¹ An age-dependent model to analyse the evolutionary ² stability of bacterial quorum sensing

A. Mund^{a,∗}, C. Kuttler^a, J. Pérez-Velázquez^{a,b}, B.A. Hense^b

a ⁴ *Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching,* ⁵ *Germany*

b ⁶ *Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1,* ⁷ *85764 Neuherberg, Germany*

⁸ **Abstract**

3

Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.

⁹ *Keywords:* Evolutionary stability, Lifestyle switch, Quorum Sensing,

¹⁰ Age-dependent models, Cooperation

¹¹ **1. Introduction**

 Cooperation between bacterial cells seems to be the rule rather than the exception, which has led to the development of a field of research called sociomi- crobiology [\(Parsek and Greenberg, 2005\)](#page-29-0). Forms of cooperation often include the release of public goods, i.e., extracellular molecules that benefit all neighbouring cells (such as antibiotica, sidephores or certain virulence factors). Some of these molecules play a crucial role for bacterial nutrition (e.g. exoglycosidase, exopro- tease). Production and release of public goods is often regulated by bacterial cell-cell communication (usually termed quorum sensing, QS) using released signals (autoinducers) [\(Fuqua et al., 1994\)](#page-27-0). Once a certain environmental con- centration of autoinducers is reached, which is usually associated with a certain cell density or number of cells, the population starts a coordinated release of public goods. The evolutionary purpose of such a control has been described

[∗]Corresponding author *PrepEint is is dubdittisst* to the Elsewier A. Address: November 27, 2015

as guaranteeing a reasonable cost/benefit ratio or efficiency [\(Hense et al., 2007;](#page-27-1)

[Hense and Schuster, 2015;](#page-27-2) [Darch et al., 2012\)](#page-26-0).

 Understanding the evolutionary stability of bacterial cooperation is challeng- $_{27}$ ing [\(Keller and Surette, 2006;](#page-27-3) [West et al., 2007a;](#page-31-0) [Ghoul et al., 2014;](#page-27-4) [Leggett et al.,](#page-28-0) [2014;](#page-28-0) [Harrington and Sanchez, 2014\)](#page-27-5). "Cheater" mutants (also called "defectors" or "free riders"), which do not contribute to the cooperation, e.g. which do not release public goods, are assumed to save costs, although they do benefit from ³¹ the public goods provided by cooperators. This theoretically predicted fitness advantage of cheaters has been confirmed with and without QS regulation *in vitro* and *in vivo* [\(Diggle et al., 2007;](#page-26-1) [Sandoz et al., 2007;](#page-30-0) [Köhler et al., 2009;](#page-28-1) [Rumbaugh et al., 2009;](#page-29-1) [Popat et al., 2012;](#page-29-2) [Pollitt et al., 2014\)](#page-29-3). In terms of game theory, such a behaviour is usually described as prisoners dilemma, where the non-cooperative behaviour is the dominant strategy [\(Archetti et al., 2011\)](#page-25-0). This raises the question, why bacterial cooperation nevertheless exists, i.e., why in the long term cheaters do not outcompete honest cooperators in nature.

 With respect to evolutionary stability, QS represents a specific situation as it involves two levels of cooperation: a) cooperation at the signalling level, as autoinducers themselves are public goods, b) cooperation on the level of QS-controlled target genes. Both are prone to cheater mutants.

 Several mechanisms explaining evolutionary stability of cooperation and QS have been described (for a recent overview see [Ross-Gillespie and Kümmerli](#page-29-4) [\(2014\)](#page-29-4)). The concepts of kin selection and multi-level selection provide additional approaches from evolutionary theory [\(Lehmann et al., 2007\)](#page-28-2). In short, these concepts require assortment by a privileged allocation of the benefits of public goods to cooperative producers [\(Damore and Gore, 2012\)](#page-26-2).

 Spatial structuring of populations is a fundamental principle allowing for assortment in bacteria. Such separation could serve to stabilize cooperation in combination with population bottlenecks [\(Brockhurst, 2007\)](#page-25-1). Spatial structuring can be caused by environmental heterogeneities, but also by self-organization via bacterial interactions [\(Frey and Reichenbach, 2011\)](#page-26-3). In biofilms, for example, cells ⁵⁴ and cheaters tend to grow in clusters [\(Nadell et al., 2010\)](#page-28-3). Both theoretical and experimental studies [\(Cremer et al., 2012;](#page-25-2) [Chuang et al., 2009;](#page-25-3) [Melke et al., 2010;](#page-28-4) [Rumbaugh et al., 2012\)](#page-29-5) showed that under certain conditions, cyclic separations of the whole population into small subpopulations and subsequent re-mixing events can protect cooperative behaviour from being completely outcompeted. Studies analysing the influence of fragmentation/re-assortment processes

 usually do not discuss specifically how these processes may be realized in nature. Most bacteria live as free-floating single cells (plankton) or in aggregates, most frequently attached to surfaces (colonies or biofilms). Fragmentation in colonies usually works as follows: Aggregates normally start with cells that attach to a surface and divide while staying together, if the conditions fit. From a growing colony, eventually cells leave, disperse and found new colonies. Initiating usually from single cells, such a lifestyle presents an extreme form of fragmentation, providing in this respect optimal conditions for the maintenance of cooperation. In contrast, the realization of fragmentation in plankton is more challenging as cyclic spatial structuring will probably only exceptionally occur (e.g. in cases

 σ of growth to flocs). Nevertheless, although a number of genes are differentially ex- pressed under planktonic and attached conditions, QS has been described for both, meaning QS is not switched off in plankton. Values of quorum sensing parame- ters have even been reported to be almost identical both under planktonic and [a](#page-25-4)ttached conditions [\(Meyer et al., 2012;](#page-28-5) [Fekete et al., 2010;](#page-26-4) [Buddrus-Schiemann](#page-25-4) [et al., 2014\)](#page-25-4).

 QS signalling within microcolonies seems to be isolated to a certain degree τ towards signals in the surrounding fluid, which strengthens the degree of separa- τ_8 tion [\(Meyer et al., 2012\)](#page-28-5). Although the amount of production can be assumed to vary quantitatively depending on the environmental conditions, QS-controlled public goods as nutritional exoenzymes and siderophores are released in both life styles [\(Evans et al., 1994\)](#page-26-5). Accordingly, a number of QS-regulated genes are expressed both under planktonic and biofilm conditions [\(Waite et al., 2006\)](#page-30-1).

 There have been different theoretical (modelling) approaches to investigate ⁸⁴ evolutionary stability of cooperation, using a broad spectrum of analytical tools. For an illustrative review on the evolution of cooperation see [West et al.](#page-31-1) [\(2007b\)](#page-31-1). [Czárán and Hoekstra](#page-26-6) [\(2009\)](#page-26-6) modelled cooperation through cellular automata, ⁸⁷ investigating the spatial aspects of cooperation. Since bacteria procreate through cell division, cells in the vicinity tend to be closely related. In this way, the results [c](#page-25-5)ould also be explained by Hamilton's Rule, which has been used in [\(Chuang](#page-25-5) [et al., 2010\)](#page-25-5).

 [Cremer et al.](#page-25-2) [\(2012\)](#page-25-2) presented an individual-based model of cooperation in microbial populations, following the experimental results of [Chuang et al.](#page-25-3) [\(2009\)](#page-25-3). [Garcia et al.](#page-27-6) [\(2014\)](#page-27-6) addressed the evolutionary dynamics of attachment and group cohesion. [Frank](#page-26-7) [\(2010\)](#page-26-7) presented an ODE model which suggests that it is the combination of mutation and demographic processes (such as local density, colony survival and dispersal) which determines the relative fitness of cooperators

 versus cheaters. In his model, cheaters are just the endpoint of a continuum of secretion rates capability.

 As mentioned, most bacteria switch between two states: attached to surfaces, which actually represents the main life style of bacteria, and plankton, which allows to disperse to new niches. A theoretical analysis about evolutionary stability of (QS regulated) cooperation regarding explicitly the biphasic life style of these bacteria is missing yet. In this paper, we thus investigate stability of QS controlled cooperation under such conditions, including mutation rates which are ignored in most similar models. Our aim is the identification of critical factors for cooperation and an analysis of the conditions for domination of wildtype or cheater mutants, or coexistence of both. We hypothesize that cooperative behaviours like the production of exoenzymes or siderophores, which are expressed both in plankton and in colonies/biofilms, can be evolutionarily stabilized for both conditions through inter-subpopulation selection in the colony state.

 In a generic modelling approach, we will analyse whether and under which conditions this hypothesis holds. For that purpose we use differential equations, as in [Frank](#page-26-7) [\(2010\)](#page-26-7). The model includes a switch between habitation in separated colonies and in plankton, growth and death, QS-controlled release of a nutritional exoenzyme, and mutations toward both signal and exoenzyme cheaters. In a first step, we will analyse the model with respect to which parameter sets promote the long term dominance of honest cells, cheater cells of both types or the co-existence of both. We first build up our model in section [2](#page-3-0) and analyse it mathematically in section [3.](#page-6-0) As a second step, we investigate the behaviour of the model through numerical simulations, using experimentally derived parameters when known. In particular, the influence of key parameters (such as cooperation costs, number of colonies and colony death rate) on the stability of the system are tested. The results are shown in section [4.](#page-11-0)

2. The basic age-dependent model

 As we want to analyse the effect of repeated mixing and separating, our model will be composed by two parts, namely population dynamics and lifestyle switch: **plankton**, where the bacteria are well mixed and from which they can separate to continue growing in **colonies**, the second lifestyle. Every bacterium in the plankton has an equally distributed chance to do so. Entire colonies can die out due to external influences, e.g. grasers, while the plankton cannot die out at once. Additionally, we assume that there are only a limited number of colony places that are fit for settlements, due to space restrictions. We consider the important processes in plankton and colonies as similar enough to assign them the same model, for simplicity's sake, since dropping this assumption would not change the general outcome of our analysis.

 For both lifestyles we assume a logistic growth, which we realize through a density-dependent mortality rate, with parameter μ . The bacteria propagate $_{138}$ with a set rate r , which is enhanced under production of QS-regulated exoenzyme. Compared to the standard formulation for the logistic growth, this corresponds to 140 a carrying capacity $K = r/\mu$. Therefore the availability of exoenzyme enhances both the growth rate as well as the environmental capacity. Table [A.1](#page-20-0) gives an overview over all occurring variables and parameters.

2.1. Population dynamics

 We consider two levels of cooperation, namely QS signal and enzyme produc- tion. Without double mutations, this translates into three sub-populations: one cheater that does not produce autoinducer (we call it AI-cheater, and denote it by *y*); another cheater that does not produce enzyme (we call it enzyme cheater ¹⁴⁸ and denote it by z) and a fully cooperative wildtype (which we denote by x). If we take a signal-blind cheater instead of a cheater that does not produce functional enzyme, our analysis still remains valid. Therefore we will concentrate on the cheater types *y* and *z*.

 We assume that wildtype bacteria turn into cheaters during replication with 153 a constant mutation rate m_y or m_z , respectively, with no reverse or double mutations, due to the very low probabilities of these happening. Because of the metabolic costs for signal and enzyme production, the cheaters will have a growth advantage over the wildtype, which is reflected in different basic growth rates: ¹⁵⁷ $r_x < r_y < r_z$. In order to keep the effects of mutation better visible, we formulate 158 the mutations as separate terms; the rates m_y, m_z are to be interpreted relative to the replication rates. This interpretation is in line with that of, for example, [zur Wiesch et al.](#page-31-2) [\(2010\)](#page-31-2), connecting the generation of mutants to the population size. The model for the three subpopulations then reads:

$$
x' = (r_x - \mu(x + y + z))x - (m_y + m_z)x,
$$
 (1a)

$$
y' = (r_y - \mu(x + y + z))y + m_y x, \tag{1b}
$$

$$
z' = (r_z - \mu(x + y + z))z + m_z x.
$$
 (1c)

¹⁶² We further assume that the regulated enzyme provides nutrients, which will 163 speed up growth with a rate $r_n \cdot n$, the main driver of bacterial growth. These 164 nutrients are present in a non-digestible form \bar{n} , which regenerate with a rate \bar{n}_0 , ¹⁶⁵ and enzymes *e* are needed to turn them into nutrients *n*. The resulting equations ¹⁶⁶ for the two forms of nutrients are:

$$
n' = c_1 e \bar{n} - c_2 n(x + y + z) - \gamma_n n,
$$
 (2a)

$$
\bar{n}' = \bar{n}_0 - c_1 e \bar{n} - \gamma_n \bar{n}, \qquad (2b)
$$

 $_{167}$ where c_1 is a measure of the enzyme "efficiency" and c_2 the nutrient uptake 168 rate of the bacteria. Additionally, both nutrients have a decay rate of γ_n . Since ¹⁶⁹ this process is much faster than bacterial growth, we can consider the nutrient ¹⁷⁰ enzyme dynamic to be in a steady state. It follows from [\(2\)](#page-4-0):

$$
n = \frac{c_1 e}{c_1 e + \gamma_n} \cdot \frac{\bar{n}_0}{c_2 (x + y + z) + \gamma_n}.\tag{3}
$$

¹⁷¹ We add equations for the QS signal (*s*) and enzyme (*e*) concentrations. While 172 there is a baseline production (α) for signal, enzyme is only produced in induced 173 cells with rate β_e . Every single cell decides whether or not to produce enzyme ¹⁷⁴ according to the signal concentration. But as we are only interested in the overall ¹⁷⁵ enzyme production and cells can be induced at slightly different signal levels, the ¹⁷⁶ overall induction is a sigmoid function of signal concentration. At the same time, 177 signal production is induced $(β_s)$. To model this behaviour, we use a Hill-function ¹⁷⁸ with Hill coefficient *h* and τ as the threshold value for induction. This way to ¹⁷⁹ [d](#page-26-8)escribe autoinducer dynamics has become quite standard, see e.g. [Dockery and](#page-26-8) ¹⁸⁰ [Keener](#page-26-8) [\(2001\)](#page-26-8).

181 In combination with decay rates γ_s , γ_e we obtain our basic model:

$$
x' = (r_x + r_n n - \mu(x + y + z))x - (m_y + m_z)x,
$$
 (4a)

$$
y' = (r_y + r_n n - \mu(x + y + z))y + m_y x,
$$
 (4b)

$$
z' = (r_z + r_n n - \mu(x + y + z))z + m_z x, \tag{4c}
$$

$$
s' = (x+z)\alpha + \beta_s(x+z) \cdot \frac{s^h}{\tau^h + s^h} - \gamma_s s,
$$
\n(4d)

$$
e' = \beta_e(x+y) \cdot \frac{s^h}{\tau^h + s^h} - \gamma_e e. \tag{4e}
$$

 These equations (together with equation [\(2\)](#page-4-0)) describe the population dynam- ics of two types of cooperation. If we study the long-time behaviour of model [\(4\)](#page-4-1) without additions, the cheaters will inescapably drive the wildtype to extinction, due to the mutation rates. To take into account the impact of the different bacterial lifestyles, namely living in plankton and/or in colonies, we include an age-dependent model.

2.2. Lifestyle switch

2.2.1. Age-dependent model for the colonies

 We will use an age-dependent framework to track the amount of time passed after a colony is colonized. The bacteria living in colonies will be represented as follows. We assume that there is an arbitrary but fixed number *L* of suitable places for colonies of which $l(t)$ are empty at time t, see figure [1.](#page-6-1) These are colonized at a rate *ξ* when a bacterium encounters them. Since there are three kinds of bacterial populations, there will be three different types of colonies whose 197 frequency we denominate by u, v and w for colonies colonized by a wildtype, an AI-cheater or an enzyme cheater, respectively. Finally, these colonies will die out again with an age-dependent colony mortality rate $\mu_K(a)$, where the age of a colony is defined as the amount of time passed since it was first colonized. We can therefore put together an age-dependent model of colony frequencies:

$$
(\partial_t + \partial_a)u(t, a) = -\mu_K(a) \cdot u(t, a), \qquad u(t, 0) = \xi x(t) \cdot l(t), \qquad (5a)
$$

$$
(\partial_t + \partial_a)v(t, a) = -\mu_K(a) \cdot v(t, a), \qquad v(t, 0) = \xi y(t) \cdot l(t), \qquad (5b)
$$

$$
(\partial_t + \partial_a)w(t, a) = -\mu_K(a) \cdot w(t, a), \qquad w(t, 0) = \xi z(t) \cdot l(t). \tag{5c}
$$

 As mentioned before, these colonies have the same basic dynamics as the plankton, which means they follow equations [\(4\)](#page-4-1) and grow from one cell to their capacity with increasing *a*. This implies that we are not able to find an explicit expression for these dynamics (there is no explicit expression for $f(a)$). But given that we are not interested any further in the colonies themselves, the amount of bacteria of type \diamond in one such colony will just be given by $f_{*,\diamond}(a)$, which is dependent on the type of bacteria that started the colony ∗ and the age of the $_{210}$ colony *a*. For example $f_{x,y}(a)$ would denote the amount of AI-cheater bacteria in a wildtype colony of age *a*. From those, some will migrate into the plankton 212 and we will call this amount $f_{*,\circ}(a)$. The total amount of bacteria that migrate will be given by

$$
p_{x,\diamond}(t) = \int_0^\infty f_{x,\diamond}(a) \cdot u(t,a) \, \mathrm{d}a \tag{6a}
$$

$$
p_{y,y}(t) = \int_0^\infty f_{y,y}(a) \cdot v(t,a) \, \mathrm{d}a \tag{6b}
$$

$$
p_{z,z}(t) = \int_0^\infty f_{z,z}(a) \cdot w(t,a) \, \mathrm{d}a \tag{6c}
$$

Figure 1: Interactions between plankton and colonies. Empty colony places are colonized at a rate *ξ*, from colonies differing amounts *p*∗*,* of bacteria will go into the plankton before they die at a rate μ_K .

214

²¹⁵ that is, we integrate over all ages.

²¹⁶ *2.2.2. Plankton dynamics*

²¹⁷ To obtain the plankton dynamics, we add the migration terms to the respective ²¹⁸ equations.

$$
x' = (r_x + r_n n - \mu(x + y + z))x - (m_y + m_z)x + p_{x,x}, \eqno(7a)
$$

$$
y' = (r_y + r_n n - \mu(x + y + z))y + m_y x + p_{x,y} + p_{y,y},
$$
 (7b)

$$
z' = (r_z + r_n n - \mu(x + y + z))z + m_z x + p_{x,z} + p_{z,z},
$$
(7c)

$$
s' = (x+z)\alpha + \beta_s(x+z) \cdot \frac{s^h}{\tau^h + s^h} - \gamma_s s,\tag{7d}
$$

$$
e' = \beta_e(x+y) \cdot \frac{s^h}{\tau^h + s^h} - \gamma_e e. \tag{7e}
$$

219

²²⁰ **3. Analysis**

 Having built our model, we now proceed to analyse it. To give us an indication whether or not the wildtype will be able to survive in the long term. In the following section, we will look at the behaviour of the plankton, not the colonies, because they are dependent on the plankton.

²²⁵ *3.1. Stationary states*

226 We determine the stationary solutions of equations [\(5\)](#page-5-0). Setting $\partial_t u(a) = 0$ ²²⁷ leads to terms of the form

$$
u(a) = \xi x l \exp\left(-\int_0^a \mu_K(\tau) d\tau\right).
$$
 (8)

²²⁸ We define

$$
\theta := \xi \cdot \int_0^\infty \exp\left(-\int_0^{\bar{a}} \mu_K(\tau) d\tau\right) d\bar{a}, \quad \varphi(a) := \frac{\exp(-\int_0^a \mu_K(\tau) d\tau)}{\int_0^\infty \exp(-\int_0^{\bar{a}} \mu_K(\tau) d\tau) d\bar{a}}.
$$
 (9)

Since $\int_0^\infty \varphi(a) \, da = 1$ holds, we can write down the stationary solutions of ²³⁰ the wildtype colony dynamics as

$$
u(a) = x l \theta \varphi(a), \tag{10}
$$

²³¹ with $v(a)$ and $w(a)$ defined similarly. After a short calculation we obtain

$$
l = \frac{L}{1 + \theta(x + y + z)}.\t(11)
$$

²³² If we define

$$
\hat{p}_{\star,\diamond} = \int_0^\infty f_{\star,\diamond}(a) \cdot \varphi(a) \, \mathrm{d}a,\tag{12}
$$

²³³ the colony input rates in the stationary case are

$$
p_{x,\diamond} = \frac{xL\theta}{1 + (x + y + z)\theta} \cdot \hat{p}_{x,\diamond}, \tag{13a}
$$

$$
p_{y,y} = \frac{yL\theta}{1 + (x + y + z)\theta} \cdot \hat{p}_{y,y}, \qquad (13b)
$$

$$
p_{z,z} = \frac{zL\theta}{1 + (x + y + z)\theta} \cdot \hat{p}_{z,z}.
$$
 (13c)

 234

²³⁵ Plugging these results into [\(7\)](#page-6-2), we can show that there must exist the following ²³⁶ stationary states:

- ²³⁷ the empty state
- ²³⁸ two states with one kind of cheater each
- ²³⁹ a state with wildtype bacteria only (if we disregard mutation rates for a ²⁴⁰ moment).

²⁴¹ As the model is too complex to check stability of these steady states through ²⁴² the Jacobian matrix, we will instead do a spectral analysis.

²⁴³ *3.2. Analysis of the eigenvalues*

 In this analysis, we ask if a stationary point of one type of bacteria can be invaded by another bacterial type. To this end, we determine the eigenvalues of [\(7a\)](#page-6-3)-[\(7c\)](#page-6-4) in the different stationary states, following the ideas as introduced in [Webb](#page-31-3) [\(1985\)](#page-31-3); [Müller and Kuttler](#page-28-6) [\(2015\)](#page-28-6). If these are positive, the corresponding ²⁴⁸ bacterial type will be able to invade the stationary state. To calculate these ²⁴⁹ eigenvalues we first use separation of variables on [\(5\)](#page-5-0), which leads us to

$$
u(t,a) = \xi lx \cdot \exp\left(-\int_0^a \lambda + \mu(\tau) d\tau\right),\tag{14a}
$$

$$
v(t,a) = \xi ly \cdot \exp\left(-\int_0^a \lambda + \mu(\tau) d\tau\right),\tag{14b}
$$

$$
w(t, a) = \xi l z \cdot \exp\left(-\int_0^a \lambda + \mu(\tau) d\tau\right).
$$
 (14c)

²⁵⁰ We plug these results into the ansatz $\lambda \cdot v = f(v)$, with *f* being the functional ²⁵¹ dependency of the right hand side of equations [\(7a\)](#page-6-3) - [\(7c\)](#page-6-4).

²⁵² *3.2.1. Empty state*

²⁵³ If we only add a few bacteria to the empty plankton state, the density ²⁵⁴ dependent death rate as well as the signal- and enzyme production can be ²⁵⁵ neglected. Thus, there will be no nutrient enhanced growth and, as all available $_{256}$ colony places are empty, $l = L$ holds. With these simplifications the equation ²⁵⁷ reads

$$
\lambda \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} = \begin{pmatrix} r_x - (m_y + m_z) + \hat{p}_{x,x,\lambda} & 0 & 0 \\ m_y + \hat{p}_{x,y,\lambda} & r_y + \hat{p}_{y,y,\lambda} & 0 \\ m_z + \hat{p}_{x,z,\lambda} & 0 & r_z + \hat{p}_{z,z,\lambda} \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix},
$$
\n(15)

²⁵⁸ where

$$
\hat{p}_{\star,\diamond,\lambda} = \xi L \int_0^\infty f_{\star,\diamond} \cdot \exp\left(-\int_0^a \lambda + \mu(\tau) d\tau\right) da, \quad \text{with } \star,\diamond \in \{x, y, z\}. \tag{16}
$$

²⁵⁹ The wildtype will therefore be able to invade the empty patch, if

$$
\lambda = r_x - m_y - m_z + \hat{p}_{x,x,\lambda} \tag{17}
$$

 has a positive solution $λ$. Since the right hand side of this equation is monotone decreasing while the left hand side is monotone increasing, it has a positive ²⁶² solution if and only if the right hand side is positive for $\lambda = 0$. After a short calculation, which works similarly for the cheaters, we arrive at the following conditions:

$$
r_x - m_y - m_z + L\theta \hat{p}_{x,x} > 0 \Rightarrow \text{ wildtype able to invade,} \tag{18}
$$

$$
r_b + L\theta \hat{p}_{b,b} > 0 \Rightarrow
$$
 checker able to invade, $b \in \{y, z\}$. (19)

²⁶⁵ This tells us when a single bacterial type is able to live on its own, without ²⁶⁶ other types nearby.

²⁶⁷ *3.2.2. Solely cheaters present*

²⁶⁸ As before, no matter what type of cheater we have, there will be no nutrient ²⁶⁹ enhanced growth as either signal or enzyme is produced. But in this situation ²⁷⁰ the density depended death rate amounts to μb_0 , where b_0 is the number of ²⁷¹ mutants in this steady state. Additionally, *l* is reduced to $\frac{L}{1+\theta b_0}$. Consequently, ²⁷² the eigenvalue equation changes to

$$
\lambda\begin{pmatrix}\n\hat{x} \\
\hat{y} \\
\hat{z}\n\end{pmatrix} = \begin{pmatrix}\nr_x - \mu b_0 - (m_y + m_z) + \hat{p}_{x,x,\lambda} & 0 & 0 \\
m_y + \hat{p}_{x,y,\lambda} & r_y - \mu b_0 + \hat{p}_{y,y,\lambda} & 0 \\
m_z + \hat{p}_{x,z,\lambda} & 0 & r_z - \mu b_0 + \hat{p}_{z,z,\lambda}\n\end{pmatrix} \begin{pmatrix}\n\hat{x} \\
\hat{y} \\
\hat{z}\n\end{pmatrix},
$$
\n(20)

²⁷³ where

$$
\hat{p}_{\star,\diamond,\lambda} = \frac{\xi L}{1 + \theta b_0} \int_0^\infty f_{\star,\diamond} \cdot \exp\left(-\int_0^a \lambda + \mu(\tau) d\tau\right) da, \quad \text{with } \star, \diamond \in \{x, y, z\}.
$$
\n(21)

²⁷⁴ As before, we want to find out under which conditions there will be positive 275 solutions for $λ$. Analogously as in the empty patch

$$
r_x - \mu b_0 - (m_y + m_z) + \frac{L\theta}{1 + \theta b_0} \hat{p}_{x,x} > 0 \Rightarrow
$$
 Wildtype able to invade(22)

²⁷⁶ *3.2.3. Solely wildtype present*

²⁷⁷ With a wildtype-only-state we have to incorporate the nutrient enhanced ²⁷⁸ growth rate. As we assume a steady state, the amount of nutrient would also ²⁷⁹ have stabilised at an amount n_0 . The equation for the eigenvalues thus is

$$
\lambda \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} = (23) \begin{pmatrix} r_x + n_0 r_n - \mu x_0 - (m_y + m_z) + \hat{p}_{x,x,\lambda} & 0 & 0 \\ m_y + \hat{p}_{x,y,\lambda} & r_y + n_0 r_n - \mu x_0 + \hat{p}_{y,y,\lambda} & 0 \\ m_z + \hat{p}_{x,z,\lambda} & 0 & r_z + n_0 r_n - \mu x_0 + \hat{p}_{z,z,\lambda} \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix},
$$

²⁸⁰ which leads to the invasion condition being

$$
r_b + r_n n_0 - \mu x_0 + \frac{L\theta}{1 + \theta x_0} \hat{p}_{b,b} > 0 \quad \Rightarrow \quad \text{Checker able to invade.} \tag{24}
$$

²⁸¹ *3.2.4. Combinations*

 We can now combine the invasion conditions to look at several scenarios of how cheaters and wildtype interact with each other and can thus explore the long term effects the parameter constellations have. To simplify notation, we 285 will denote the wildtype by W , a mutant by M and \emptyset denotes the empty patch. 286 To indicate invasiveness we will use the arrow \rightarrow , to indicate that an invasion cannot happen we will use the negated arrow \rightarrow . Broadly speaking, there are three different possible outcomes: either mutant and wildtype coexist, one type dominates the other or the population dies out.

²⁹⁰ *Coexistence.*

 True Coexistence If every bacterial type is able to invade any of the stationary points, this will result in a stable coexistence point. We call that "true coexistence", because here the cheaters form a more or less independent sub-population instead of constantly rising anew from the wildtype through mutation. For that to happen, the following inequalities must hold:

$$
W \to \emptyset \qquad \qquad r_x - (m_y + m_z) + L\theta \hat{p}_{x,x} > 0,
$$

\n
$$
M \to \emptyset \qquad \qquad r_y + L\theta \hat{p}_{y,y} > 0,
$$

\n
$$
W \to M \qquad \qquad r_x - \mu b_0 - (m_y + m_z) + \frac{L\theta}{1 + \theta b_0} \hat{p}_{x,x} > 0,
$$

\n
$$
M \to W \qquad \qquad r_y + r_n n_0 - \mu x_0 + \frac{L\theta}{1 + \theta x_0} \hat{p}_{y,y} > 0.
$$

 Suppose we start out with a patch of only wildtype bacteria. Due to the rates, 297 a few cheater bacteria will arise and increase in frequency because $M \to W$ holds. 298 As a result of $W \to M$, however, the mutants will not drive the wildtype to extinction but to a mixed state. The same happens when starting with a mixed population. And while at first a cheater-only population will remain that way, adding just a few wildtype bacteria will bring the population to the coexistence point again. So in this scenario the only stable point is the coexistence point, all others are unstable.

 Mutant does not spread Here, the wildtype is able to invade the mutant while the mutant cannot invade the wildtype. Whether or not the mutant is able 306 to live on its own (\Rightarrow) means invasibility does not matter), in a mixed population there will always be primarily wildtype bacteria with a small sub-population of mutants, thanks to the mutation. The conditions here are

$$
W \to \emptyset \qquad \qquad r_x - (m_y + m_z) + L\theta \hat{p}_{x,x} > 0,
$$

\n
$$
M \neq \emptyset \qquad \qquad r_y + L\theta \hat{p}_{y,y} \neq 0,
$$

\n
$$
W \to M \qquad \qquad r_x - \mu b_0 - (m_y + m_z) + \frac{L\theta}{1 + \theta b_0} \hat{p}_{x,x} > 0,
$$

\n
$$
M \to W \qquad \qquad r_y + r_n n_0 - \mu x_0 + \frac{L\theta}{1 + \theta x_0} \hat{p}_{y,y} < 0.
$$

³⁰⁹ *One bacterial type only.*

³¹⁰ **Mutant outcompetes wildtype** If the mutant is able to invade the ³¹¹ wildtype-only state but the wildtype is unable to compete, the mutant will ³¹² outcompete the wildtype no matter the starting condition. The conditions for ³¹³ this to happen are

$$
W \to \emptyset \qquad \qquad r_x - (m_y + m_z) + L\theta \hat{p}_{x,x} > 0,
$$

\n
$$
M \to \emptyset \qquad \qquad r_y + L\theta \hat{p}_{y,y} > 0,
$$

\n
$$
W \to M \qquad \qquad r_x - \mu b_0 - (m_y + m_z) + \frac{L\theta}{1 + \theta b_0} \hat{p}_{x,x} < 0,
$$

\n
$$
M \to W \qquad \qquad r_y + r_n n_0 - \mu x_0 + \frac{L\theta}{1 + \theta x_0} \hat{p}_{y,y} > 0.
$$

 Bistability In this scenario, none of the bacterial types can invade the others but everyone can invade the empty patch. This means that whichever type is present first in greater quantities will assert itself. The one-type-only stationary states will therefore be stable while the coexistence point and the point of origin are unstable.

$$
W \to \emptyset \qquad \qquad r_x - (m_y + m_z) + L\theta \hat{p}_{x,x} > 0,
$$

\n
$$
M \to \emptyset \qquad \qquad r_y + L\theta \hat{p}_{y,y} > 0,
$$

\n
$$
W \to M \qquad \qquad r_x - \mu b_0 - (m_y + m_z) + \frac{L\theta}{1 + \theta b_0} \hat{p}_{x,x} < 0,
$$

\n
$$
M \to W \qquad \qquad r_y + r_n n_0 - \mu x_0 + \frac{L\theta}{1 + \theta x_0} \hat{p}_{y,y} < 0.
$$

³¹⁹ *Extinction.*

 Evolutionary suicide This scenario is very similar to "mutant outcom- petes wildtype" with one marked difference: the mutant is unable to invade the empty patch and therefore unable to live by itself. After driving the wildtype to extinction, the remaining mutant-only population will then die out. As it is impossible to have a population consisting solely of wildtype bacteria because of the mutation rate, the bacterial population will become extinct.

$$
W \to \emptyset \qquad \qquad r_x - (m_y + m_z) + L\theta \hat{p}_{x,x} > 0,
$$

\n
$$
M \to \emptyset \qquad \qquad r_y + L\theta \hat{p}_{y,y} < 0,
$$

\n
$$
W \to M \qquad \qquad r_x - \mu b_0 - (m_y + m_z) + \frac{L\theta}{1 + \theta b_0} \hat{p}_{x,x} < 0,
$$

\n
$$
M \to W \qquad \qquad r_y + r_n n_0 - \mu x_0 + \frac{L\theta}{1 + \theta x_0} \hat{p}_{y,y} > 0.
$$

³²⁶ **4. Numerical simulations**

³²⁷ In this section, we present how the model behaves under different parameter ³²⁸ sets. To this end we implement the differential equations in Matlab (Mathworks).

(a) Growth curve of a single colony started by a wildtype. (b) Growth curve of the associated plankton.

Figure 2: Time course of plankton and colony dynamics with standard parameter values. The blue line represents the amount of wildtype bacteria, the green line denotes the amount of signalcheating mutants and the red line indicates the amount of enzyme cheater. One can see that regular death events are needed to preserve the abundance of wildtype bacteria.

 The ordinary differential equations were solved numerically with a Runge-Kutta- solver. In order to solve the partial differential equations [\(5\)](#page-5-0), we need to refor- mulate them. Following the methods mentioned by [Webb](#page-31-3) [\(1985\)](#page-31-3), we can write $u(t, a)$ as

$$
u(t,a) = \begin{cases} 0 & a > t \\ x(t-a)l(t-a)\xi \exp\left(-\int_0^a \mu(s) \,ds\right) & a \le t \end{cases} . \tag{25}
$$

 $v(t, a)$ and $w(t, a)$ can be calculated in the same manner. Lastly, $f_{*,\circ}(a)$ is computed through spline interpolation of the solution curves of our basic model, which without colony input, describes the colony dynamics as well. Examples for both the colony and plankton dynamic can be found in figure [2.](#page-12-0) Please note that the seemingly very small values for the cheaters in colonies are due to the continuous model with non-vanishing mutation rates, also acting for very low wildtype cell numbers. They can be interpreted better for a large number of colonies, as multiplied by the colony number they express the expected number ³⁴¹ of this cell type in the whole system. The standard set of parameters used in our simulations can be found in [Appendix A.2.](#page-22-0) We assume that although cheaters are 343 able to survive on their own, the benefit derived from secreting the enzyme $(r_n \cdot n)$ is the main driver of bacterial growth. For the simulation, we used a fixed volume ³⁴⁵ for the planktonic phase of 1×10^{-8} L. Because the long-term development is 346 for esseeable after a short time span, we stopped our calculations at $t = 400$.

³⁴⁷ *4.1. Colony number*

³⁴⁸ We start by exploring how changing of the number of available colony places, ³⁴⁹ *L*, influences the behaviour of the solution. We find that cooperation collapses ³⁵⁰ in simulations as long as $L \leq L_0$ (Fig. [3\)](#page-13-0). It is not possible to calculate a ³⁵¹ closed expression for this critical value L_0 , but one can see that $L_0 = 80$ in

Figure 3: Influence of colony number *L* on the survival of wildtype against mutant. Ratio between wildtype and cheater after t=400. In scenarios with $L \leq 80$, the wildtype will die out in the long term, whereas in scenarios with $L > 80$ the wildtype dominates cheaters in long term equilibrium. Parameter values can be found in section [Appendix A.2](#page-22-0)

 our calculations. The more *L* approximates to *L*0, the more time it takes until cooperators are outcompeted, which is reflected by an increasing fraction of cooperators for $t \geq 400$ in figure [3.](#page-13-0) For $L > L_0$, cooperators dominate, although a small number of cheaters may still be present. Cooperation is thus stabilized more if the proportion of bacteria in colonies is high compared to the number of bacteria in plankton.

4.2. Enzyme production cost

 By raising the production cost for the enzyme, we reduce the reproduction 360 rates for the wildtype and the signal cheater, r_x and r_y . As suspected, this destabilizes cooperation, although this effect is markedly decreased if the benefit of cooperation, represented by r_n , is high. See figure [4](#page-14-0) for illustration.

 We did the same calculations with higher signal production cost. The figure is omitted here, because the long-term behaviour remains the same. If the wildtype dies out, the dominating type will always be the mutant with the highest growth rate which means the lowest metabolic costs. If we assume that enzyme is more costly than signal, then the dominating type will always be the enzyme cheater, thus rendering changes in the signal cost irrelevant for the long term dynamic.

4.3. Colony death rate

 The effect changes of the colony death rate μ_K have on the wildtype-mutant-dynamic is not so straightforward. If the colony death rate is very high, colonies

Cost (enzyme production)

Figure 4: Comparison of resulting dynamics with higher enzyme production costs for two different cooperation benefits. The blue line represents the amount of wildtype bacteria, the green line denotes the amount of AI-cheaters and the red line indicates the amount of enzyme cheater.

Figure 5: Influence of colony death rate on the survival of wildtype against mutant. Parameter values can be found in the [Appendix A.2](#page-22-0)

 will not grow to large numbers meaning that the colony influence on plankton is low. This, in turn, leads to a cooperation decline. On the other hand, if the colony death rate is very low, the amount of wildtype bacteria in the colonies will decline through mutation and subsequent growth of mutants. An intermediate death rate is most favourable for cooperation stability. The corresponding simulation can be found in figure [5.](#page-15-0)

5. Discussion

- The main results of our study are:
- Switch between growth in colonies and in biofilms can promote evolutionary stability of QS-regulated cooperation in plankton
- The specific combination of different parameters as described in chapter [3.2.4](#page-9-0) determines the outcome, whereby both low costs and high benefit of cooperative traits promote cooperators. The same holds for high carrying capacity for pure wildtype colonies and low carrying capacity for cheater colonies.
- ³⁸⁷ Depending on the parameter values, four different types of long term equilibria could be achieved: Cheater dominates, wildtype dominates, co-existence of both, bistability.
- Values of one parameter unfavourable for cooperation can to some degree be compensated by more favourable values in other parameters. Exemplarily,

 high costs of cooperation can be compensated by high number of colony patches in combination with high benefit of cooperation in a way as described in chapter [3.2.4.](#page-9-0)

 Some parameters, such as high number of patches for colonies, and high switching rate from plankton to colonies tend to promote true coexistence. These factors can be described as promoting the influence of colonies in the system under investigation. In nature, this would indicate a high ratio between the size of the surface area suitable for colony growth and the volume of the plankton.

 • There exists an optimum with respect to colony death rate, as too high or too low rates promote cheaters.

 Our study shows that a switch between plankton and biofilm state can promote evolutionary stability of QS-controlled cooperation. Most bacterial species regularly undertake such switches. We thus suggest that the results contribute to the explanation of the evolutionary puzzling fact that in well-mixed planktonic cultures most, if not all, QS systems are expressed and control a specific set of highly costly target genes. A prerequisite for this stabilization is that QS controls genes under both planktonic and biofilm modes of growth.

 Low costs of cooperation and high carrying capacity for the wildtype in combination with high death rate in plankton tend to inhibit spread of mutants, whereas high mutation rates, high carrying capacity for mutant and low benefit promote mutants. The basic growth rate of wildtype and cheaters and the growth rate promotion by QS-regulated exoenzyme hereby reflect costs and benefit of cooperation.

 Factors promoting the relevance of colonies in relation to plankton may enable true coexistence, for example when cell death rate and carrying capacities of both populations in plankton are not too large. In contrast, large death and carrying capacities rates for wildtype and mutants in plankton, in combination with low values of colony patch number, growth rates and benefit of cooperation, may under certain cases result in bistability, i.e. in an assertion of the cell type which is present first.

 High benefits and low costs promote stability of cooperation, as described for other scenarios [\(Hummert et al., 2010;](#page-27-7) [Ruppin et al., 2010;](#page-30-2) [Chuang et al., 2010;](#page-25-5) [Xavier et al., 2011;](#page-31-4) [Schuster et al., 2010\)](#page-30-3). The amount of available substrate for the exoenzyme, i.e., nutrient concentration, determines the benefit of exoenzyme production. If, as in our set-up, costs for target genes are higher than costs of signal production, signal-blind- or target gene mutants will dominate over mutants of signal production. This will depend on the frequencies of mutants found, as it has been shown in *in situ* experiments such as clinical samples of pathogens [\(Strateva and Mitov, 2011;](#page-30-4) [Cullen and McClean, 2015;](#page-25-6) [Pollitt et al., 2014\)](#page-29-3). For reasons of compactness, we only analysed a target gene mutant, omitting a signal blind mutant. As the signal induces its own production, and because in reality most signals control more than one costly target gene, both types of cheaters will gain quantitatively different outcomes. However, qualitatively our results

will hold.

 Generally, plankton tends to destabilize cooperation, whereas colony growth tends to stabilizes it. Therefore, all parameters affecting the interrelationship between both have significant influence. The relevance of "colony death rates" implies that external disturbing factors such as grazers or death of hosts affect stability of cooperation. Similar effects are caused by other events that interfere with the life span of e.g. colonies, such as self-induced disorganization of whole colonies [\(Cárcamo-Oyarce et al., 2015\)](#page-25-7).

 In our model, higher numbers of available colony patches promote coopera- tion. Ultimately, the relation between available space for plankton growth, which was kept constant in our model, and potential for colony growth is critical. In accordance with our modelling results, spatial structuring in separated micro- colonies connected in a limited way by free floating cells has been reported to stabilize QS- cooperation in *Bacillus thuringiensis* during infections of larvae of the diamondback moth and in *Plutella xylostella* [\(Zhou et al., 2014\)](#page-31-5). The same has been shown for siderophore production by *Pseudomonas fluorescens* in soil [\(Luján et al., 2015\)](#page-28-7).

 Most game theory approaches employed to study cooperation assume a linear relation between cost and benefit (such as prisoner's dilemma or snow drift)[\(Damore and Gore, 2012;](#page-26-2) [Archetti et al., 2011;](#page-25-0) [Nowak et al., 2010\)](#page-28-8). In many cases, this relation can better be described by a non-linear term, often including saturation effects [\(Hense and Schuster, 2015;](#page-27-2) [Chuang et al., 2010;](#page-25-5) [MacLean et al.,](#page-28-9) [2010\)](#page-28-9). Exemplary, in case of an increasing amount of exoenzymes released by an increasing number of cells, the benefit (amount of transformed substrate or the increases of growth rate) obviously saturates. In other cases, benefit may be [d](#page-29-6)escribed as sigmoid or stepwise function of costs [\(Archetti et al., 2011;](#page-25-0) [Popat](#page-29-6) [et al., 2015\)](#page-29-6).

 Our model contains non-linearity of benefits as nutrients are limited. Conse- quently, during growth of plankton and microcolonies, the benefits/cost ratio declines affecting the outcome with respect to evolutionary stability of coopera- tion. Interestingly, non-linearity has been identified as a factor which can under certain conditions promote cooperation independent on assortment, allowing for [c](#page-25-0)o-existence of cooperators and cheaters [\(Frey and Reichenbach, 2011;](#page-26-3) [Archetti](#page-25-0) [et al., 2011;](#page-25-0) [Perc et al., 2013;](#page-29-7) [Zhang et al., 2013\)](#page-31-6) . As a prerequisite, benefit has to be a concave function of costs and there needs to be an intersection between the curves describing cooperator, respectively cheater fitness. In our model, such an intersection does not exist, so non-linearity tends to weaken cooperation at high densities of cooperators as the benefits saturate while the costs remain.

 Depending on parameter values, four different outcomes in the long term are predicted in our study. A) Only cheaters survive, B) Cheaters are repressed, i.e. only a low amount of cheaters, arisen from recent mutations, exist, C) true coexistence and D) bistability. A) can be easily explained by a dominance of the fast growing cheaters. Here, effect of colony growth is insufficient to rescue cooperation. In C) we have an equilibrium between within- and between group selection. Outcome B) seems surprising at first sight, however very low costs ⁴⁸¹ $(r_x \approx r_y)$ have been reported to promote such a game of harmony-scenario (1194), 482 together with a high benefit $(x_0, \hat{p}_{x,x} \gg b_0, \hat{p}_{y,y})$. Interesting is the bistability in D). Here, no strain can invade the other strain. Such a behaviour is promoted when the competition for resources is high, but benefit and cost of cooperation are low.

 Co-existence is enabled by negative frequency dependencies of fitness in both strains (cheaters and wildtype). In contrast, bistability reflects a scenario with positive frequency dependency of fitness for all strains [\(Damore and Gore, 2012\)](#page-26-2). For both scenarios, examples have been described for non-spatially structured environments. However, these examples required specific properties such as green beard genes (promotion of bistability) or privileged share, i.e. if a fixed amount ⁴⁹² of benefit is directly redirected to the producer of the public good [\(Gore et al.,](#page-27-8) [2009\)](#page-27-8). Although our generic model does not include such privileged assortment, the assumption of complete separation has a similar effect.

 There is increasing evidence that cooperation found in nature may be more often connected with co-existence of cooperators and non-cooperators, rather than with populations in which all cells contribute to cooperation. This may seem comprehensible due to the fact that mutations, which always occur, may more frequently switch from cooperator to cheater than vice versa. However, our study indicated under which conditions true co-existence in equilibrium may be the result of counteracting driving forces, in our case between within-group selection (benefiting cheaters) and between group selection (benefiting cooperators).

 Beyond pure cheaterism, co-existence of cooperators and non-cooperators may have other implications. Under certain conditions, it might be advantageous for the fitness of populations if only a fraction of the population contributes to cooperation [\(Elhanati et al., 2011;](#page-26-9) [Perc et al., 2013;](#page-29-7) [Diard et al., 2013;](#page-26-10) [MacLean et al., 2010\)](#page-28-9). This especially holds if non-cooperators, possibly by chance, express other properties beneficial for the population as shown in *Pseudomonas fluorescens*, where "cooperators" optimize access to nutrients by building biofilms, whereas "cheaters" have better dispersal traits, allowing cells to spread and occupy new locations [\(Rainey and Kerr, 2010;](#page-29-8) [Rainey and Rainey, 2003\)](#page-29-9). Note that the notions "cooperators" and "cheaters" increasingly loose sense in such examples.

 Even for QS, a strategy which due to the existence of positive feedback loops in most species (e.g. signal induced signal production) was assumed to enable an all-or-none behaviour, co-existence of QS active and defective strains may not always be explained by cheaterism, but at least sometimes reflects [d](#page-29-10)ivision of work in isogenic populations [\(Anetzberger et al., 2009;](#page-25-8) [Pradhan and](#page-29-10) [Chatterjee, 2014\)](#page-29-10). Thus, co-existence observed in nature has to be interpreted with care. The question whether it represents rather cheaterism or division of work is not always straightforward and requires thorough ecological and evolutionary investigations, but the distinction might be relevant from various perspectives, including development of adequate treatment strategies, e.g. for antibiotic substitution [\(Schuster et al., 2013;](#page-30-5) [Brown et al., 2009\)](#page-25-9). Mechanistic models as the one presented here can be valuable tools.

 Several other factors promoting stability of QS controlled cooperation have been reported, namely heterogeneity of cooperation between cells [\(Perc et al.,](#page-29-7) [2013;](#page-29-7) [Pérez-Velázquez et al., 2015\)](#page-29-11), stochastic fluctuations [\(Houchmandzadeh,](#page-27-9) [2015\)](#page-27-9), pleiotropy [\(Dandekar et al., 2012;](#page-26-11) [Foster et al., 2004;](#page-26-12) [Wang et al., 2015;](#page-30-6) [Strassmann et al., 2011\)](#page-30-7), punishment of social cheats [\(Friman et al., 2013\)](#page-26-13), costly [o](#page-29-12)ver-expression of certain QS regulated genes in QS defective mutants [\(Oslizlo](#page-29-12) [et al., 2014;](#page-29-12) [Wilder et al., 2011\)](#page-31-7), negative feedback loop on the public good production [\(Gore et al., 2009\)](#page-27-8) and preferred adhesion of cells with identical cooperative behaviour [\(Rainey and Rainey, 2003;](#page-29-9) [Strassmann et al., 2011\)](#page-30-7). Interestingly, QS itself is a strategy to limit development of cheaters, as it limits costly and thus exploitable production of public goods [\(Czárán and Hoekstra,](#page-26-6) [2009;](#page-26-6) [Perc et al., 2013;](#page-29-7) [Travisano and Velicer, 2004;](#page-30-8) [Popat et al., 2015\)](#page-29-6).

 Our approach can be interpreted both in terms of multilevel and kin selection [\(West et al., 2006\)](#page-31-8). Colony patches may be regarded as main entities of between- group selection connected by plankton, whereas within-group selection occurs in the patches as well as in plankton. However, new colonization of patches also represents a realization of kin selection, as all cells within a patch descend from a single founder cell. This extreme bottleneck set-up allows for cyclic complete separation of cooperators and cheaters, supporting an almost complete suppression of cheaters under suitable conditions. However, such an extreme set-up is not a *sine qua non* condition. In reality, many bacteria grow rather in large biofilms, composed of a number of independently founded microcolonies. However, spatial assortment can maintain, or may even develop in completely mixed, growing biofilms under certain conditions, as long as mechanisms of mixing, e.g. mobility of single cells in the biofilms, do not dominate [\(Kerr et al.,](#page-28-10) [2002;](#page-28-10) [Rumbaugh et al., 2012;](#page-29-5) [Nadell et al., 2010\)](#page-28-3). Even more, the assumption that plankton is ideally well mixed probably does not necessarily always hold in reality. Transient assortments of cooperative cells, respectively public goods, may exist due to limited diffusion rates or limited connection between planktonic subpopulations in highly structured environments such as micro cave systems in porous soil or within hosts. It remains to be investigated to which degree such weaker forms of separation can support cooperation. Note that too low diffusion rates may turn QS useless and, in extreme cases, eventually may change a public good into a private good [\(Czárán and Hoekstra, 2009\)](#page-26-6). Furthermore, plankton and colonies are not fully separated, as shown by influence of autoinducers produced in biofilms on plankton in overlying fluid [\(Nigaud et al., 2010\)](#page-28-11).

⁵⁶¹ Our model has some simplifications which we assume not to interfere with the qualitative outcome. We chose the QS-related parameters of signal productions rates and threshold to be constant and identical for plankton and colonies, in accordance with the results of a series of studies of *P. putida IsoF* QS system [\(Meyer et al., 2012;](#page-28-5) [Buddrus-Schiemann et al., 2014;](#page-25-4) [Fekete et al., 2010\)](#page-26-4). The model does not consider gradients of signals, which occur in colonies, biofilms or between biofilms and plankton [\(Hense et al., 2012\)](#page-27-10).

 Similarly, it is clear that neither the fitness benefit provided by public goods nor the costs of their production are necessarily constant, as assumed in the model, but can vary spatio-temporally depending on the environmental conditions. For example, fitness costs for public good production may be low when resources for their production are available in high amounts, i. e. when these resources do not limit growth [\(Brockhurst et al., 2008\)](#page-25-10). The so-called metabolic prudence

 concept, which has gained some experimentally support, states that cells tend [t](#page-31-4)o induce the production of public goods under low/no cost conditions [\(Xavier](#page-31-4) [et al., 2011;](#page-31-4) [Mellbye and Schuster, 2014\)](#page-28-12). Analogously, the fitness benefit of producing exoenzymes depends, for instance, on the availability of their substrate. Information about substrate availability may also be integrated into the regulation network [\(Schaefer et al., 2008;](#page-30-9) [Darch et al., 2012\)](#page-26-0).

 Further evidence shows that regulation of public good production by environ- mental factors production is often integrated into the QS system [\(Juhas et al.,](#page-27-11) [2005;](#page-27-11) [Hense and Schuster, 2015\)](#page-27-2). Generally, it has been suggested that optimal QS regulation with respect to benefit and costs depends on the properties of the public good, e.g. on the way how its benefit is realized [\(Cornforth et al.,](#page-25-11) [2012;](#page-25-11) [Heilmann et al., 2015\)](#page-27-12). [Hense et al.](#page-27-10) [\(2012\)](#page-27-10) suggested that this complex regulation in QS can be understood as a hybrid push-pull control to optimize the cost/benefit interplay, where "push" refers to the potential strength of regu- lated public good activity, and "pull" to the cells' demand of the public good. The spatio-temporal dynamics of costs and benefit therefore have an important impact on the evolutionary stability of QS and could represent an interesting extension of our work.

 Our model focusses on the stability of cooperation versus cheater mutants and is not dedicated to explain the evolutionary development of cooperation, which might often occur in small steps. The latter task requires different methods, e.g. tools of adaptive dynamics.

Understanding under which conditions cheaters arise or existence of coop- erators and non-cooperators in equilibrium emerges is of high interest, e.g. in developing treatment strategies. Our study sheds light on the question how switches between plankton and attached mode of growth can contribute to this.

6. Acknowledgement

 We thank Johannes Müller (Technical University Munich, Germany) and Martin Ehler (University of Vienna, Austria) for their support and helpful dis-cussions.

Appendix A. Variables and Parameters

Appendix A.1. Table of used variables and parameters

Table A.1: Table of all occuring variables and parameters.

Name	unit	stands for
α	$\frac{\text{mol}}{\text{L cells h}}$	basic production rate of signal molecule
	$\frac{\text{mol}}{\text{cells} \cdot \text{h}}$	induced production rate of enzyme

Table A.1: Table of all occuring variables and parameters.

Name	unit	stands for
β_s	$\frac{\text{mol}}{\text{L cells h}}$	induced production rate of signal molecule
γ_e	$\frac{1}{h}$	enzyme degradation rate
γ_n	$\frac{1}{h}$	nutrient degradation rate
γ_s	$\frac{1}{\text{h}}$	signal molecule degradation rate
θ	$\frac{1}{\text{cells}}$	measure for the lifespan and recolonization frequency of colonies
μ	$\frac{1}{\text{cells }h}$	bacterial death rate in plankton
μ_K	$\frac{1}{\text{cells h}}$	death rate for the colonies
$\mu_{Kolonie}$	$\frac{1}{\text{cells h}}$	bacterial death rate in colonies
ξ	$\frac{1}{\text{cells }h}$	recolonization rate of empty colony patches
τ	$\frac{\text{mol}}{\text{L}}$	threshold value for induction
φ	$\frac{1}{h}$	normed measure for the survival chances of colonies
b_0	cells	number of bacteria from an arbitrary cheater type in a stationary state
c_1	$\frac{1}{\text{mol h}}$	effectiveness of enzyme
c_2	$\frac{1}{\text{cells h}}$	nutrient uptake of bacteria
e(t)	mol	existing amount of enzyme at time t
$f_{\star,\diamond}(a)$	cells	number of bacteria of type \diamond that migrate into plank- ton from colonies of age a that were started by type \star
h		Hill coefficient
l(t)		number of empty colony places at time t
L		total number of colony places available
$m_{\it y}$	$\frac{1}{h}$	mutation rate from wildtype bacteria to AI-cheaters
$m_{\it z}$	$\frac{1}{h}$	mutation rate from wildtype bacteria to enzyme cheaters
n(t)	mol	amount of digestible nutrient at time t
n_0	mol	amount of digestible nutrient in a stationary state
\bar{n}_0	mol h	nutrient regeneration rate

Table A.1: Table of all occuring variables and parameters.

Name	unit	stands for
$p_{\star,\diamond}(t)$	cells	number of bacteria of type \diamond that migrate into plank- ton from all colonies started by type \star at time t
$\hat{p}_{\star, \diamond}$	cells	number of bacteria of type \diamond that migrate into plank- ton from a single colony started by type \star during its lifespan in the stationary state
r_b	$\frac{1}{h}$	basic growth rate for an arbitrary cheater
r_n	$\frac{1}{\text{mol h}}$	nutrient dependent growth rate
r_x	$\frac{1}{h}$	basic growth rate for wildtype bacteria
r_{y}	$\frac{1}{h}$	basic growth rate for AI-cheaters
r_z	$\frac{1}{h}$	basic growth rate for enzyme cheaters
s(t)	$\frac{\text{mol}}{\text{L}}$	concentration of signal molecule at time t
u(t,a)	$\frac{1}{h}$	number of colonies of age a at time t that were started by a wildtype
v(t,a)	$\frac{1}{h}$	number of colonies of age a at time t that were started by a AI-cheater
w(t,a)	$\frac{1}{h}$	number of colonies of age a at time t that were started by a enzyme cheater
x(t)	cells	number of wildtype bacteria at time t
x_0	cells	number of wildtype bacteria in a stationary state
y(t)	cells	number of AI-cheaters at time t
z(t)	cells	number of enzyme cheaters at time t

⁶⁰⁷ *Appendix A.2. Standard parameter values*

name	value		source
α	1.5×10^{-11}	$\frac{\text{mol}}{\text{L} \cdot \text{h}}$	
β_e	$1.2\,$	<u>mol</u> $\overline{\text{cells h}}$	Vetter et al. (1998)
β_s	1.5×10^{-10}	$\frac{\text{mol}}{\text{L} \cdot \text{h}}$	
γ_e	0.021	$\frac{1}{h}$	
γ_n	$2.3\,$	$\frac{1}{h}$	
γ_s	0.0055	$\frac{1}{\text{h}}$	
μ	0.0208	$\frac{1}{\text{cells h}}$	Heymann (2010)
μ_K	$\mathbf 1$	$\frac{1}{h}$	
μ_{colony}	$0.01\,$	$\frac{1}{\text{cells h}}$	
ξ	0.5		
τ	7×10^{-8}	$\frac{\text{mol}}{\text{L}}$	
c_1	2.4×10^{-15}	$\frac{1}{\text{mol h}}$	Böckle et al. (1995)
c ₂	1×10^{-19}	$\frac{1}{\text{cells h}}$	Simon (1985)
\boldsymbol{h}	$\overline{2}$		
L	100		
m_y	3.5×10^{-7}	$\frac{1}{h}$	
m _z	3.5×10^{-7}	$\frac{1}{h}$	
\bar{n}_0	$\bf 5$	$\frac{\text{mol}}{\text{h}}$	
r_n	$\rm 0.5$	$\frac{1}{\text{mol h}}$	
$r_{x}% \rightarrow\infty$	0.08	$\frac{1}{\text{h}}$	Heymann (2010)
r_y	0.09	$\frac{1}{h}$	Heymann (2010)
r_z	0.12	$\frac{1}{\text{h}}$	Heymann (2010)

Table A.2: Standard parameter values for the numeric simulations if not explicitly stated otherwise

Table A.3: Differing parameters used in simulations for figure [5](#page-15-0)

name	value		source
γ_e	0.0021	$\frac{1}{h}$	
c ₁	3.6×10^4	$\frac{1}{\text{mol h}}$	Böckle et al. (1995)
c ₂	10×10^{-19}	$\frac{1}{\text{cells h}}$	Simon (1985)
\bar{n}_0	1×10^{-18}	$\frac{\text{mol}}{\text{h}}$	
r_n	0.01	mol h	

 Anetzberger, C., Pirch, T., Jung, K., 2009. Heterogeneity in quorum sensing- regulated bioluminescence of *Vibrio harveyi*. Molecular microbiology 73 (2), 267–277.

 Archetti, M., Scheuring, I., Hoffman, M., Frederickson, M. E., Pierce, N. E., Yu, D. W., 2011. Economic game theory for mutualism and cooperation. Ecology Letters 14 (12), 1300–1312.

 Böckle, B., Galunsky, B., Müller, R., 1995. Characterization of a keratinolytic serine proteinase from *Streptomyces pactum* DSM 40530. Applied and Envi-ronmental Microbiology 61 (10), 3705–3710.

 Brockhurst, M. A., 2007. Population bottlenecks promote cooperation in bacterial biofilms. PLoS One 2 (7), e634.

 Brockhurst, M. A., Buckling, A., Racey, D., Gardner, A., 2008. Resource supply ϵ_{20} and the evolution of public-goods cooperation in bacteria. BMC biology 6 (1), $_{621}$ 20.

 Brown, S. P., West, S. A., Diggle, S. P., Griffin, A. S., 2009. Social evolution in micro-organisms and a trojan horse approach to medical intervention strate- gies. Philosophical Transactions of the Royal Society B: Biological Sciences 364 (1533), 3157-3168.

 Buddrus-Schiemann, K., Rieger, M., Mühlbauer, M., Barbarossa, M. V., Kuttler, C., Hense, B. A., Rothballer, M., Uhl, J., Fonseca, J. R., Schmitt-Kopplin, P., et al., 2014. Analysis of N-acylhomoserine lactone dynamics in continuous cultures of *Pseudomonas putida* IsoF by use of ELISA and UHPLC/qTOF-MS- derived measurements and mathematical models. Analytical and bioanalytical chemistry 406 (25), 6373–6383.

 Cárcamo-Oyarce, G., Lumjiaktase, P., Kümmerli, R., Eberl, L., 2015. Quorum sensing triggers the stochastic escape of individual cells from *Pseudomonas putida* biofilms. Nature communications 6.

- Chuang, J. S., Rivoire, O., Leibler, S., 2009. Simpson's paradox in a synthetic microbial system. Science 323 (5911), 272–275.
- Chuang, J. S., et al., 2010. Cooperation and Hamilton's rule in a simple synthetic microbial system. Molecular Systems Biology 6.
- Cornforth, D. M., Sumpter, D. J., Brown, S. P., Brännström, Å., 2012. Synergy and group size in microbial cooperation. The American naturalist 180 (3), 296.
- Cremer, J., Melbinger, A., Frey, E., 12 2012. Growth dynamics and the evolution of cooperation in microbial populations. Scientific Reports 2, 281.

 Cullen, L., McClean, S., 2015. Bacterial adaptation during chronic respiratory μ_{644} infections. Pathogens 4 (1), 66–89.

- Czárán, T., Hoekstra, R. F., 2009. Microbial communication, cooperation and
- cheating: Quorum sensing drives the evolution of cooperation in bacteria. PLoS one 4.
- Damore, J. A., Gore, J., 2012. Understanding microbial cooperation. Journal of Theoretical Biology 299, 31–41.
- Dandekar, A. A., Chugani, S., Greenberg, E. P., 2012. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338 (6104), 264–266.
- Darch, S. E., West, S. A., Winzer, K., Diggle, S. P., 2012. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences 109 (21), 8259–8263.
- Diard, M., Garcia, V., Maier, L., Remus-Emsermann, M. N., Regoes, R. R., Ackermann, M., Hardt, W.-D., 2013. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494 (7437), 353–356.
- Diggle, S. P., Griffin, A. S., Campbell, G. S., West, S. A., 2007. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450 (7168), 411–414.
- Dockery, J., Keener, J., 2001. A mathematical model for quorum sensing in *Pseudomonas aeruginosa*. B Math Biol 63 (1), 95 – 116.

 Elhanati, Y., Schuster, S., Brenner, N., 2011. Dynamic modeling of cooperative protein secretion in microorganism populations. Theoretical population biology $664 \qquad 80 \ (1), 49-63.$

 Evans, E., Brown, M. R., Gilbert, P., 1994. Iron chelator, exopolysaccharide and protease production in *Staphylococcus epidermidis*: a comparative study of the effects of specific growth rate in biofilm and planktonic culture. Microbiology 140 (1), 153-157.

- Fekete, A., Kuttler, C., Rothballer, M., Hense, B. A., Fischer, D., Buddrus- Schiemann, K., Lucio, M., Müller, J., Schmitt-Kopplin, P., Hartmann, A., 2010. Dynamic regulation of N-acyl-homoserine lactone production and degradation
- in *Pseudomonas putida* IsoF. FEMS microbiology ecology 72 (1), 22–34.
- Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C., Thompson, C. R., $\frac{674}{674}$ 2004. Pleiotropy as a mechanism to stabilize cooperation. Nature 431 (7009), 693–696.
- Frank, S. A., 2010. Microbial secretor-cheater dynamics. The Royal Society.
- Frey, E., Reichenbach, T., 2011. Bacterial games. Springer.
- Friman, V.-P., Diggle, S. P., Buckling, A., 2013. Protist predation can favour cooperation within bacterial species 9 (5).
- Fuqua, W. C., Winans, S. C., Greenberg, E. P., 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators.
- Journal of bacteriology 176 (2), 269.
- Garcia, T., Brunnet, L. G., De Monte, S., 02 2014. Differential adhesion between moving particles as a mechanism for the evolution of social groups. PLoS Comput Biol 10.
- Ghoul, M., Griffin, A. S., West, S. A., 2014. Toward an evolutionary definition of cheating. Evolution 68 (2), 318–331.
- Gore, J., Youk, H., Van Oudenaarden, A., 2009. Snowdrift game dynamics and facultative cheating in yeast. Nature 459 (7244), 253–256.
- Harrington, K. I., Sanchez, A., 2014. Eco-evolutionary dynamics of complex social \mathfrak{so}_1 strategies in microbial communities. Communicative & integrative biology 7 (1).
- Heilmann, S., Krishna, S., Kerr, B., 2015. Why do bacteria regulate public goods by quorum sensing?—how the shapes of cost and benefit functions determine the form of optimal regulation. Frontiers in microbiology 6.
- Hense, B. A., Kuttler, C., Müller, J., Rothballer, M., Hartmann, A., Kreft, J.-U., 2007. Does efficiency sensing unify diffusion and quorum sensing? Nature Reviews Microbiology 5 (3), 230–239.
- Hense, B. A., Müller, J., Kuttler, C., Hartmann, A., 2012. Spatial heterogeneity of autoinducer regulation systems. Sensors 12 (4), 4156–4171.
- Hense, B. A., Schuster, M., 2015. Core principles of bacterial autoinducer systems. Microbiology and Molecular Biology Reviews 79 (1), 153–169.
- Heymann, Y. T., 2010. A theory of the lifecycle of bacteria. Nature and Science, 121–131.
- Houchmandzadeh, B., 2015. Fluctuation driven fixation of cooperative behavior. Biosystems 127 (0), 60 – 66.
- Hummert, S., Hummert, C., Schröter, A., Hube, B., Schuster, S., 2010. Game theo- retical modelling of survival strategies of *Candida albicans* inside macrophages. Journal of theoretical biology 264 (2), 312–318.
- Juhas, M., Eberl, L., Tümmler, B., 2005. Quorum sensing: the power of co- $_{711}$ operation in the world of pseudomonas. Environmental microbiology 7 (4), 459–471.
- Keller, L., Surette, M. G., 2006. Communication in bacteria: an ecological and evolutionary perspective. Nature Reviews Microbiology 4 (4), 249–258.
- Kerr, B., Riley, M. A., Feldman, M. W., Bohannan, B. J., 2002. Local disper- sal promotes biodiversity in a real-life game of rock–paper–scissors. Nature $717 \quad 418 \ (6894), 171 - 174.$
- Köhler, T., Buckling, A., Van Delden, C., 2009. Cooperation and virulence of clinical *Pseudomonas aeruginosa* populations. Proceedings of the National Academy of Sciences 106 (15), 6339–6344.
- Leggett, H. C., Brown, S. P., Reece, S. E., 2014. War and peace: social interactions $\frac{722}{100}$ in infections 369 (1642).
- Lehmann, L., Keller, L., West, S., Roze, D., 2007. Group selection and kin selection: two concepts but one process. Proceedings of the National Academy of Sciences $725 \quad 104 \quad (16), \, 6736 - 6739.$
- Luján, A. M., Gómez, P., Buckling, A., 2015. Siderophore cooperation of the bacterium *Pseudomonas fluorescens* in soil. Biology letters 11 (2), 20140934.
- MacLean, R. C., Fuentes-Hernandez, A., Greig, D., Hurst, L. D., Gudelj, I., 2010. A mixture of "cheats" and "co-operators" can enable maximal group benefit. PLoS Biol 8 (9), e1000486.
- Melke, P., Sahlin, P., Levchenko, A., Jönsson, H., 2010. A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol 6 (6), e1000819.
- Mellbye, B., Schuster, M., 2014. Physiological framework for the regulation of quorum sensing-dependent public goods in *Pseudomonas aeruginosa*. Journal of bacteriology 196 (6), 1155–1164.
- Meyer, A., Megerle, J. A., Kuttler, C., Müller, J., Aguilar, C., Eberl, L., Hense, B. A., Rädler, J. O., 2012. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical biology 9 (2), 026007.
- Müller, J., Kuttler, C., 2015. Methods and Models in Mathematical Biology. Springer.
- Nadell, C. D., Foster, K. R., Xavier, J. B., 2010. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS computational biology $744 \qquad 6 \ (3), \ e1000716.$
- Nigaud, Y., Cosette, P., Collet, A., Song, P. C. T., Vaudry, D., Vaudry, H., Junter,
- G.-A., Jouenne, T., 2010. Biofilm-induced modifications in the proteome of
- *Pseudomonas aeruginosa* planktonic cells. Biochimica et Biophysica Acta
- (BBA)-Proteins and Proteomics 1804 (4), 957–966.
- Nowak, M. A., Tarnita, C. E., Wilson, E. O., 2010. The evolution of eusociality. Nature 466 (7310), 1057–1062.
- Oslizlo, A., Stefanic, P., Dogsa, I., Mandic-Mulec, I., 2014. Private link between signal and response in *Bacillus subtilis* quorum sensing. Proceedings of the National Academy of Sciences 111 (4), 1586–1591.
- Parsek, M. R., Greenberg, E., 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in microbiology 13 (1), 27–33.
- Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M., Moreno, Y., 2013. Evolutionary dynamics of group interactions on structured populations: a
- review. Journal of The Royal Society Interface 10 (80), 20120997.
- Pérez-Velázquez, J., Quiñones, B., Hense, B. A., Kuttler, C., 2015. A mathemat- ical model to investigate quorum sensing regulation and its heterogeneity in *Pseudomonas syringae* on leaves. Ecological Complexity 21 (0), 128 – 141.
- Pollitt, E. J., West, S. A., Crusz, S. A., Burton-Chellew, M. N., Diggle, S. P., 2014. Cooperation, quorum sensing, and evolution of virulence in *Staphylococcus aureus*. Infection and immunity 82 (3), 1045–1051.
- Popat, R., Cornforth, D., McNally, L., Brown, S., 2015. Collective sensing and collective responses in quorum-sensing bacteria. Journal of The Royal Society Interface 12 (103), 20140882.
- Popat, R., Crusz, S. A., Messina, M., Williams, P., West, S. A., Diggle, S. P., 2012. Quorum-sensing and cheating in bacterial biofilms. Proceedings of the Royal Society of London B: Biological Sciences, rspb20121976.
- Pradhan, B. B., Chatterjee, S., 2014. Reversible non-genetic phenotypic hetero-geneity in bacterial quorum sensing. Molecular microbiology 92 (3), 557–569.
- Rainey, P. B., Kerr, B., 2010. Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. Bioessays 32 (10), 872–880.
-
- Rainey, P. B., Rainey, K., 2003. Evolution of cooperation and conflict in experi- μ ₇₇₇ mental bacterial populations. Nature 425 (6953), 72–74.
- Ross-Gillespie, A., Kümmerli, R., 2014. Collective decision-making in microbes. Frontiers in microbiology 5.
- Rumbaugh, K. P., Diggle, S. P., Watters, C. M., Ross-Gillespie, A., Griffin, A. S., West, S. A., 2009. Quorum sensing and the social evolution of bacterial virulence. Current Biology 19 (4), 341–345.
- Rumbaugh, K. P., Trivedi, U., Watters, C., Burton-Chellew, M. N., Diggle, S. P.,
- West, S. A., 2012. Kin selection, quorum sensing and virulence in pathogenic
- bacteria. Proceedings of the Royal Society of London B: Biological Sciences
- 279 (1742), 3584–3588.
- Ruppin, E., Papin, J. A., De Figueiredo, L. F., Schuster, S., 2010. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Current opinion in biotechnology 21 (4), 502–510.
- Sandoz, K. M., Mitzimberg, S. M., Schuster, M., 2007. Social cheating in *Pseu- domonas aeruginosa* quorum sensing. Proceedings of the National Academy of Sciences 104 (40), 15876–15881.
- Schaefer, A. L., Greenberg, E., Oliver, C. M., Oda, Y., Huang, J. J., Bittan-Banin, G., Peres, C. M., Schmidt, S., Juhaszova, K., Sufrin, J. R., et al., 2008. A new class of homoserine lactone quorum-sensing signals. Nature 454 (7204), 595–599.
- Schuster, M., Joseph Sexton, D., Diggle, S. P., Peter Greenberg, E., 2013. Acyl- homoserine lactone quorum sensing: from evolution to application. Annual review of microbiology 67, 43–63.
- Schuster, S., Kreft, J.-U., Brenner, N., Wessely, F., Theißen, G., Ruppin, E., Schroeter, A., 2010. Cooperation and cheating in microbial exoenzyme production–theoretical analysis for biotechnological applications. Biotechnol-ogy journal 5 (7), 751–758.
- Simon, M., 1985. Specific uptake rates of amino acids by attached and free-living bacteria in a mesotrophic lake. Applied and Environmental Microbiology 49 (5), 1254–1259.
- Strassmann, J. E., Gilbert, O. M., Queller, D. C., 2011. Kin discrimination and cooperation in microbes. Annual review of microbiology 65, 349–367.
- Strateva, T., Mitov, I., 2011. Contribution of an arsenal of virulence factors to pathogenesis of *Pseudomonas aeruginosa* infections. Annals of microbiology 61 (4), 717-732.
- Travisano, M., Velicer, G. J., 2004. Strategies of microbial cheater control. Trends in microbiology 12 (2), 72–78.
- Vetter, Y., Demin, J., Jumars, P., Krieger-Brockett, B., 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microbial Ecology 36, 75–92.
- Waite, R. D., Paccanaro, A., Papakonstantinopoulou, A., Hurst, J. M., Saqi, M., Littler, E., Curtis, M. A., 2006. Clustering of *Pseudomonas aeruginosa* transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC genomics 7 (1), 162.
- Wang, M., Schaefer, A. L., Dandekar, A. A., Greenberg, E. P., 2015. Quorum sensing and policing of *Pseudomonas aeruginosa* social cheaters. Proceedings of the National Academy of Sciences 112 (7), 2187–2191.
- Webb, G. F., 1985. Theory of nonlinear age-dependent population mathematics. Marcel Dekker.
- West, S. A., Diggle, S. P., Buckling, A., Gardner, A., Griffin, A. S., 2007a. The social lives of microbes. Annual Review of Ecology, Evolution, and Systematics, 53–77.
- 829 West, S. A., Griffin, A. S., Gardner, A., 2007b. Evolutionary explanations for cooperation. Current Biology 17 (16), R661–R672.
- West, S. A., Griffin, A. S., Gardner, A., Diggle, S. P., 2006. Social evolution theory for microorganisms. Nature Reviews Microbiology 4 (8), 597–607.
- Wilder, C. N., Diggle, S. P., Schuster, M., 2011. Cooperation and cheating in *Pseudomonas aeruginosa*: the roles of the las, rhl and pqs quorum-sensing 835 systems. The ISME journal $5(8)$, $1332-1343$.
- Xavier, J. B., Kim, W., Foster, K. R., 2011. A molecular mechanism that stabilizes cooperative secretions in *Pseudomonas aeruginosa*. Molecular microbiology 79 (1), 166-179.
- Zhang, Y., Fu, F., Wu, T., Xie, G., Wang, L., 2013. A tale of two contribution mechanisms for nonlinear public goods. Scientific reports 3.
- Zhou, L., Slamti, L., Nielsen-LeRoux, C., Lereclus, D., Raymond, B., 2014. The social biology of quorum sensing in a naturalistic host pathogen system. Current Biology 24 (20), 2417–2422.
- zur Wiesch, P. S., Engelstädter, J., Bonhoeffer, S., 2010. Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrobial agents 846 and chemotherapy 54 (5), 2085–2095.