,∞)) = inf(ϕ(ZX)∩ (q,∞))
0 otherwise

and

Y−q =

{
1 if sup(ZX ∩ (0,q)) = sup(ϕ(ZX)∩ (0,q))
0 otherwise .

It is easy to see from quasistationarity and quasifactorisation that there exists a
fixed y ∈ {(0,0),(0,1),(1,0),(1,1)} such that it holds P-a.s. (Y−q ,Y+

q ) = y for all
positive q ∈Q∩R≥0.

It is clear that y=(0,0) implies ϕ(Z)= /0. Similarly, y=(1,1) implies ϕ(Z)=
Z.

Let us exclude y = (0,1). Choose some t ∈ ZX \ϕ(ZX) and qn↗n→∞ t, qn ∈
Q∩ (0, t). Then Y+

qn
= 1 indicates that there are tn ∈ ϕ(ZX), qn < tn < t. This

implies limn→∞ tn = t. Since ϕ(ZX) is closed, t ∈ ϕ(ZX) contradicting t ∈ ZX \
ϕ(ZX).

The case y = (1,0) is excluded by the same arguments. This completes the
proof.
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Remark 6 There is the more general bar code construction of [29] giving a vast
resource for examples of quasistationary quasifactorising random sets from hit-
ting times sets of diffusions. Unfortunately, Proposition 8.3 does not apply in
general, for the hitted set used in [29] is not point like.

Proof of Theorem 8.1. The claim follows from application of the previous result
and Proposition 8.2 to x∗ = 0 and (Xt)t≥0 ∼ BES(d,x0).

We can prove even more than primitivity for E d , its gauge group is two-
dimensional. Remember the definition of Lt(Z) from Example 7.1

Theorem 8.2 Any θ ∈ Aut(E d) has the form

θt f (Z) = ei(γ0t+γ1Lt(Z)) f (Z)

for some real γ0,γ1.

Remark 7 A similar theorem holds for endomorphisms.

Proof. We know that θ should leave E U invariant. Thus there is γ0 ∈ R such that

θtut = eiγ0tut

for the standard unit of E d . Without loss of generality, let γ0 = 0. Then θ1 shall
commute with all the projections Pu

s,t defined by the unit through (5). But those
projections generate a maximal abelian von Neumann subalgebra of B(E1). Thus
θ1 is in this subalgebra and we find a measurable function λ : C[0,1] 7→ T such that
θ1 f (Z) = λ (Z) f (Z). Now we obtain from γ0 = 0 that λ ( /0) = 1. Furthermore, for
all t and Md−a.a. Z ∈ C[0,1] it must hold

λ (Z + t) = λ (Z)
λ (Z) = λ (Z0,t)λ (Zt,1).

From these relations, we could extend λ to
⋃

n≥1 C[0,n], e.g. on C[0,2]

λ (Z) = λ (Z0,1)λ (Z1,2−1).

Suppose now Z ∈ CR≥0 is the full zero set of a Bessel process with first hitting
time τ .

Remember the definition of the subordinator (Ms)s≥0 from Example 7.1. Then
it is easy to see from the strong Markov property and measurability of λ that the
S1-valued process (ηs)s≥0,

ηs(Z) = λ (Z∩ [0,τ +Ms])
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has stationary independent multiplicative increments and measurable paths. Fix
ε > 0. Then the latter property shows that the set Sε(Z) of times s, where η makes
larger jumps than ε , is locally finite almost surely. Consequently,

φ(Z) = {τ +Ms : s ∈ Sε(Z)}

is an Md-local stationary opening with φ(Z) ( Z. By Proposition 8.2, φ(Z) = /0
a.s. Since ε was arbitrary, η must have continuous paths a.s.

As a consequence, there is almost surely a continuous version of

t 7→ 1
i

logλ (Z∩ [0, t]) = ζt(Z).

Clearly, (ζt)t≥0 is an additive functional of the Bessel process. Since λ ( /0) = 1 ζ

changes only on the zero set Z. By [17, Theorem 19.24], ζ has to be a multiple of
the local time. Thus there is some γ1 ∈ R such that

λ (Z) = eiγ1L1(Z)

for Md−a.a. Z ∈ C[0,1]. As θ1 determines θ , this completes the proof.

9 Products of Arveson systems of Bessel zeros
Now we want to analyse the spatial and tensor products of the Arveson systems
E d,E d′ .

First we want to check the condition from Proposition 5.3. Remember that
dimH(Z) is the Hausdorff dimension of any set Z ⊆ [0,1].

Theorem 9.1 Assume that 0 < d1,d2 < 2 and let the distribution of Zi, i = 1,2 be
from Mdi .

If d1 +d2 ≥ 2 then almost surely Z1∩Z2 = /0 and E d1 ⊗U E d2 = E d1⊗E d2 .
If d1 +d2 < 2 then with positive probability Z1∩Z2 6= /0. Furthermore, almost

surely for all s < t with Z1∩Z2∩ (s, t) 6= /0

dimH(Z1∩Z2∩ (s, t)) = 1− d1 +d2

2
(13)

Consequently, in this case,

E d1 ⊗U E d2 $ E d1⊗E d2.

Proof. By a result of SHIGA AND WATANABE [26], we know that for Bessel pro-
cesses (Xt)t≥0 ∼ BES(d,x), (X ′t )t≥0 ∼ BES(d′,x′) the process Y ,

Yt =

√
X2

t +(X ′t )2
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is distributed as (Yt)t≥0 ∼ BES(d +d′,
√

x2 +(x′2)). Now{
t : Xt = 0,X ′t = 0

}
= {t : Yt = 0}

Since we know that for any 0≤ s < t Md+d′-a.s. either Z∩ [s, t] = /0 or dimH(Z∩
[s, t]) = 1− d+d′

2 this proves the required statements.
Proposition 5.3 completes the proof.

Remark 8 Please note that we used the special structure of Md here. Neverthe-
less, most of the implications hold true in much more generality, using techniques
from [16] to compute Hausdorff dimensions of stationary random sets.

Theorem 9.2 Suppose d1 6= d2, 0 < d1,d2 < 2.
Then

E d1⊗E d2 ∼= E Md1∗Md2 .

Moreover, E d1 ⊗ E d2 has at most 5 proper subsystems: 0, u⊗ v, u⊗ E d2 ,
E d1⊗ v, and E d1 ⊗U E d2 . The last one appears if and only if d1 +d2 < 2. Then it
is not isomorphic to E d1⊗E d2 .

Proof. Since the index of Arveson systems is additive, E d1 ⊗ E d2 is of type II0
again. Thus it has only one one-dimensional subsystem u⊗ v. The measure type
related to this embedding comes from the distribution of Z1 ∪Z2 where (Z1,Z2)
has a distibution from Md1⊗Md2 .

Assume w.l.o.g. d1 > d2. Then we can almost surely recover Z2 via

Z2 =

{
t ∈ Z1∪Z2 : dimH((Z1∪Z2)∩ (s,s′)) = 1− d2

2
∀s,s′ ∈Q,s < t < s′

}
.

Further, (13) and d1 >
d1+d2

2 −1 show that Z1 \Z2 must be dense near every point
of Z1. This gives Z1 = (Z1∪Z2)\Z2.

We conclude that the distribution of Z1∪Z2 is measure isomorphic to the dis-
tribution of (Z1,Z2) or E d1⊗E d2 ∼= E Md1∗Md2 .

Moreover, every Md1 ∗Md2-local stationary opening ϕ induces an Md1-local
stationary opening ϕ1 and an Md2-local stationary opening ϕ2 if one of the two
sets is empty. That means for Md1−a.a. Z1 and Md2-a.a. Z2

ϕ(Z1∪ /0) = ϕ1(Z1) and ϕ( /0∪Z2) = ϕ2(Z2).

By Proposition 8.2, each of the maps ϕ1 and ϕ2 is either almost surely the identity
or almost surely constant to the empty set.

If ϕ1(Z) = /0 for all Z, locality implies ϕ(Z1∪Z2)∩ (s, t) = /0 for all s, t such
that Z2∩(s, t) = /0. If additionally ϕ2(Z) = /0 for almost all Z, we see ϕ(Z1∪Z2)⊆
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Z1∩Z2. Now observe that Z1∩Z2 is the set of zeros of (X (d1)
t ,X (d2)

t )t≥0. Applying
Proposition 8.3 again yields either ϕ(Z1∪Z2) = Z1∩Z2 or ϕ(Z1∪Z2) = /0 almost
surely. In the former case, we obtain the subsystem E d1 ⊗E d2 . In the latter case
we find the subsystem E d1 ⊗U E d2 .

If for almost all Z ϕ1(Z)= /0 and ϕ2(Z)= Z then ϕ(Z1∪Z2)∩(s, t)= Z2∩(s, t)
if Z1∩ (s, t) = /0 such that ϕ(Z1∪Z2) = Z2. The subsystem must be E d1⊗ v.

Similar arguments work for ϕ2(Z) = /0 giving the subsystem u⊗E d2 .
It remains the case ϕ1(Z) = ϕ2(Z) = Z. Then monotonicity implies ϕ(Z1 ∪

Z2) ⊇ ϕ(Z1 ∪ /0) = Z1 and, equally, ϕ(Z1 ∪ Z2) ⊇ Z2 such that ϕ(Z) = Z. The
subsystem is u⊗ v.

Therefore, only the 5 listed subsystems are possible. Theorem 9.1 gives the
assertion.

Remark 9 This result is very similar to [21, Theorem 3.5]. But there only the
“diagonal” case d1 = d2 is considered. The only formal difference we see is the
use of all positive contractive cocycles as invariant, whereas we deal with projec-
tion valued cocycles (corresponding to Arveson subsystems). In our examples, the
space of nontrivial positive contractive cocycles of E d is one-dimensional, [21]
gives at least an estimate of dimension 2. This indicates that the two examples
are nonisomorphic. But, different from us, [21] does not compute all subsystems.
Of course it would be quite interesting to translate the QP-flows used by [21] and
others into the random-set picture by computing their Arveson system.

To complete the picture a bit more, we present a slightly surprising result in
the diagonal case.

The “diagonal case” d1 = d2 = d is more involved since we cannot transform
the situation into a question involving one random set in [0,1]. We need direct in-
tegrals dealing with the multiplicity issue of representations of abelian von Neu-
mann algebras, here L∞(M ) for the measure type M coming from embedding
G = u⊗u⊂ E , see [18, section 6]. This theory gives us

Et =
∫ ⊕

µ(dZ)Ht
Z

for a measurable family of Hilbert spaces (Ht
Z)Z∈C[0,1]

and some µ ∈M0,t . But,
also the change of measures and the product of the Arveson system should play a
rôle.

For general embeddings G ⊆ E , we look at a measurable family of Hilbert
spaces H = (Ht

Z)t≥0,Z∈C[0,t]
with

1. Ht
/0 = Gt for all t ≥ 0.
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2. There are unitaries (V s,t
Z,Z′)s,t≥0,Z∈C[0,s],Z′∈C[0,t]

, V s,t
Z,Z′ : Hs

Z ⊗Ht
Z′ 7→ Hs+t

Z∪(Z′+s)
which fulfil the associativity condition

V r,s+t
Z,Z′∪(Z′′+s) ◦ (1Hr

Z
⊗V s,t

Z′,Z′′) =V r+s,t
Z∪(Z′+r),Z′′ ◦ (V

r,s
Z∪(Z′+r)⊗1Ht

Z′′
) (14)

for all r,s, t ≥ 0 and for M0,r-a.a. Z, M0,s-a.a. Z′ and M0,t-a.a. Z′′.

Define a family F = (Ft)t≥0 of Hilbert spaces,

Ft =

{
ψ = (ψµ)µ∈M0,t : ψµ ∈

∫ ⊕
µ(dZ)Ht

Z,ψµ ′ =Uµ,µ ′ψµ∀µ,µ ′ ∈M0,t

}
.

Again, the unitaries Uµ,µ ′ are given through (9). F is equipped with product
unitaries (Ws,t)s,t≥0, Ws,t : Fs⊗Ft 7→Fs+t , given through

(Ws,tψ⊗ ψ̃
′)µ0,s⊗(µ ′0,t+s)(Z∪ (Z′+ s)) =V s,t

Z,Z′ψµ0,s(Z)⊗ψ
′
µ ′0,t

(Z′).

Then F is an Arveson system, see [18, Lemma 6.6], denote it by E M ,H .
We need the following result

Theorem 9.3 ([18, Theorem 6.7]) Let E be an Arveson system, G ⊆ E a subsys-
tem and M = M G the corresponding measure type.

Then there exists a measurable family of Hilbert spaces H = (Ht
Z)t≥0,Z∈C[0,t]

such that E ∼= E M ,H under an isomorphism respecting the natural actions of
JG (L∞(M G )) and L∞(M G ).

For the next result, let P1
C denote the one-dimensional complex projective space,

i.e. the space of all one-dimensional subspaces of C2.

Theorem 9.4 Suppose d ≥ 1.
Then Md ∗Md = Md and thus E d⊗E d 6∼= E Md∗Md .
Moreover, E d ⊗ E d has infinitely many proper subsystems: 0, u⊗ u, and a

continuum (E z)z∈P1
C

of subsystems isomorphic to E d . Thus, S (E d ⊗ E d) has
depth 4.

Proof. From Theorem 9.1 we know under Md ⊗Md that Z1∩Z2 = /0 a.s. There-
fore, [18, Proposition 4.20] shows Md ∗Md =Md . This gives us another view on
the random set (Z1,Z2)∼Md⊗Md underlying the Arveson system E d⊗E d: we
could condition on Z = Z1∪Z2. If L (Z1),L (Z2) = µ , we obtain the conditional
distribution of the pair (Z1,Z2) given Z1∪Z2 = Z as a stochastic kernel qµ(·|Z).

Let us consider the direct integral representation of E . We derive it by disin-
tegration with respect to the measure µ ∗µ ∈Md , i.e.

(E d⊗E d)t =
∫
⊕

µ ∗µ(dZ)Ht
Z

20



with
Ht

Z = L2(qµ(·|Z)).

Observe that for µ,µ ′ ∈Md the conditional distributions qµ(·|Z) and qµ ′(·|Z) are
equivalent for almost all Z.

Since Z1∩Z2 = /0 a.s., there is a partition t= (t1, . . . , tn) ∈Π1 such that for all
i either Z1∩ [t1+ · · ·+ ti−1, t1+ · · ·+ ti] = /0 or Z2∩ [t1+ · · ·+ ti−1, t1+ · · ·+ ti] = /0.
We describe this situation by (Z1,Z2)→ t. We could even choose the ti ∈ Q.
Thus there are only countably many choices of the partitions and pairs (Z1,Z2)
compatible with Z1 ∪ Z2 = Z. We conclude that qµ(·|Z) is a discrete measure.
Further, qµ({(Z1,Z2)}|Z) = qµ({(Z2,Z1)}|Z) since µ⊗µ is symmetric.

Now any Arveson subsystem G , u⊗ u ⊂ G ⊂ E is determined by Hilbert
spaces H ′t,Z ⊆ Ht,Z sharing the tensor products from the family H. We introduce
now the spaces

Gt,Z =

{(
ψ(Z, /0)
ψ( /0,Z)

)
: ψ ∈ H ′t,Z)

}
⊆ C2,

t ∈ [0,1], Z ∈ C[0,t]. By symmetry of µ ⊗ µ , these spaces are independent from
the choice of the measure µ ∈Md:

Uµ⊗µ,µ ′⊗µ ′ψ(Z, /0) =

√
qµ ′({(Z, /0)}|Z)
qµ({(Z, /0)}|Z)

ψ(Z, /0)

Uµ⊗µ,µ ′⊗µ ′ψ( /0,Z) =

√
qµ ′({( /0,Z)}|Z)
qµ({( /0,Z)}|Z)

ψ( /0,Z) =

√
qµ ′({(Z, /0)}|Z)
qµ({(Z, /0)}|Z)

ψ( /0,Z).

It is easy to see that the family H ′ is uniquely determined by G. For, consider
Z distributed according to Md and a partition t ∈Π1 like mentioned above. Then

H ′1,Z = H ′t1,Z0,t1
⊗H ′t2,Zt1,t1+t2−t1⊗·· ·⊗H ′tn,Zt1+···+tn−1,t1+···+tn−(t1+···+tn−1)

So {
(ψ(Z1,Z2))(Z1,Z2)→t : ψ ∈ H ′1,Z

}
⊆ C2n

,

is fixed. Varying t, we find that H ′1,Z and consequently all H ′t,Z are fixed by Gt,Z .
How does Gt,Z depend on t and Z? Of course, G1,Z = G1,Z+s for all s, since G

is a subsystem. Consider first

Q =

{
Z ∈ C[0,1] :

(
C
1

)
∩G1,Z 6= /0

}
.

It is easy to see that Z ∈Q if and only if (Z0,t ∈Q)∧(Zt,1 ∈Q). Also, Z ∈Q if and
only if Z+t ∈Q Md-a.s. Thus 1Q is the projection onto F1 for a subsystem of E d .
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By Theorem 8.1 those are trivial and /0 ∈ Q, thus either Q = { /0} or Q = C[0,1] al-

most surely. A similar argument applies to Q′ =
{

Z ∈ C[0,1] :
(

1
C

)
∩G1,Z 6= /0

}
.

If both Q = Q′ = { /0}, Gt,Z =

{(
0
0

)}
unless Z = /0. This means G = u⊗u.

If Q = { /0}, Q′ = C[0,1], Gt,Z =

(
0
C

)
unless Z = /0. This means

H ′t,Z = {ψ : ψ(Z1,Z2) = 0 unless Z1 = /0}

The case Q′ = { /0} and Q = C[0,1] is discussed similarly.
Now suppose Q = Q′ = C[0,1], Let

Q′′ =
{

Z ∈ C[0,1] : dimG1,Z = 1
}
.

Again we see that Z ∈ Q′′ if and only if (Z0,t ∈ Q′′)∧ (Zt,1 ∈ Q′′). Furthermore,
Z ∈ Q′′ if and only if Z + t ∈ Q′′ Md-a.s. So there are two possibilities: If Q′′ =
{ /0}, Gt,Z = C2 unless Z = /0. This means H ′t,Z = Ht,Z . Otherwise, Q′′ = C[0,1]

implies there is some λ (t,Z) ∈ C\{0} such that Gt,Z = C
(

1
λ (t,Z)

)
. Of course,

λ is stationary and fulfils almost surely

λ (1,Z) = λ (t,Z0,t)λ (1− t,Zt,1− t)

Since λ has to be measurable and λ (t, /0) = 1, we find similar to Theorem 8.2
some w ∈ C such that

λ (t,Z) = ewLt(Z)

This completes the proof.

Remark 10 Clearly, the gauge group of E d⊗E d is nontrivial. Nevertheless, this
is already for E d the case, see Theorem 8.2. Nevertheless, the gauge group of
E d ⊗ E d is even not the direct square of the gauge groups. This resembles the
type I case. Loosely speaking, we would classify

E d to be of type IIMd ,0
E d⊗E d to be of type IIMd ,1
E d⊗E d⊗E d to be of type IIMd ,2

...

We derive here some kind of conditional index. It is given by dimGt,Z−1, which
is essentially independent of t and Z as shown in the proof above. Even more, the
sections uw

t,Z ,

uw
t,Z,µ(Z1,Z2) = ct,Z,µewLt(Z1)
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play the rôle of “conditional units”. For instance, for carefully chosen constants
ct,Z,µ they fulfil

uw
s,Z⊗uw

t,Z′ = uw
s+t,Z∪(Z′+s).

Remark 11 This similarity with the Arveson system of type I1 or Arveson sys-
tems of type II1 as constructed from [18, section 4.3] gives rise to the following
question:

Let G1,G2 be two different but isomorphic subsystems of an Arveson
system E .

Does there exist a P1
C-parametrised family of mutually different sub-

systems of E , all of which are isomorphic to G1,G2?

Remark 12 If d < 1, we expect a more complicated structure and S (E d ⊗E d)
to have again depth 5. Surely, there is a chain of length 5, but now we are not
so sure about the subsystems “between” E d ⊗U E d and E d ⊗E d . At least there
seem to be parallels to type II1 Arveson systems.

Observe that the analysis of the spatial product E d ⊗U E d remains unchanged
from the case d ≥ 1.
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