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Abstract8

Bacterial communication is enabled through the collective release and sensing of
signalling molecules in a process called quorum sensing. Cooperative processes
can easily be destabilized by the appearance of cheaters, who contribute little
or nothing at all to the production of common goods. This especially applies
for planktonic cultures. In this study, we analyse the dynamics of bacterial
quorum sensing and its evolutionary stability under two levels of cooperation,
namely signal and enzyme production. The model accounts for mutation rates
and switches between planktonic and biofilm state of growth. We present a
mathematical approach to model these dynamics using age-dependent colony
models. We explore the conditions under which cooperation is stable and find
that spatial structuring can lead to long-term scenarios such as coexistence or
bistability, depending on the non-linear combination of different parameters like
death rates and production costs.
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1. Introduction11

Cooperation between bacterial cells seems to be the rule rather than the12

exception, which has led to the development of a field of research called sociomi-13

crobiology (Parsek and Greenberg, 2005). Forms of cooperation often include the14

release of public goods, i.e., extracellular molecules that benefit all neighbouring15

cells (such as antibiotica, sidephores or certain virulence factors). Some of these16

molecules play a crucial role for bacterial nutrition (e.g. exoglycosidase, exopro-17

tease). Production and release of public goods is often regulated by bacterial18

cell-cell communication (usually termed quorum sensing, QS) using released19

signals (autoinducers) (Fuqua et al., 1994). Once a certain environmental con-20

centration of autoinducers is reached, which is usually associated with a certain21

cell density or number of cells, the population starts a coordinated release of22

public goods. The evolutionary purpose of such a control has been described23
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as guaranteeing a reasonable cost/benefit ratio or efficiency (Hense et al., 2007;24

Hense and Schuster, 2015; Darch et al., 2012).25

Understanding the evolutionary stability of bacterial cooperation is challeng-26

ing (Keller and Surette, 2006; West et al., 2007a; Ghoul et al., 2014; Leggett et al.,27

2014; Harrington and Sanchez, 2014). “Cheater” mutants (also called “defectors”28

or “free riders”), which do not contribute to the cooperation, e.g. which do not29

release public goods, are assumed to save costs, although they do benefit from30

the public goods provided by cooperators. This theoretically predicted fitness31

advantage of cheaters has been confirmed with and without QS regulation in32

vitro and in vivo (Diggle et al., 2007; Sandoz et al., 2007; Köhler et al., 2009;33

Rumbaugh et al., 2009; Popat et al., 2012; Pollitt et al., 2014). In terms of game34

theory, such a behaviour is usually described as prisoners dilemma, where the35

non-cooperative behaviour is the dominant strategy (Archetti et al., 2011). This36

raises the question, why bacterial cooperation nevertheless exists, i.e., why in37

the long term cheaters do not outcompete honest cooperators in nature.38

With respect to evolutionary stability, QS represents a specific situation39

as it involves two levels of cooperation: a) cooperation at the signalling level,40

as autoinducers themselves are public goods, b) cooperation on the level of41

QS-controlled target genes. Both are prone to cheater mutants.42

Several mechanisms explaining evolutionary stability of cooperation and QS43

have been described (for a recent overview see Ross-Gillespie and Kümmerli44

(2014)). The concepts of kin selection and multi-level selection provide additional45

approaches from evolutionary theory (Lehmann et al., 2007). In short, these46

concepts require assortment by a privileged allocation of the benefits of public47

goods to cooperative producers (Damore and Gore, 2012).48

Spatial structuring of populations is a fundamental principle allowing for49

assortment in bacteria. Such separation could serve to stabilize cooperation in50

combination with population bottlenecks (Brockhurst, 2007). Spatial structuring51

can be caused by environmental heterogeneities, but also by self-organization via52

bacterial interactions (Frey and Reichenbach, 2011). In biofilms, for example, cells53

and cheaters tend to grow in clusters (Nadell et al., 2010). Both theoretical and54

experimental studies (Cremer et al., 2012; Chuang et al., 2009; Melke et al., 2010;55

Rumbaugh et al., 2012) showed that under certain conditions, cyclic separations56

of the whole population into small subpopulations and subsequent re-mixing57

events can protect cooperative behaviour from being completely outcompeted.58

Studies analysing the influence of fragmentation/re-assortment processes59

usually do not discuss specifically how these processes may be realized in nature.60

Most bacteria live as free-floating single cells (plankton) or in aggregates, most61

frequently attached to surfaces (colonies or biofilms). Fragmentation in colonies62

usually works as follows: Aggregates normally start with cells that attach to a63

surface and divide while staying together, if the conditions fit. From a growing64

colony, eventually cells leave, disperse and found new colonies. Initiating usually65

from single cells, such a lifestyle presents an extreme form of fragmentation,66

providing in this respect optimal conditions for the maintenance of cooperation.67

In contrast, the realization of fragmentation in plankton is more challenging68

as cyclic spatial structuring will probably only exceptionally occur (e.g. in cases69
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of growth to flocs). Nevertheless, although a number of genes are differentially ex-70

pressed under planktonic and attached conditions, QS has been described for both,71

meaning QS is not switched off in plankton. Values of quorum sensing parame-72

ters have even been reported to be almost identical both under planktonic and73

attached conditions (Meyer et al., 2012; Fekete et al., 2010; Buddrus-Schiemann74

et al., 2014).75

QS signalling within microcolonies seems to be isolated to a certain degree76

towards signals in the surrounding fluid, which strengthens the degree of separa-77

tion (Meyer et al., 2012). Although the amount of production can be assumed to78

vary quantitatively depending on the environmental conditions, QS-controlled79

public goods as nutritional exoenzymes and siderophores are released in both80

life styles (Evans et al., 1994). Accordingly, a number of QS-regulated genes are81

expressed both under planktonic and biofilm conditions (Waite et al., 2006).82

There have been different theoretical (modelling) approaches to investigate83

evolutionary stability of cooperation, using a broad spectrum of analytical tools.84

For an illustrative review on the evolution of cooperation see West et al. (2007b).85

Czárán and Hoekstra (2009) modelled cooperation through cellular automata,86

investigating the spatial aspects of cooperation. Since bacteria procreate through87

cell division, cells in the vicinity tend to be closely related. In this way, the results88

could also be explained by Hamilton’s Rule, which has been used in (Chuang89

et al., 2010).90

Cremer et al. (2012) presented an individual-based model of cooperation in91

microbial populations, following the experimental results of Chuang et al. (2009).92

Garcia et al. (2014) addressed the evolutionary dynamics of attachment and93

group cohesion. Frank (2010) presented an ODE model which suggests that it is94

the combination of mutation and demographic processes (such as local density,95

colony survival and dispersal) which determines the relative fitness of cooperators96

versus cheaters. In his model, cheaters are just the endpoint of a continuum of97

secretion rates capability.98

As mentioned, most bacteria switch between two states: attached to surfaces,99

which actually represents the main life style of bacteria, and plankton, which100

allows to disperse to new niches. A theoretical analysis about evolutionary101

stability of (QS regulated) cooperation regarding explicitly the biphasic life style102

of these bacteria is missing yet. In this paper, we thus investigate stability of QS103

controlled cooperation under such conditions, including mutation rates which are104

ignored in most similar models. Our aim is the identification of critical factors105

for cooperation and an analysis of the conditions for domination of wildtype106

or cheater mutants, or coexistence of both. We hypothesize that cooperative107

behaviours like the production of exoenzymes or siderophores, which are expressed108

both in plankton and in colonies/biofilms, can be evolutionarily stabilized for109

both conditions through inter-subpopulation selection in the colony state.110

In a generic modelling approach, we will analyse whether and under which111

conditions this hypothesis holds. For that purpose we use differential equations,112

as in Frank (2010). The model includes a switch between habitation in separated113

colonies and in plankton, growth and death, QS-controlled release of a nutritional114

exoenzyme, and mutations toward both signal and exoenzyme cheaters. In a first115
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step, we will analyse the model with respect to which parameter sets promote the116

long term dominance of honest cells, cheater cells of both types or the co-existence117

of both. We first build up our model in section 2 and analyse it mathematically118

in section 3. As a second step, we investigate the behaviour of the model through119

numerical simulations, using experimentally derived parameters when known. In120

particular, the influence of key parameters (such as cooperation costs, number121

of colonies and colony death rate) on the stability of the system are tested. The122

results are shown in section 4.123

2. The basic age-dependent model124

As we want to analyse the effect of repeated mixing and separating, our125

model will be composed by two parts, namely population dynamics and lifestyle126

switch: plankton, where the bacteria are well mixed and from which they can127

separate to continue growing in colonies, the second lifestyle. Every bacterium128

in the plankton has an equally distributed chance to do so. Entire colonies can129

die out due to external influences, e.g. grasers, while the plankton cannot die out130

at once. Additionally, we assume that there are only a limited number of colony131

places that are fit for settlements, due to space restrictions. We consider the132

important processes in plankton and colonies as similar enough to assign them133

the same model, for simplicity’s sake, since dropping this assumption would not134

change the general outcome of our analysis.135

For both lifestyles we assume a logistic growth, which we realize through a136

density-dependent mortality rate, with parameter µ. The bacteria propagate137

with a set rate r, which is enhanced under production of QS-regulated exoenzyme.138

Compared to the standard formulation for the logistic growth, this corresponds to139

a carrying capacity K = r/µ. Therefore the availability of exoenzyme enhances140

both the growth rate as well as the environmental capacity. Table A.1 gives an141

overview over all occurring variables and parameters.142

2.1. Population dynamics143

We consider two levels of cooperation, namely QS signal and enzyme produc-144

tion. Without double mutations, this translates into three sub-populations: one145

cheater that does not produce autoinducer (we call it AI-cheater, and denote it146

by y); another cheater that does not produce enzyme (we call it enzyme cheater147

and denote it by z) and a fully cooperative wildtype (which we denote by x).148

If we take a signal-blind cheater instead of a cheater that does not produce149

functional enzyme, our analysis still remains valid. Therefore we will concentrate150

on the cheater types y and z.151

We assume that wildtype bacteria turn into cheaters during replication with152

a constant mutation rate my or mz, respectively, with no reverse or double153

mutations, due to the very low probabilities of these happening. Because of the154

metabolic costs for signal and enzyme production, the cheaters will have a growth155

advantage over the wildtype, which is reflected in different basic growth rates:156

rx < ry < rz. In order to keep the effects of mutation better visible, we formulate157
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the mutations as separate terms; the rates my,mz are to be interpreted relative158

to the replication rates. This interpretation is in line with that of, for example,159

zur Wiesch et al. (2010), connecting the generation of mutants to the population160

size. The model for the three subpopulations then reads:161

x′ = (rx − µ(x+ y + z))x− (my +mz)x, (1a)
y′ = (ry − µ(x+ y + z))y +myx, (1b)
z′ = (rz − µ(x+ y + z))z +mzx. (1c)

We further assume that the regulated enzyme provides nutrients, which will162

speed up growth with a rate rn · n, the main driver of bacterial growth. These163

nutrients are present in a non-digestible form n̄, which regenerate with a rate n̄0,164

and enzymes e are needed to turn them into nutrients n. The resulting equations165

for the two forms of nutrients are:166

n′ = c1en̄− c2n(x+ y + z)− γnn, (2a)
n̄′ = n̄0 − c1en̄− γnn̄, (2b)

where c1 is a measure of the enzyme “efficiency” and c2 the nutrient uptake167

rate of the bacteria. Additionally, both nutrients have a decay rate of γn. Since168

this process is much faster than bacterial growth, we can consider the nutrient169

enzyme dynamic to be in a steady state. It follows from (2):170

n = c1e

c1e+ γn
· n̄0

c2(x+ y + z) + γn
. (3)

We add equations for the QS signal (s) and enzyme (e) concentrations. While171

there is a baseline production (α) for signal, enzyme is only produced in induced172

cells with rate βe. Every single cell decides whether or not to produce enzyme173

according to the signal concentration. But as we are only interested in the overall174

enzyme production and cells can be induced at slightly different signal levels, the175

overall induction is a sigmoid function of signal concentration. At the same time,176

signal production is induced (βs). To model this behaviour, we use a Hill-function177

with Hill coefficient h and τ as the threshold value for induction. This way to178

describe autoinducer dynamics has become quite standard, see e.g. Dockery and179

Keener (2001).180

In combination with decay rates γs, γe we obtain our basic model:181

x′ = (rx + rnn− µ(x+ y + z))x− (my +mz)x, (4a)
y′ = (ry + rnn− µ(x+ y + z))y +myx, (4b)
z′ = (rz + rnn− µ(x+ y + z))z +mzx, (4c)

s′ = (x+ z)α+ βs(x+ z) · sh

τh + sh
− γss, (4d)

e′ = βe(x+ y) · sh

τh + sh
− γee. (4e)
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182

These equations (together with equation (2)) describe the population dynam-183

ics of two types of cooperation. If we study the long-time behaviour of model (4)184

without additions, the cheaters will inescapably drive the wildtype to extinction,185

due to the mutation rates. To take into account the impact of the different186

bacterial lifestyles, namely living in plankton and/or in colonies, we include an187

age-dependent model.188

2.2. Lifestyle switch189

2.2.1. Age-dependent model for the colonies190

We will use an age-dependent framework to track the amount of time passed191

after a colony is colonized. The bacteria living in colonies will be represented192

as follows. We assume that there is an arbitrary but fixed number L of suitable193

places for colonies of which l(t) are empty at time t, see figure 1. These are194

colonized at a rate ξ when a bacterium encounters them. Since there are three195

kinds of bacterial populations, there will be three different types of colonies whose196

frequency we denominate by u, v and w for colonies colonized by a wildtype, an197

AI-cheater or an enzyme cheater, respectively. Finally, these colonies will die out198

again with an age-dependent colony mortality rate µK(a), where the age of a199

colony is defined as the amount of time passed since it was first colonized. We200

can therefore put together an age-dependent model of colony frequencies:201

(∂t + ∂a)u(t, a) = −µK(a) · u(t, a), u(t, 0) = ξx(t) · l(t), (5a)
(∂t + ∂a)v(t, a) = −µK(a) · v(t, a), v(t, 0) = ξy(t) · l(t), (5b)
(∂t + ∂a)w(t, a) = −µK(a) · w(t, a), w(t, 0) = ξz(t) · l(t). (5c)

202

As mentioned before, these colonies have the same basic dynamics as the203

plankton, which means they follow equations (4) and grow from one cell to their204

capacity with increasing a. This implies that we are not able to find an explicit205

expression for these dynamics (there is no explicit expression for f(a)). But given206

that we are not interested any further in the colonies themselves, the amount207

of bacteria of type � in one such colony will just be given by f̃∗,�(a), which is208

dependent on the type of bacteria that started the colony ∗ and the age of the209

colony a. For example f̃x,y(a) would denote the amount of AI-cheater bacteria210

in a wildtype colony of age a. From those, some will migrate into the plankton211

and we will call this amount f∗,�(a). The total amount of bacteria that migrate212

will be given by213

px,�(t) =
∫ ∞

0
fx,�(a) · u(t, a) da (6a)

py,y(t) =
∫ ∞

0
fy,y(a) · v(t, a) da (6b)

pz,z(t) =
∫ ∞

0
fz,z(a) · w(t, a) da (6c)
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plankton

µK

l

L

ξ
p?,�p?,� p?,�

Figure 1: Interactions between plankton and colonies. Empty colony places are colonized at a
rate ξ, from colonies differing amounts p∗,� of bacteria will go into the plankton before they
die at a rate µK .

214

that is, we integrate over all ages.215

2.2.2. Plankton dynamics216

To obtain the plankton dynamics, we add the migration terms to the respective217

equations.218

x′ = (rx + rnn− µ(x+ y + z))x− (my +mz)x+ px,x, (7a)
y′ = (ry + rnn− µ(x+ y + z))y +myx+ px,y + py,y, (7b)
z′ = (rz + rnn− µ(x+ y + z))z +mzx+ px,z + pz,z, (7c)

s′ = (x+ z)α+ βs(x+ z) · sh

τh + sh
− γss, (7d)

e′ = βe(x+ y) · sh

τh + sh
− γee. (7e)

219

3. Analysis220

Having built our model, we now proceed to analyse it. To give us an indication221

whether or not the wildtype will be able to survive in the long term. In the222

following section, we will look at the behaviour of the plankton, not the colonies,223

because they are dependent on the plankton.224

3.1. Stationary states225

We determine the stationary solutions of equations (5). Setting ∂tu(a) = 0226

leads to terms of the form227

u(a) = ξxl exp
(
−
∫ a

0
µK(τ) dτ

)
. (8)
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We define228

θ := ξ ·
∫ ∞

0
exp

(
−
∫ ā

0
µK(τ) dτ

)
dā, ϕ(a) :=

exp(−
∫ a

0 µK(τ) dτ)∫∞
0 exp(−

∫ ā
0 µK(τ) dτ) dā

. (9)

Since
∫∞

0 ϕ(a) da = 1 holds, we can write down the stationary solutions of229

the wildtype colony dynamics as230

u(a) = xlθϕ(a), (10)

with v(a) and w(a) defined similarly. After a short calculation we obtain231

l = L

1 + θ(x+ y + z) . (11)

If we define232

p̂?,� =
∫ ∞

0
f?,�(a) · ϕ(a) da, (12)

the colony input rates in the stationary case are233

px,� = xLθ

1 + (x+ y + z)θ · p̂x,�, (13a)

py,y = yLθ

1 + (x+ y + z)θ · p̂y,y, (13b)

pz,z = zLθ

1 + (x+ y + z)θ · p̂z,z. (13c)

234

Plugging these results into (7), we can show that there must exist the following235

stationary states:236

• the empty state237

• two states with one kind of cheater each238

• a state with wildtype bacteria only (if we disregard mutation rates for a239

moment).240

As the model is too complex to check stability of these steady states through241

the Jacobian matrix, we will instead do a spectral analysis.242

3.2. Analysis of the eigenvalues243

In this analysis, we ask if a stationary point of one type of bacteria can be244

invaded by another bacterial type. To this end, we determine the eigenvalues of245

(7a)-(7c) in the different stationary states, following the ideas as introduced in246

Webb (1985); Müller and Kuttler (2015). If these are positive, the corresponding247
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bacterial type will be able to invade the stationary state. To calculate these248

eigenvalues we first use separation of variables on (5), which leads us to249

u(t, a) = ξlx · exp
(
−
∫ a

0
λ+ µ(τ) dτ

)
, (14a)

v(t, a) = ξly · exp
(
−
∫ a

0
λ+ µ(τ) dτ

)
, (14b)

w(t, a) = ξlz · exp
(
−
∫ a

0
λ+ µ(τ) dτ

)
. (14c)

We plug these results into the ansatz λ ·v = f(v), with f being the functional250

dependency of the right hand side of equations (7a) - (7c).251

3.2.1. Empty state252

If we only add a few bacteria to the empty plankton state, the density253

dependent death rate as well as the signal- and enzyme production can be254

neglected. Thus, there will be no nutrient enhanced growth and, as all available255

colony places are empty, l = L holds. With these simplifications the equation256

reads257

λ

 x̂
ŷ
ẑ

 =

 rx − (my +mz) + p̂x,x,λ 0 0
my + p̂x,y,λ ry + p̂y,y,λ 0
mz + p̂x,z,λ 0 rz + p̂z,z,λ

 x̂
ŷ
ẑ

 ,

(15)

where258

p̂?,�,λ = ξL

∫ ∞
0
f?,� · exp

(
−
∫ a

0
λ+ µ(τ) dτ

)
da, with ?, � ∈ {x, y, z}.

(16)

The wildtype will therefore be able to invade the empty patch, if259

λ = rx −my −mz + p̂x,x,λ (17)

has a positive solution λ. Since the right hand side of this equation is monotone260

decreasing while the left hand side is monotone increasing, it has a positive261

solution if and only if the right hand side is positive for λ = 0. After a short262

calculation, which works similarly for the cheaters, we arrive at the following263

conditions:264

rx −my −mz + Lθp̂x,x > 0 ⇒ wildtype able to invade, (18)
rb + Lθp̂b,b > 0 ⇒ cheater able to invade, b ∈ {y, z}. (19)

This tells us when a single bacterial type is able to live on its own, without265

other types nearby.266
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3.2.2. Solely cheaters present267

As before, no matter what type of cheater we have, there will be no nutrient268

enhanced growth as either signal or enzyme is produced. But in this situation269

the density depended death rate amounts to µb0, where b0 is the number of270

mutants in this steady state. Additionally, l is reduced to L
1+θb0

. Consequently,271

the eigenvalue equation changes to272

λ

 x̂
ŷ
ẑ

 =

 rx − µb0 − (my +mz) + p̂x,x,λ 0 0
my + p̂x,y,λ ry − µb0 + p̂y,y,λ 0
mz + p̂x,z,λ 0 rz − µb0 + p̂z,z,λ

 x̂
ŷ
ẑ

 ,

(20)

where273

p̂?,�,λ = ξL

1 + θb0

∫ ∞
0
f?,� · exp

(
−
∫ a

0
λ+ µ(τ) dτ

)
da, with ?, � ∈ {x, y, z}.

(21)

As before, we want to find out under which conditions there will be positive274

solutions for λ. Analogously as in the empty patch275

rx − µb0 − (my +mz) + Lθ

1 + θb0
p̂x,x > 0 ⇒ Wildtype able to invade.(22)

3.2.3. Solely wildtype present276

With a wildtype-only-state we have to incorporate the nutrient enhanced277

growth rate. As we assume a steady state, the amount of nutrient would also278

have stabilised at an amount n0. The equation for the eigenvalues thus is279

λ

 x̂
ŷ
ẑ

 = (23)

 rx + n0rn − µx0 − (my +mz) + p̂x,x,λ 0 0
my + p̂x,y,λ ry + n0rn − µx0 + p̂y,y,λ 0
mz + p̂x,z,λ 0 rz + n0rn − µx0 + p̂z,z,λ

 x̂
ŷ
ẑ

 ,

which leads to the invasion condition being280

rb + rnn0 − µx0 + Lθ

1 + θx0
p̂b,b > 0 ⇒ Cheater able to invade. (24)

3.2.4. Combinations281

We can now combine the invasion conditions to look at several scenarios of282

how cheaters and wildtype interact with each other and can thus explore the283

long term effects the parameter constellations have. To simplify notation, we284

will denote the wildtype by W , a mutant by M and ∅ denotes the empty patch.285

To indicate invasiveness we will use the arrow →, to indicate that an invasion286

cannot happen we will use the negated arrow 9. Broadly speaking, there are287

three different possible outcomes: either mutant and wildtype coexist, one type288

dominates the other or the population dies out.289
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Coexistence.290

True Coexistence If every bacterial type is able to invade any of the291

stationary points, this will result in a stable coexistence point. We call that292

“true coexistence”, because here the cheaters form a more or less independent293

sub-population instead of constantly rising anew from the wildtype through294

mutation. For that to happen, the following inequalities must hold:295

W → ∅ rx − (my +mz) + Lθp̂x,x > 0,
M → ∅ ry + Lθp̂y,y > 0,

W →M rx − µb0 − (my +mz) + Lθ

1 + θb0
p̂x,x > 0,

M →W ry + rnn0 − µx0 + Lθ

1 + θx0
p̂y,y > 0.

Suppose we start out with a patch of only wildtype bacteria. Due to the rates,296

a few cheater bacteria will arise and increase in frequency becauseM →W holds.297

As a result of W → M , however, the mutants will not drive the wildtype to298

extinction but to a mixed state. The same happens when starting with a mixed299

population. And while at first a cheater-only population will remain that way,300

adding just a few wildtype bacteria will bring the population to the coexistence301

point again. So in this scenario the only stable point is the coexistence point, all302

others are unstable.303

Mutant does not spread Here, the wildtype is able to invade the mutant304

while the mutant cannot invade the wildtype. Whether or not the mutant is able305

to live on its own (→9 means invasibility does not matter), in a mixed population306

there will always be primarily wildtype bacteria with a small sub-population of307

mutants, thanks to the mutation. The conditions here are308

W → ∅ rx − (my +mz) + Lθp̂x,x > 0,

M →9 ∅ ry + Lθp̂y,y 6= 0,

W →M rx − µb0 − (my +mz) + Lθ

1 + θb0
p̂x,x > 0,

M 9W ry + rnn0 − µx0 + Lθ

1 + θx0
p̂y,y < 0.

One bacterial type only.309

Mutant outcompetes wildtype If the mutant is able to invade the310

wildtype-only state but the wildtype is unable to compete, the mutant will311

outcompete the wildtype no matter the starting condition. The conditions for312
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this to happen are313

W → ∅ rx − (my +mz) + Lθp̂x,x > 0,
M → ∅ ry + Lθp̂y,y > 0,

W 9M rx − µb0 − (my +mz) + Lθ

1 + θb0
p̂x,x < 0,

M →W ry + rnn0 − µx0 + Lθ

1 + θx0
p̂y,y > 0.

Bistability In this scenario, none of the bacterial types can invade the314

others but everyone can invade the empty patch. This means that whichever315

type is present first in greater quantities will assert itself. The one-type-only316

stationary states will therefore be stable while the coexistence point and the317

point of origin are unstable.318

W → ∅ rx − (my +mz) + Lθp̂x,x > 0,
M → ∅ ry + Lθp̂y,y > 0,

W 9M rx − µb0 − (my +mz) + Lθ

1 + θb0
p̂x,x < 0,

M 9W ry + rnn0 − µx0 + Lθ

1 + θx0
p̂y,y < 0.

Extinction.319

Evolutionary suicide This scenario is very similar to “mutant outcom-320

petes wildtype” with one marked difference: the mutant is unable to invade the321

empty patch and therefore unable to live by itself. After driving the wildtype322

to extinction, the remaining mutant-only population will then die out. As it is323

impossible to have a population consisting solely of wildtype bacteria because of324

the mutation rate, the bacterial population will become extinct.325

W → ∅ rx − (my +mz) + Lθp̂x,x > 0,
M 9 ∅ ry + Lθp̂y,y < 0,

W 9M rx − µb0 − (my +mz) + Lθ

1 + θb0
p̂x,x < 0,

M →W ry + rnn0 − µx0 + Lθ

1 + θx0
p̂y,y > 0.

4. Numerical simulations326

In this section, we present how the model behaves under different parameter327

sets. To this end we implement the differential equations in Matlab (Mathworks).328
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Figure 2: Time course of plankton and colony dynamics with standard parameter values. The
blue line represents the amount of wildtype bacteria, the green line denotes the amount of
signalcheating mutants and the red line indicates the amount of enzyme cheater. One can see
that regular death events are needed to preserve the abundance of wildtype bacteria.

The ordinary differential equations were solved numerically with a Runge-Kutta-329

solver. In order to solve the partial differential equations (5), we need to refor-330

mulate them. Following the methods mentioned by Webb (1985), we can write331

u(t, a) as332

u(t, a) =
{

0 a > t
x(t− a)l(t− a)ξ exp

(
−
∫ a

0 µ(s) ds
)

a ≤ t . (25)

v(t, a) and w(t, a) can be calculated in the same manner. Lastly, f∗,�(a) is333

computed through spline interpolation of the solution curves of our basic model,334

which without colony input, describes the colony dynamics as well. Examples335

for both the colony and plankton dynamic can be found in figure 2. Please note336

that the seemingly very small values for the cheaters in colonies are due to the337

continuous model with non-vanishing mutation rates, also acting for very low338

wildtype cell numbers. They can be interpreted better for a large number of339

colonies, as multiplied by the colony number they express the expected number340

of this cell type in the whole system. The standard set of parameters used in our341

simulations can be found in Appendix A.2. We assume that although cheaters are342

able to survive on their own, the benefit derived from secreting the enzyme (rn ·n)343

is the main driver of bacterial growth. For the simulation, we used a fixed volume344

for the planktonic phase of 1× 10−8 L. Because the long-term development is345

foreseeable after a short time span, we stopped our calculations at t = 400.346

4.1. Colony number347

We start by exploring how changing of the number of available colony places,348

L, influences the behaviour of the solution. We find that cooperation collapses349

in simulations as long as L ≤ L0 (Fig. 3). It is not possible to calculate a350

closed expression for this critical value L0, but one can see that L0 = 80 in351
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Figure 3: Influence of colony number L on the survival of wildtype against mutant. Ratio
between wildtype and cheater after t=400. In scenarios with L ≤ 80, the wildtype will die out
in the long term, whereas in scenarios with L> 80 the wildtype dominates cheaters in long
term equilibrium. Parameter values can be found in section Appendix A.2

our calculations. The more L approximates to L0, the more time it takes until352

cooperators are outcompeted, which is reflected by an increasing fraction of353

cooperators for t >= 400 in figure 3. For L > L0, cooperators dominate, although354

a small number of cheaters may still be present. Cooperation is thus stabilized355

more if the proportion of bacteria in colonies is high compared to the number of356

bacteria in plankton.357

4.2. Enzyme production cost358

By raising the production cost for the enzyme, we reduce the reproduction359

rates for the wildtype and the signal cheater, rx and ry. As suspected, this360

destabilizes cooperation, although this effect is markedly decreased if the benefit361

of cooperation, represented by rn, is high. See figure 4 for illustration.362

We did the same calculations with higher signal production cost. The figure is363

omitted here, because the long-term behaviour remains the same. If the wildtype364

dies out, the dominating type will always be the mutant with the highest growth365

rate which means the lowest metabolic costs. If we assume that enzyme is more366

costly than signal, then the dominating type will always be the enzyme cheater,367

thus rendering changes in the signal cost irrelevant for the long term dynamic.368

4.3. Colony death rate369

The effect changes of the colony death rate µK have on the wildtype-mutant-370

dynamic is not so straightforward. If the colony death rate is very high, colonies371
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Figure 4: Comparison of resulting dynamics with higher enzyme production costs for two
different cooperation benefits. The blue line represents the amount of wildtype bacteria, the
green line denotes the amount of AI-cheaters and the red line indicates the amount of enzyme
cheater.
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Figure 5: Influence of colony death rate on the survival of wildtype against mutant. Parameter
values can be found in the Appendix A.2

will not grow to large numbers meaning that the colony influence on plankton is372

low. This, in turn, leads to a cooperation decline. On the other hand, if the colony373

death rate is very low, the amount of wildtype bacteria in the colonies will decline374

through mutation and subsequent growth of mutants. An intermediate death375

rate is most favourable for cooperation stability. The corresponding simulation376

can be found in figure 5.377

5. Discussion378

The main results of our study are:379

• Switch between growth in colonies and in biofilms can promote evolutionary380

stability of QS-regulated cooperation in plankton381

• The specific combination of different parameters as described in chapter382

3.2.4 determines the outcome, whereby both low costs and high benefit of383

cooperative traits promote cooperators. The same holds for high carrying384

capacity for pure wildtype colonies and low carrying capacity for cheater385

colonies.386

• Depending on the parameter values, four different types of long term387

equilibria could be achieved: Cheater dominates, wildtype dominates, co-388

existence of both, bistability.389

• Values of one parameter unfavourable for cooperation can to some degree be390

compensated by more favourable values in other parameters. Exemplarily,391
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high costs of cooperation can be compensated by high number of colony392

patches in combination with high benefit of cooperation in a way as393

described in chapter 3.2.4.394

Some parameters, such as high number of patches for colonies, and high395

switching rate from plankton to colonies tend to promote true coexistence.396

These factors can be described as promoting the influence of colonies in397

the system under investigation. In nature, this would indicate a high ratio398

between the size of the surface area suitable for colony growth and the399

volume of the plankton.400

• There exists an optimum with respect to colony death rate, as too high or401

too low rates promote cheaters.402

Our study shows that a switch between plankton and biofilm state can403

promote evolutionary stability of QS-controlled cooperation. Most bacterial404

species regularly undertake such switches. We thus suggest that the results405

contribute to the explanation of the evolutionary puzzling fact that in well-mixed406

planktonic cultures most, if not all, QS systems are expressed and control a407

specific set of highly costly target genes. A prerequisite for this stabilization is408

that QS controls genes under both planktonic and biofilm modes of growth.409

Low costs of cooperation and high carrying capacity for the wildtype in410

combination with high death rate in plankton tend to inhibit spread of mutants,411

whereas high mutation rates, high carrying capacity for mutant and low benefit412

promote mutants. The basic growth rate of wildtype and cheaters and the growth413

rate promotion by QS-regulated exoenzyme hereby reflect costs and benefit of414

cooperation.415

Factors promoting the relevance of colonies in relation to plankton may enable416

true coexistence, for example when cell death rate and carrying capacities of417

both populations in plankton are not too large. In contrast, large death and418

carrying capacities rates for wildtype and mutants in plankton, in combination419

with low values of colony patch number, growth rates and benefit of cooperation,420

may under certain cases result in bistability, i.e. in an assertion of the cell type421

which is present first.422

High benefits and low costs promote stability of cooperation, as described for423

other scenarios (Hummert et al., 2010; Ruppin et al., 2010; Chuang et al., 2010;424

Xavier et al., 2011; Schuster et al., 2010). The amount of available substrate for425

the exoenzyme, i.e., nutrient concentration, determines the benefit of exoenzyme426

production. If, as in our set-up, costs for target genes are higher than costs of427

signal production, signal-blind- or target gene mutants will dominate over mutants428

of signal production. This will depend on the frequencies of mutants found, as429

it has been shown in in situ experiments such as clinical samples of pathogens430

(Strateva and Mitov, 2011; Cullen and McClean, 2015; Pollitt et al., 2014). For431

reasons of compactness, we only analysed a target gene mutant, omitting a signal432

blind mutant. As the signal induces its own production, and because in reality433

most signals control more than one costly target gene, both types of cheaters434

will gain quantitatively different outcomes. However, qualitatively our results435
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will hold.436

Generally, plankton tends to destabilize cooperation, whereas colony growth437

tends to stabilizes it. Therefore, all parameters affecting the interrelationship438

between both have significant influence. The relevance of “colony death rates”439

implies that external disturbing factors such as grazers or death of hosts affect440

stability of cooperation. Similar effects are caused by other events that interfere441

with the life span of e.g. colonies, such as self-induced disorganization of whole442

colonies (Cárcamo-Oyarce et al., 2015).443

In our model, higher numbers of available colony patches promote coopera-444

tion. Ultimately, the relation between available space for plankton growth, which445

was kept constant in our model, and potential for colony growth is critical. In446

accordance with our modelling results, spatial structuring in separated micro-447

colonies connected in a limited way by free floating cells has been reported to448

stabilize QS- cooperation in Bacillus thuringiensis during infections of larvae of449

the diamondback moth and in Plutella xylostella (Zhou et al., 2014). The same450

has been shown for siderophore production by Pseudomonas fluorescens in soil451

(Luján et al., 2015).452

Most game theory approaches employed to study cooperation assume a453

linear relation between cost and benefit (such as prisoner’s dilemma or snow454

drift)(Damore and Gore, 2012; Archetti et al., 2011; Nowak et al., 2010). In many455

cases, this relation can better be described by a non-linear term, often including456

saturation effects (Hense and Schuster, 2015; Chuang et al., 2010; MacLean et al.,457

2010). Exemplary, in case of an increasing amount of exoenzymes released by458

an increasing number of cells, the benefit (amount of transformed substrate or459

the increases of growth rate) obviously saturates. In other cases, benefit may be460

described as sigmoid or stepwise function of costs (Archetti et al., 2011; Popat461

et al., 2015).462

Our model contains non-linearity of benefits as nutrients are limited. Conse-463

quently, during growth of plankton and microcolonies, the benefits/cost ratio464

declines affecting the outcome with respect to evolutionary stability of coopera-465

tion. Interestingly, non-linearity has been identified as a factor which can under466

certain conditions promote cooperation independent on assortment, allowing for467

co-existence of cooperators and cheaters (Frey and Reichenbach, 2011; Archetti468

et al., 2011; Perc et al., 2013; Zhang et al., 2013) . As a prerequisite, benefit has469

to be a concave function of costs and there needs to be an intersection between470

the curves describing cooperator, respectively cheater fitness. In our model, such471

an intersection does not exist, so non-linearity tends to weaken cooperation at472

high densities of cooperators as the benefits saturate while the costs remain.473

Depending on parameter values, four different outcomes in the long term474

are predicted in our study. A) Only cheaters survive, B) Cheaters are repressed,475

i.e. only a low amount of cheaters, arisen from recent mutations, exist, C) true476

coexistence and D) bistability. A) can be easily explained by a dominance of477

the fast growing cheaters. Here, effect of colony growth is insufficient to rescue478

cooperation. In C) we have an equilibrium between within- and between group479

selection. Outcome B) seems surprising at first sight, however very low costs480

(rx ≈ ry) have been reported to promote such a game of harmony-scenario (1194),481
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together with a high benefit (x0, p̂x,x � b0, p̂y,y) . Interesting is the bistability482

in D). Here, no strain can invade the other strain. Such a behaviour is promoted483

when the competition for resources is high, but benefit and cost of cooperation484

are low.485

Co-existence is enabled by negative frequency dependencies of fitness in both486

strains (cheaters and wildtype). In contrast, bistability reflects a scenario with487

positive frequency dependency of fitness for all strains (Damore and Gore, 2012).488

For both scenarios, examples have been described for non-spatially structured489

environments. However, these examples required specific properties such as green490

beard genes (promotion of bistability) or privileged share, i.e. if a fixed amount491

of benefit is directly redirected to the producer of the public good (Gore et al.,492

2009). Although our generic model does not include such privileged assortment,493

the assumption of complete separation has a similar effect.494

There is increasing evidence that cooperation found in nature may be more495

often connected with co-existence of cooperators and non-cooperators, rather496

than with populations in which all cells contribute to cooperation. This may seem497

comprehensible due to the fact that mutations, which always occur, may more498

frequently switch from cooperator to cheater than vice versa. However, our study499

indicated under which conditions true co-existence in equilibrium may be the500

result of counteracting driving forces, in our case between within-group selection501

(benefiting cheaters) and between group selection (benefiting cooperators).502

Beyond pure cheaterism, co-existence of cooperators and non-cooperators503

may have other implications. Under certain conditions, it might be advantageous504

for the fitness of populations if only a fraction of the population contributes505

to cooperation (Elhanati et al., 2011; Perc et al., 2013; Diard et al., 2013;506

MacLean et al., 2010). This especially holds if non-cooperators, possibly by chance,507

express other properties beneficial for the population as shown in Pseudomonas508

fluorescens, where “cooperators” optimize access to nutrients by building biofilms,509

whereas “cheaters” have better dispersal traits, allowing cells to spread and occupy510

new locations (Rainey and Kerr, 2010; Rainey and Rainey, 2003). Note that the511

notions “cooperators” and “cheaters” increasingly loose sense in such examples.512

Even for QS, a strategy which due to the existence of positive feedback513

loops in most species (e.g. signal induced signal production) was assumed to514

enable an all-or-none behaviour, co-existence of QS active and defective strains515

may not always be explained by cheaterism, but at least sometimes reflects516

division of work in isogenic populations (Anetzberger et al., 2009; Pradhan and517

Chatterjee, 2014). Thus, co-existence observed in nature has to be interpreted518

with care. The question whether it represents rather cheaterism or division519

of work is not always straightforward and requires thorough ecological and520

evolutionary investigations, but the distinction might be relevant from various521

perspectives, including development of adequate treatment strategies, e.g. for522

antibiotic substitution (Schuster et al., 2013; Brown et al., 2009). Mechanistic523

models as the one presented here can be valuable tools.524

Several other factors promoting stability of QS controlled cooperation have525

been reported, namely heterogeneity of cooperation between cells (Perc et al.,526

2013; Pérez-Velázquez et al., 2015), stochastic fluctuations (Houchmandzadeh,527
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2015), pleiotropy (Dandekar et al., 2012; Foster et al., 2004; Wang et al., 2015;528

Strassmann et al., 2011), punishment of social cheats (Friman et al., 2013), costly529

over-expression of certain QS regulated genes in QS defective mutants (Oslizlo530

et al., 2014; Wilder et al., 2011), negative feedback loop on the public good531

production (Gore et al., 2009) and preferred adhesion of cells with identical532

cooperative behaviour (Rainey and Rainey, 2003; Strassmann et al., 2011).533

Interestingly, QS itself is a strategy to limit development of cheaters, as it limits534

costly and thus exploitable production of public goods (Czárán and Hoekstra,535

2009; Perc et al., 2013; Travisano and Velicer, 2004; Popat et al., 2015).536

Our approach can be interpreted both in terms of multilevel and kin selection537

(West et al., 2006). Colony patches may be regarded as main entities of between-538

group selection connected by plankton, whereas within-group selection occurs539

in the patches as well as in plankton. However, new colonization of patches540

also represents a realization of kin selection, as all cells within a patch descend541

from a single founder cell. This extreme bottleneck set-up allows for cyclic542

complete separation of cooperators and cheaters, supporting an almost complete543

suppression of cheaters under suitable conditions. However, such an extreme544

set-up is not a sine qua non condition. In reality, many bacteria grow rather in545

large biofilms, composed of a number of independently founded microcolonies.546

However, spatial assortment can maintain, or may even develop in completely547

mixed, growing biofilms under certain conditions, as long as mechanisms of548

mixing, e.g. mobility of single cells in the biofilms, do not dominate (Kerr et al.,549

2002; Rumbaugh et al., 2012; Nadell et al., 2010). Even more, the assumption550

that plankton is ideally well mixed probably does not necessarily always hold551

in reality. Transient assortments of cooperative cells, respectively public goods,552

may exist due to limited diffusion rates or limited connection between planktonic553

subpopulations in highly structured environments such as micro cave systems in554

porous soil or within hosts. It remains to be investigated to which degree such555

weaker forms of separation can support cooperation. Note that too low diffusion556

rates may turn QS useless and, in extreme cases, eventually may change a public557

good into a private good (Czárán and Hoekstra, 2009). Furthermore, plankton558

and colonies are not fully separated, as shown by influence of autoinducers559

produced in biofilms on plankton in overlying fluid (Nigaud et al., 2010).560

Our model has some simplifications which we assume not to interfere with the561

qualitative outcome. We chose the QS-related parameters of signal productions562

rates and threshold to be constant and identical for plankton and colonies, in563

accordance with the results of a series of studies of P. putida IsoF QS system564

(Meyer et al., 2012; Buddrus-Schiemann et al., 2014; Fekete et al., 2010). The565

model does not consider gradients of signals, which occur in colonies, biofilms or566

between biofilms and plankton (Hense et al., 2012).567

Similarly, it is clear that neither the fitness benefit provided by public goods568

nor the costs of their production are necessarily constant, as assumed in the model,569

but can vary spatio-temporally depending on the environmental conditions. For570

example, fitness costs for public good production may be low when resources571

for their production are available in high amounts, i. e. when these resources do572

not limit growth (Brockhurst et al., 2008). The so-called metabolic prudence573
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concept, which has gained some experimentally support, states that cells tend574

to induce the production of public goods under low/no cost conditions (Xavier575

et al., 2011; Mellbye and Schuster, 2014). Analogously, the fitness benefit of576

producing exoenzymes depends, for instance, on the availability of their substrate.577

Information about substrate availability may also be integrated into the regulation578

network (Schaefer et al., 2008; Darch et al., 2012).579

Further evidence shows that regulation of public good production by environ-580

mental factors production is often integrated into the QS system (Juhas et al.,581

2005; Hense and Schuster, 2015). Generally, it has been suggested that optimal582

QS regulation with respect to benefit and costs depends on the properties of583

the public good, e.g. on the way how its benefit is realized (Cornforth et al.,584

2012; Heilmann et al., 2015). Hense et al. (2012) suggested that this complex585

regulation in QS can be understood as a hybrid push-pull control to optimize586

the cost/benefit interplay, where “push” refers to the potential strength of regu-587

lated public good activity, and “pull” to the cells’ demand of the public good.588

The spatio-temporal dynamics of costs and benefit therefore have an important589

impact on the evolutionary stability of QS and could represent an interesting590

extension of our work.591

Our model focusses on the stability of cooperation versus cheater mutants592

and is not dedicated to explain the evolutionary development of cooperation,593

which might often occur in small steps. The latter task requires different methods,594

e.g. tools of adaptive dynamics.595

Understanding under which conditions cheaters arise or existence of coop-596

erators and non-cooperators in equilibrium emerges is of high interest, e.g. in597

developing treatment strategies. Our study sheds light on the question how598

switches between plankton and attached mode of growth can contribute to this.599
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Appendix A. Variables and Parameters604

Appendix A.1. Table of used variables and parameters605

Table A.1: Table of all occuring variables and parameters.

Name unit stands for

α mol
L cells h basic production rate of signal molecule

βe
mol

cells h induced production rate of enzyme
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Table A.1: Table of all occuring variables and parameters.

Name unit stands for

βs
mol

L cells h induced production rate of signal molecule

γe
1
h enzyme degradation rate

γn
1
h nutrient degradation rate

γs
1
h signal molecule degradation rate

θ 1
cells measure for the lifespan and recolonization frequency

of colonies
µ 1

cells h bacterial death rate in plankton

µK
1

cells h death rate for the colonies

µKolonie
1

cells h bacterial death rate in colonies

ξ 1
cells h recolonization rate of empty colony patches

τ mol
L threshold value for induction

ϕ 1
h normed measure for the survival chances of colonies

b0 cells number of bacteria from an arbitrary cheater type in
a stationary state

c1
1

mol h effectiveness of enzyme

c2
1

cells h nutrient uptake of bacteria

e(t) mol existing amount of enzyme at time t
f?,�(a) cells number of bacteria of type � that migrate into plank-

ton from colonies of age a that were started by type
?

h Hill coefficient
l(t) number of empty colony places at time t
L total number of colony places available
my

1
h mutation rate from wildtype bacteria to AI-cheaters

mz
1
h mutation rate from wildtype bacteria to enzyme

cheaters
n(t) mol amount of digestible nutrient at time t
n0 mol amount of digestible nutrient in a stationary state

n̄0
mol
h nutrient regeneration rate
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Table A.1: Table of all occuring variables and parameters.

Name unit stands for

p?,�(t) cells number of bacteria of type � that migrate into plank-
ton from all colonies started by type ? at time t

p̂?,� cells number of bacteria of type � that migrate into plank-
ton from a single colony started by type ? during its
lifespan in the stationary state

rb
1
h basic growth rate for an arbitrary cheater

rn
1

mol h nutrient dependent growth rate

rx
1
h basic growth rate for wildtype bacteria

ry
1
h basic growth rate for AI-cheaters

rz
1
h basic growth rate for enzyme cheaters

s(t) mol
L concentration of signal molecule at time t

u(t, a) 1
h number of colonies of age a at time t that were started

by a wildtype
v(t, a) 1

h number of colonies of age a at time t that were started
by a AI-cheater

w(t, a) 1
h number of colonies of age a at time t that were started

by a enzyme cheater
x(t) cells number of wildtype bacteria at time t
x0 cells number of wildtype bacteria in a stationary state
y(t) cells number of AI-cheaters at time t
z(t) cells number of enzyme cheaters at time t

606

Appendix A.2. Standard parameter values607
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Table A.2: Standard parameter values for the numeric simulations if not explicitly stated
otherwise

name value source

α 1.5× 10−11 mol
L h

βe 1.2 mol
cells h Vetter et al. (1998)

βs 1.5× 10−10 mol
L h

γe 0.021 1
h

γn 2.3 1
h

γs 0.0055 1
h

µ 0.0208 1
cells h Heymann (2010)

µK 1 1
h

µcolony 0.01 1
cells h

ξ 0.5

τ 7× 10−8 mol
L

c1 2.4× 10−15 1
mol h Böckle et al. (1995)

c2 1× 10−19 1
cells h Simon (1985)

h 2
L 100
my 3.5× 10−7 1

h

mz 3.5× 10−7 1
h

n̄0 5 mol
h

rn 0.5 1
mol h

rx 0.08 1
h Heymann (2010)

ry 0.09 1
h Heymann (2010)

rz 0.12 1
h Heymann (2010)
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Table A.3: Differing parameters used in simulations for figure 5

name value source

γe 0.0021 1
h

c1 3.6× 104 1
mol h Böckle et al. (1995)

c2 10× 10−19 1
cells h Simon (1985)

n̄0 1× 10−18 mol
h

rn 0.01 1
mol h
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