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Abstract 

The octanol/water partition coefficient, logP, is one of the most important physico-chemical 

parameters for the development of new metal-based anticancer drugs with improved 

pharmacokinetic properties. This study addresses an issue with the absence of publicly available 

models to predict logP of Pt(IV) complexes. Following data collection and subsequent development 

of models based on 187 complexes from literature, we validate new and previously published 

models on a new set of 11 Pt(II) and 35 Pt(IV) complexes, which were kept blind during the models 

development step. The error of the consensus model, 0.65 for Pt(IV) and 0.37 for Pt(II) complexes, 

indicates its good accuracy of predictions. The lower accuracy for Pt(IV) complexes was attributed 

to experimental difficulties with logP measurements for some poorly-soluble compounds. This 

model was developed using general-purpose descriptors such as extended functional groups, 

molecular fragments and E-state indices. Surprisingly, models based on quantum-chemistry 

calculations provided lower prediction accuracy. We also found that all the developed models 

strongly overestimate logP values for the three complexes measured in presence of DMSO. 

Considering that DMSO is frequently used as a solvent to store chemicals, its effect should not be 

overlooked when logP measurements by means of the shake flask method are performed.  The final 

models are freely available at http://ochem.eu/article/76903. 
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Introduction 

Platinum complexes form an important class of chemotherapeutics widely used in cancer treatment, 

acting mainly through binding to DNA in cell nuclei. Their ability to cross cell membranes by 

passive diffusion (amongst other pathways), and hence their cellular uptake is therefore an 

important aspect of drug design [1, 2]. The increase of cellular accumulation of platinum with 

increasing the lipophilicity was demonstrated for several classes of Pt(II) and Pt(IV) complexes [3, 

4]. Moreover, correlation between their lipophilicity and in vitro cytotoxicity was observed for 

various series of analogues [3, 5, 6]. 

 

Lipophilicity is usually expressed by the n-octanol/water partition coefficient, P, that reflects the 

relative solubility of the drug in n-octanol (a model of the lipid bilayer of a cell membrane) and 

water (the medium inside and outside the cells) [7]. LogP is one of the properties identified by 

Lipinski in the “Rule of 5” for drug-like molecules,[8] and is therefore, one of the most important 

physicochemical parameters in drug discovery studies, being related to the bioavailability of 

chemical compounds [9, 10]. Furthermore, lipophilicity is a crucial parameter for the development 

of orally administered drugs, while logP in the range between 0.5 and 3.5 can be considered as 

optimal for good oral bioavailability [11].  

 

Nowadays, most anticancer drugs are administered intravenously, a route that leads to immediate 

and complete bioavailability, but can also be hazardous and of difficult management. This is 

particularly true for Pt(II)-based chemotherapeutics such as the well-known anticancer drug 

cisplatin [1]. In general, patients prefer oral medications over intravenous therapy, and, hence, the 

development of oral drugs will be very beneficial for them. In this context, Pt(IV) complexes are 

particularly interesting, being promising anticancer prodrug candidates for oral administration, due 

to their kinetic inertness (allowing stability in the gastro-intestinal tract) and the various possibilities 

for tuning of their lipophilicity [3, 5, 12, 13]. 
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The reliable prediction of logP of Pt complexes deduced from their chemical structure is an 

important asset in the effort to create new metal-based anticancer drugs with improved 

pharmacokinetic properties. The majority of methods developed so far in that context are based on 

quantum chemical calculations. The development of statistical machine-learning methods, which 

are frequently used for prediction of logP for organic compounds, has been limited due to a small 

number of Pt complexes with measured logP values. Moreover difficulties with representation of 

this type of compounds, especially metal-ligand bonds, and calculation of descriptors also 

contribute to this problem. Indeed, only recently the chemoinformatics software providers, such as 

ChemAxon, have included support of this type of bond in their software. Still, this software does 

not support stereochemistry of coordination bonds. 

 

There is a limited number of publications in the literature about models predicting logP values of 

Pt(II) and Pt(IV) complexes by using different descriptors and different mathematical approaches [4, 

14-20]. However, these methods require the use of descriptors that are not easy to employ. The 

users should be proficient in quantum chemistry, and should be able to prepare chemical structures 

in the format required to run the algorithms. Moreover, the success of these predictions depends on 

the correct selection and optimization of 3D structure of molecules and they require considerable 

calculation time.  

 

In our previous study [16] we developed a program to predict logP values of Pt(II)-complexes, 

which was based on the local correction of predictions provided by the ALOGPS 2.1 program [21]. 

This program is freely available at http://www.vcclab.org/web/pt site. On that website, the 

coordination bond in metal complexes has to be replaced by a single bond, which is recognized by 

the ALOGPS program. Strictly speaking, this is an incorrect representation of Pt complexes 

structure and requires a special attention from the users who would like to use this service. 
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Moreover, to the best of our knowledge, there is no on-line program predicting logP values of 

Pt(IV) complexes.  

 

The main goal of this study is to extend our previous work by providing better and freely accessibly 

tools to predict logP of both Pt(II) and Pt(IV) complexes and benchmark the developed algorithms 

against the state of the art of quantum-chemistry approaches. Another aim was to investigate 

whether performance of local, i.e. based only on logP data for Pt complexes, or global models, i.e. 

when extending set of Pt complexes with other logP data (i.e. of organic molecules), will provide 

the highest prediction accuracy.  

 

The ability to predict relevant physicochemical or biological properties of Pt complexes would be 

an important step towards the rational design of new molecules, allowing potential drug candidates 

to be assessed before lengthy synthesis and testing [22]. “Virtual screening” is now a standard 

aspect of the search for new organic drugs, but has perhaps not yet caught on to the same extent for 

metal-based drugs, not least because of the lack of suitable methods. 

 

 

Molecules and Methods 

 

Training Set Data collection 

Data used in this study were collected from 34 literature sources. The data were uploaded to the 

OCHEM web site [23] and duplicated measurements were eliminated by keeping the value closest 

to the average logP value for the considered molecule. In the case logP values were determined 

using a HPLC method, only values obtained from calibration curves logP vs. log kw (extrapolated to 

0% methanol in the mobile phase) were used. There were 14 stereoisomers (enantiomers and/or 

their mixtures) in the dataset. The logP values for many of these molecules were very similar, e.g. -
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1.59 and -1.54 for (SP-4-2)-(cyclohexane-1S,2S-diamine)(ethanedioato)platinum(II) and (SP-4-2)-

(cyclohexane-1R,2R-diamine)(ethanedioato)platinum(II) (oxaliplatin),[4] respectively. Considering 

that most of the used descriptors were 2D-based, we selected only one structure, which was 

provided by the more reliable source, as determined by the described experimental protocol. Where 

both values were provided within the same study, the lower logP value was chosen for consistency. 

In total, 100 and 87 structures were selected for Pt(II) and Pt(IV) complexes, respectively. 

 

Training Datasets 

Four datasets were used to develop the models: individual sets with Pt(II) and Pt(IV) complexes, a 

joint set with both types of complexes and a joint set merged with 12898 data points previously 

used to develop ALOGPS 2.1 program [21]. The ALOGPS 2.1 set did not include any metal 

complexes. The distribution of logP values for Pt compounds is shifted towards smaller logP as 

compared to that of organic compounds (Figure 1).  

 

Benchmarking dataset 

In total, 46 platinum complexes for which logP values were unknown during the model 

development step were used to benchmark the developed methods. The molecules as well as their 

experimental logP values are reported in Table 1. This dataset includes 35 Pt(IV) complexes 

measured in two labs. For Pt(II) complexes, we had only three values (1-3) measured using the 

shake-flask method. Therefore, we decided to include additionally eight new values, i.e. in total 11 

Pt(II) complexes (1-11), for which logP values were determined using the RP-HPLC method (4-11).  

 

Complexes 1-32 were obtained and analyzed at the Dipartimento di Scienze e Innovazione 

Tecnologica, Università del Piemonte Orientale (Alessandria, Italy), whereas compounds 33-46 

were obtained at the Institute of Inorganic Chemistry, University of Vienna (Austria). Compounds 

33-40 and 43-46[24-27], as well as 12-32[18, 28, 29] have been previously reported, but their 
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shake-flask log P values have been measured for this work. Complexes 1-3 and 41-42 are new and 

their synthesis and complete characterization are provided in the supporting information.  

 

Complexes 4-5[30] and 6-11[31] are already known but their logP values have been determined for 

this work using a known RP-HPLC method [15, 32].  

 

Experimental measurement protocols  

Two different methods (shake-flask and RP-HPLC), applied according to different experimental 

protocols developed and accomplished in two different labs (in Austria and in Italy) were used for 

logP determination of the compounds from the test set in order to resemble the bias of data 

collected (from different sources) in the training sets. 

 

LogP values of complexes 1-3 and 12-32 were obtained by using the shake-flask method by 

preparing a solution of each compound in n-octanol-saturated water ([Ptstock] ≈ 0.1-0.2 mM) and 

shaking it with water-saturated n-octanol for 30 min. The mixture was then centrifuged for 30 min 

at 4000 rpm. In general, the volumes of n-octanol (Voct) and water (Vwater) in such measurements are 

equal, but for compounds with rather extreme logP values different volumes are often used. In the 

actual case, for complexes 12-29 Vwater was 0.6 mL and Voct was 50 mL. In the case of rather 

insoluble complexes 30-32, 5% DMSO was added to the n-octanol-saturated water to get 

reproducible measurements (Vwater = Voct = 5 mL) [33]. For Pt(II) complexes 1-3, more reproducible 

results were obtained using Vwater = 3 mL, Voct = 20 mL and [Ptstock] = 1 mM. Pt concentrations 

were measured by means of a Spectro Genesis ICP-OES spectrometer (Spectro Analytical 

Instruments, Kleve, Germany) equipped with a crossflow nebulizer. For the measurements the Pt 

299.797 nm line was selected and a Pt standard stock solution of 1000 mg L-1 was diluted in 1.0% 

v/v nitric acid to prepare calibration standards. In the case of better water-soluble complexes 12-29, 

it was also possible to confirm the finding that an accurate RP-HPLC or 1H NMR measurement in 
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the presence of a suitable internal standard can substitute the ICP experiment to determine the 

concentration of the aqueous solutions [34, 35]. This can be particularly useful in the case of large 

series of complexes. 

 

LogP values (Table 1) were calculated according to the formula, modified by taking into account 

the different employed volumes:[34] 

  (1) 

 

On the contrary, logP values of Pt(II) complexes 4-11 were determined with a RP-HPLC method, as 

follows. Aqueous solutions of the Pt(II) complexes (0.25 mM) were injected onto a C18 reverse 

phase HPLC column (250x4 mm LiChrospher 100 RP18 5µm column (Merck, Germany). The 

mobile phase was a 30:70 mixture of methanol and 15 mM HCOOH (flow rate = 0.75 mL min-1, 

isocratic elution, UV-visible detector set at 210 nm). KI was the internal reference to determine the 

column dead-time (t0). The retention time tR of each complex was expressed in terms of log k’ (k’ = 

(tR – t0) / t0), that in turn was used to calculate the corresponding log P based on the previous 

established relationship log P vs log k’ [15, 32]. 

 

The n-octanol/water partition coefficients (logP) of compounds 33-46 were also determined using 

the classical shake-flask method, according to the OECD guidelines[36] with slight modifications, 

as described elsewhere [37]. Briefly, stock solutions of the complexes (~0.5 mM), freshly prepared 

in Milli-Q water (pre-saturated with n-octanol), were mixed with equal volumes of n-octanol (pre-

saturated with Milli-Q water) and shaken for 1 h at RT. Platinum concentrations in the aqueous 

phase after phase separation by centrifugation ([Ptaq]) and in the initial stock solutions ([Ptstock]) 

were determined by means of ICP-MS. ICP-MS measurements were performed on an ICP-MS 

instrument Agilent 7500ce (Agilent Technologies, Waldbronn, Germany) equipped with a CETAC 
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ASX-520 autosampler and a MicroMist nebulizer at a sample uptake rate of approx. 0.25 mL min-1. 

The instrument was tuned on a daily base in order to achieve maximum sensitivity and rhenium 

served as internal standard for platinum. Partition coefficients were calculated, according to the 

formula: 

         (2) 

 

All logP determinations were done in triplicate. Their mean values ± standard deviations are given 

in Table 1. 

 

Pt(IV) complexes, as well as Pt(II) complexes featuring chelating carboxylates, are usually stable in 

solution, while dihalogenido (e.g  dichlorido) Pt(II) complexes are subjected to solvolysis (aquation 

or interaction with DMSO, when used for as solubilizing agent). In the experimental protocols used 

in both labs, solutions of Pt complexes were prepared freshly before the logP determination 

experiments. LogP values of dichloridoplatinum(II) complexes were measured by means of RP-

HPLC, while freshly prepared solutions were promptly injected and analyzed within few minutes; 

no species that would result from solvolysis were detected during the experiment. 

 

Representation of coordination (metal-ligand) bonds 

The data preparation step included conversion of the structure to the same representation. 

Coordination bonds were represented using coordinate bond type (which was converted by 

ChemAxon to bond type #8 when exported and stored in sdf files) available in ChemAxon. This 

type is a non-standard one and it provides challenges with descriptor calculation, as the majority of 

descriptor calculation programs do not recognize it. To enable analysis of structures with different 

programs, an automatic conversion of coordinate bonds to single bonds (type #1) was implemented. 
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While this conversion introduced some error in chemical structure, it was consistent across all 

structures. Thus it provided the same bias, which was later accounted by data mining algorithm. 

 

Descriptor calculation 

Twelve different descriptor sets were used for the model development. The set of descriptors are 

listed in Table 2 together with references to the detailed description of algorithms. The descriptors 

are available online at OCHEM [23]. Dragon and CDK failed for calculation of 3D descriptors. 

Therefore only 2D based descriptors were calculated for them. 

 

Unsupervised filtering of descriptors 

Before model development, descriptors that had two or less non-zero values were eliminated. 

Moreover, we grouped together inter-correlated descriptors, i.e. those with linear correlation 

coefficient R2>0.95, and selected for model development only one from each group.  

 

Model development 

Associative Neural Network [38-40] (ASNN) and Multiple Linear Regression Analysis (MLRA) 

were used to develop the methods analyzed in this study. Full details of model development 

protocol are described elsewhere [41, 42]. Briefly, each model consisted of 64 neural network 

models developed using the same architecture but with different random initializations of neural 

network weights. The performance of the ensemble models was evaluated using five-fold cross-

validation (CV)[43] and bagging with 64 models [44]. In the former approach five models were 

built using 4/5 of initial training set and then used to predict the remaining 20% of data. Predicted 

values for the validation sets were used to estimate performance of models (CV results). In the 

bagging approach, 64 models were built. The training sets of models had the same size as the initial 

training set. Each set was created by random sampling with replacement of the initial training set. 

The detailed methodology used to develop the models is described elsewhere [42]. Neural networks 
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with 5 hidden neurons were used; this number was selected after performance analysis of models 

developed for all twelve descriptor sets. This architecture contributed the largest number of models 

with lowest Root Mean Squared Error (RMSE). The neural networks with other number of hidden 

neurons, e.g. 3 or 7, produced models with similar performance, i.e. the calculated result did not 

significantly depend in the used neural network architecture. 

 

MLRA models were developed to provide mechanistic interpretation of calculated results. The step-

wise regression was performed by eliminating on each step the least significant variable as 

identified by t-test. The variables significant at p = 0.01 were used in the final equations. All 

developed models estimate their applicability domains and accuracy of predictions using Leverage 

(MLRA), standard deviation of ensemble predictions (ASNN) and deviation of models in the 

consensus model. 

 

Models based on quantum chemistry descriptors 

SMILES strings for the benchmark data sets were converted to 3D structures through the CORINA 

web interface [45]. Previous experience indicates that descriptors such as polar surface area (PSA) 

are only weakly sensitive to conformational change,[46] so the CORINA-generated conformation 

was used without further searching. Where necessary, generated structures were manually corrected 

for issues such as hydrogen count or cis/trans-isomerism using GaussView4. These structures were 

then geometry optimized using PM6 [47] within MOPAC. Two previously published models were 

then applied to predict logP for the test set: the model denoted QC1 is based on PM6 electronic 

properties and it was trained on 28 Pt(IV) complexes [17]. 

 

logP = 2.573 – 3.001*q(Pt) – 24.41*max q(H) +0.0204*Area_Cosmo (3) 
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The terms in the equation (1) include molecular surface area, calculated as part of the COSMO 

solvation scheme (Area_Cosmo), and Mulliken partial charges on Pt, q(Pt), and the most positively 

charged H-atom (max qH). The second model, denoted QC2, used exposed surface area-based 

descriptors, including total (TSA), polar (PSA) and platinum (PtSA) 

 

logP = -3.39 + 0.0099*TSA – 0.0171*PSA +0.0543*PtSA   (4) 

 

where all surface areas have units of Å2.  It was calculated from PM6-optimised geometries using 

our in-house modification of MOLVOL,[48] and was trained on logP for 24 Pt(II) complexes [14]. 

 

VCCLAB-Pt model 

This model was developed in our previous study[16] with N=65 Pt(II) complexes. It is based on the 

ALOGPS 2.1 program,[21] which was initially developed to predict logP of organic molecules. Of 

course, the original version of this program was unable to predict metal-containing compounds and 

calculated RMSE > 2 log units. However, once it was augmented with logP data for N=43 Pt(II) 

complexes, it provided good prediction accuracy (RMSE = 0.55) for N=12 complexes blindly tested 

in the University of Wroclaw. The model is publicly available at http://www.vcclab.org/web/pt site. 

 

Results and discussion 

Performance of models based on combined set of Pt(II) and Pt(IV) complexes 

For this analysis we used the combined set, containing both Pt(II) and Pt(IV) complexes. The 

RMSE calculated for different descriptors sets by using two methods, ASNN and MLRA, are 

shown in Table 2. As it is clear from the comparison of results, utilization of neural networks 

calculated lower RMSE compared to MLRA. The use of bagging further increased performance of 

models developed using ASNN. Only three types of descriptors, ChemAxon, Inductive and Adriana, 

were based on 3D structures. Models based on these descriptors had on average lower accuracies 
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compared to those based on 2D descriptors. This result may be connected with difficulties to 

generate 3D structures for platinum complexes and/or difficulty with some of these descriptor 

packages to work with coordination bonds. 

 

The lowest RMSE=0.45±0.03 (N=187) was calculated using the extended functional groups 

(EFG)[49] descriptors and bagging. These descriptors count a number of functional groups in 

molecule. The initial functional groups were developed based on CheckMol program [50]. They 

were substantially extended to cover various chemical classes and to better represent hetero-

aromatic molecules [49]. In total 583 functional groups are available at OCHEM web site as part of 

ToxAlerts [51]. The Pt(II) and Pt(IV) complexes from the training set were represented with 69 

different functional groups. After the unsupervised filtering 40 functional groups were retained for 

model development. 

 

The second best model with RMSE=0.46±0.04 was calculated with Isida Fragmentor 

descriptors,[52] developed at the Laboratoire de Chemoinformatique of the University of 

Strasbourg. In this approach each compound is split into Substructural Molecular Fragments (SMF). 

In our analysis SMF of lengths 2 to 4 were used. Each fragment type comprises a descriptor, with 

the number of occurrences of the fragment type as the respective descriptor value. In this study, we 

used the sequence fragments composed of atoms and bonds.  

 

E-state indices[53] are one of the most successful type of descriptors, which was used to model 

logP of chemical compounds since the last century [54]. These indices combine electronic and 

topological properties of the analyzed molecules. The indices are calculated for atom or atomic 

bonds and are summed over the same atom/bond types in a molecule for modeling. In this study we 

used an extended set of E-state indices,[55] which was developed to better cover the environment of 

amino, hydroxyl, and carbonyl groups of molecules. E-state indices types as well as Fragmentor 
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descriptors are generated automatically based on the atoms present in the molecules. Thus, they also 

covered Pt atoms and bond types in both Pt(II) and Pt(IV) complexes.  

 

The combination of three models built on EFG, Fragmentor descriptors and E-state indices in a 

consensus model provided the lowest RMSE = 0.45±0.03 log units for the combined set (for the 

cross-validation protocol). The same combination of models for bagging calculated lower RMSE = 

0.41 ±0.03. An attempt to further improve the accuracy of this model by including other models 

into the consensus was not successful. This was also the case when a combined set of descriptors, 

which includes E-state, Fragmentor descriptors and EFG was used. For this analysis the descriptors 

from these three sets were merged in one and models were developed using the same protocols as 

applied for the individual sets. The error of these new models RMSE=0.55±0.04 (for CV 

RMSE=0.47±0.04 for bagging) were larger compared to the respective consensus RMSEs.  Thus, 

for all further studies we used consensus models built on EFG, Fragmentor descriptors and E-state 

indices. 

 

 

Comparison of models’ performances based on the different sets of molecules 

We developed models using individual sets consisting of only Pt(II) or Pt(IV) complexes. In general, 

the RMSE calculated for Pt(II) data were significantly higher compared to those calculated for the 

Pt(IV) set (see Figures S2 and S3). These results may indicate the higher heterogeneity of data in 

the Pt(II) set as compared to those in the Pt(IV) set. For CV models, the RMSE = 0.52±0.04 

(N=100) calculated for dataset with Pt(II) compounds was not significantly different compared to 

RMSE = 0.48±0.03, calculated for the subset with Pt(II) complexes using the combined Pt(II) + 

Pt(IV) dataset. For Pt(IV) complexes (N=87) very similar RMSE values 0.38±0.04 and 0.40±0.04 

were calculated for models developed using the Pt(IV) dataset and for the Pt(IV) subset of the 

combined set. Thus, development of individual models based on each subset or development of a 
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single combined model based on both Pt sets provided similar performance. Similar performance of 

models developed using the individual Pt sets and the combined set were also observed for the 

bagging validation protocol. 

 

We have further investigated this finding by developing a model, extending the combined Pt set 

with 12898 data points previously used to develop ALOGPS 2.1 program [21]. Since this dataset 

was much larger, we developed only CV models for it. The consensus model with RMSE = 

0.37±0.01 had a similar performance to the models developed only for Pt complexes. It had CV 

RMSE of 0.55±0.08 and 0.41±0.03 for Pt(II) and Pt(IV) complexes, respectively.  Thus, like with 

the previous analysis, the RMSE of models developed with even larger set were not significantly 

different. 

 

The model developed for Pt(II) complexes in this study was based on the largest published set of 

Pt(II) complexes (N=100). Its performance RMSE = 0.48 was similar to the results, RMSE = 0.43 

(N=43) and RMSE = 0.61 (N=12) for training and test sets, respectively, calculated in our previous 

study (VCCLAB-Pt model) [16]. 

 

Identification of outlying compounds 

Several compounds appeared to have large errors in different models. In total 11 molecules had 

absolute errors between predicted and measured experimental values more than 1 log unit for the 

analyzed consensus models. An appearance of molecules with large differences between predicted 

and calculated values is expected considering statistical properties of the distribution of errors in the 

developed models. Indeed, most of molecules were outliers in one or two models only. However, 

two molecules (SP-4-3)-(ethane-1,2-diamine)(2-ethoxy-3-carboxypropanoato)platinum(II) and (SP-

4-1)-diiodidobis(N-methyl-5-nitroimidazole)platinum(II) were consistent outliers across the models. 

This result may signal some problems with experimental measurements for these compounds. 
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Analysis of predicted Molecular Matched Pairs 

To further understand this result, we analyzed the Molecular Matched Pairs (MMPs) plot[56] for 

the consensus model, ASNN3, developed with the combined Pt(II) + Pt(IV) set. While MMPs is a 

widely used method in drug discovery,[57] predicted MMPs[56] is a new tool to provide analysis of 

the developed models. MMP indicates the change of activity of a molecule due to a change in a 

single group. They are grouped by transformations, which indicate chemical groups that are 

changed. Thus, MMPs are related to the analyzed set of molecules with experimental values. 

Predicted MMP indicate the change in the activity as calculated with the corresponding model. 

They are related to a model and can be calculated for any set of molecules following an application 

of the model. The calculation of MMPs is based on the fragmentation and indexing of molecules 

using an approach developed by Hussain and Rea. [58] In order to prevent combinatorial explosion, 

only molecules with less than 40 rotatable bonds are considered by the algorithm while the variable 

part of the molecules is restricted to 10 atoms [56]. Apart from these limitations there are no other 

parameters of the algorithm. Technically, the MMPs for models are available in the lower left 

corner of each model. In case if some molecules are not yet indexed, the user can manually submit 

them using the respective button of the MMP plot. 

 

The points close to the diagonal line indicate MMPs (Figure 2), which were correctly learnt and 

thus were reproduced by the model. The model correctly predicted the sign of the change of logP 

for MMPs in quadrants one and three. The closer is a point to the diagonal of these quadrants the 

better it was reproduced by the model. On the contrary, the points in quadrants two and four 

indicate predicted MMPs for which the model incorrectly calculated the direction of the change of 

the logP of a molecule.  
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Both outlying molecules contributed a number of MMPs in second and fourth quadrants, which 

were thus predicted by the model to have an opposite change in activity. One such MMP 

corresponds to transformation with substitution of hydrogen [H] to ethyl [CC] group (Figure 3). 

There were 14 MMPs corresponding to this transformation in the analyzed dataset. The consensus 

model learnt this transformation and correctly predicted direction of the change of the logP values 

for 13 out of 14 MMPs. These MMPs are shown as green dots in the first quadrant of the plot. For 

MMP of (SP-4-3)-(ethane-1,2-diamine)(2-hydroxy-3-carboxypropanoato)platinum(II) to (SP-4-3)-

(ethane-1,2-diamine)(2-ethoxy-3-carboxypropanoato)platinum(II) shown on the plot, this MMP is 

shown to decrease experimentally measured logP values. The corresponding MMP is highlighted in 

the fourth quadrant of the plot thus signaling that the model predicted a different sign for this 

transformation. Addition of two carbons increases logP on average by 0.95 log units (based on 1295 

MMPs for ALOGPS2.1 dataset), but for this particular pair it reduced logP by 1.24 log units. Such 

change seems likely to be contributed by an experimental error in the measured values. While we 

could have suspected such problems, analysis of predicted MMPs provided additional structural 

information to confirm this observation. The plot of predicted versus experimental MMPs allowed 

easy identification of the suspicious transformation, which is likely to be due to experimental error 

with measurement of logP value for (SP-4-3)-(ethane-1,2-diamine)(2-ethoxy-3-

carboxypropanoato)platinum(II). 

 

However, not all outlying compounds indicate erroneous data. For the other outlying molecule, 

MMPs identified that change of (SP-4-2)-dichloridobis(N-methyl-5-nitroimidazole)platinum(II) 

(experimental logP = -0.49) to (SP-4-1)-diiodidobis(N-methyl-5-nitroimidazole)platinum(II) 

(experimental logP = 0.95) increased logP values by 1.44 log units, whereas the model predicted a 

decrease of -0.12 log units.  In this transformation, two [Cl] atoms attached to Pt(II) were changed 

to two [I] atoms. The dataset did not contain other MMPs with this transformation and there were 

only four molecules with [I] in the whole dataset. The much larger ALOGPS 2.1 set contains about 
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100 MMPs with [Cl] -> [I] transformation. This transformation on average increased logP value by 

0.4 log units thus contributing about 0.8 log units for the change of two Cl atoms. This difference is 

comparable with observed ΔlogP = 1.44. Moreover, the measured logP values were for complexes 

with different geometry (cis and trans), which could also contribute further difference in logP 

values. It is interesting that ALOGPS 2.1 correctly learnt [Cl] -> [I] MMPs, the majority of which 

were in the first quadrant of the plot. Thus, in the current example the limited experimental data 

were not sufficient to correctly learn the observed dependencies or even their sign. While it is still 

possible that one or both of the experimental values could contain experimental errors, the provided 

analysis is not sufficient to exclude one of the molecules.  

Indeed, if we consider the same both MMPs for model developed using the combined set of 

ALOGPS 2.1 + Pt(II) + Pt(IV) compounds, the first MMP (SP-4-3)-(ethane-1,2-diamine)(2-

hydroxy-3-carboxypropanoato)platinum(II) to (SP-4-3)-(ethane-1,2-diamine)(2-ethoxy-3-

carboxypropanoato)platinum(II)) still stays as an outlier. The logP change due to the second MMP 

((SP-4-2)-dichloridobis(N-methyl-5-nitroimidazole)platinum(II) to (SP-4-1)-diiodididobis(N-

methyl-5-nitroimidazole)platinum(II)) is, however, correctly predicted with this model and the 

corresponding predicted MMP appears near the diagonal of the first quadrant of the plot. Thus, the 

use of larger set of molecules allowed the model to better learn dependencies for underrepresented 

transformations available in the data. This result may suggests that models built on the larger set of 

molecules could potentially have a more robust prediction accuracy compared to those developed 

with more focused set of molecules. 

 

Analysis of MLRA models 

The MLRA models, as exemplified by Table 2, had lower accuracy compared to ASNN. Some of 

the differences in performances between ASNN and MLRA models are dramatic. For example, the 

model based on E-state indices was the third best model for ASNN method (RMSE=0.54) while it 

was the worst for MLRA method (RMSE=20). At least for some descriptors, low accuracy of 
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MLRA models stemmed from a few predictions with very large positive or negative logP values. 

For example model based on E-state indices predicted logP of 315 and 33.2 for (SP-4-2)-

dichloridobis(1,2-dimethyl-5-nitroimidazole)platinum(II) and (SP-4-2)-dichloridobis(N-methyl-5-

bromoimidazole)platinum(II) which have logP of -0.33 and -0.08, respectively. Such large errors 

can be contributed to problems with small number of compounds in the training set and overfitting 

of MLRA models due to variable selection. The estimation of applicability domain for these 

molecules using Leverage clearly indicated that such prediction had large leverage values and thus 

were non-reliable ones. Another way to deal with this problem could be to limit the range of 

predicted logP values to that of the training set. If such restriction was added, RMSE of E-state 

model decreased to 1.1 log unit.  

 

The best models calculated using MLRA were based on CDK[58] and EFG[49] descriptors. The 

CDK-based model was based on 18 descriptors, which also included prediction of lipophilicity 

using ALogP algorithm. The model based on functional group counts included only nine variables 

and thus it is more easily interpretable. 

  

logP = -2.25 + 3.85*(unsaturated six-membered heterocycles with two heteroatoms) + 

0.176*(carboxylic acid derivatives) + 0.119*(halogen derivatives (alkyl or aryl)) + 

0.0816*(non-metal atoms) + 0.0621*(aromatic atoms) - 0.538*(carboxylic acid amides) -

0.466 * (hydroxy compounds: alcohols or phenols) -0.386*(six-membered heterocycles with 

three heteroatoms) -0.316*(chalcogens (oxygen group))   (5) 

 

In the above equation (5) the coefficients near to each group are proportional to the contribution of 

the corresponding group to the logP. The coefficients look logical and reflect an intuitive 

expectation for the contribution of respective groups to the total lipophilicity.  
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Benchmarking of models for prediction of new molecules 

To further assess the predictive ability of models developed here, and to compare them to models 

from our previous work, we applied each model to a test set of complexes (see Table 1) not used in 

training developed in our previous publications. The first three models were applied “as is” and no 

tuning of their parameters was performed for this study. 

 

Performance of VCCLAB-Pt model 

This model performed well for prediction of Pt(II) complexes, but failed to accurately predict 

Pt(IV) complexes. This result was expected since this model did not have any Pt(IV) complexes in 

its training set and thus it was unable to correctly account for this class of compounds.  

 

Performance of models based on quantum chemical descriptors 

Table 3 reports RMSE for two models based on quantum chemical descriptors, built on 3D 

structures from PM6 optimization. In general, model QC1 performs poorly with RMSE over 2 log 

units for both test sets. This model employs electronic descriptors such as dipole moment and 

atomic partial charges, and was specifically designed for Pt(IV) complexes. As such, the poor 

performance observed here is slightly surprising. Model QC2, which is based on exposed surface 

areas and was initially developed for Pt(II) complexes, performs rather better, though still resulting 

in rather large RMSE. Within the test set, significant variation in the quality of prediction of values 

from shake flask (RMSE = 0.47) and HPLC (RMSE = 1.06) is evident. Interestingly, this model 

performs at the same level for Pt(II) and Pt(IV) complexes, despite the fact that no Pt(IV) 

complexes were used in training sets for this approach. 

 

Performance of models developed in this study 

The models calculated good accuracy of predictions for both Pt(II) and Pt(IV) complexes. The 

accuracy of prediction for Pt(II) complexes was higher compared to that for Pt(IV). Actually, for 
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Pt(II) complexes all models provided similar prediction accuracy. The accuracy of prediction was 

lower for Pt(IV) data, with the best models based on Pt(IV) or their combination with Pt(II) data. 

The extension of the dataset with logP values of 12.9k organic compounds did not provide 

significantly improved RMSE from the best model. It is interesting that the model developed using 

only values for Pt(II) complexes did not fail completely, as was the case with VCCLAB-Pt. We 

assign this difference to the fact that models developed in this study used new descriptors to 

account for the molecular environment, whereas the previous VCCLAB-Pt model was based on 

similarity, which may not work so well for extrapolation. 

 

MMP analysis allowed identification of several non-expected changes to logP, which can be 

possibly attributed to some experimental problems with data. For example the change of CH3 -> 

phenyl (26 to 27) decreased logP by 0.29. In general, phenyl, which is more lipophilic fragment 

compared to single atom of CH3 increases logP. Another issue arose with three complexes 30–32. 

In this case, a decrease of logP with the increase of the alkyl chain length connected to benzene was 

observed, which does not fit the usual pattern. Actually, these three compounds had very low 

solubility and even though all experiments were performed with maximum care, the measurement 

of their logP was difficult, poorly reproducible and required the use of co-solvent (5% DMSO) to 

avoid precipitation. The co-solvent could introduce some bias in the measurements: even though 

present in low percentage, it might affect the partitioning and therefore the final logP value of the Pt 

complexes, being themselves partitioned according to their logP. Indeed, DMSO has a negative 

logP =-1.35 [55] as it is presented more in the water than in the octanol phase. Therefore, the 

partitioning of analyzed compounds in DMSO can shift them from the octanol to the water phase 

and thus can artificially decrease the apparent logP values, determined by means of the shake-flask 

method as compared to the true values. The strength of this effect will depend on the relative 

solubility of the investigated compound in the analyzed media, i.e., water, octanol and DMSO. The 

computational models were developed using experimental values measured in pure octanol/water 
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phase and thus were unbiased with respect to the presence of DMSO. Therefore their predictions 

could be used to confirm this effect. All four models, ASNN1-ASNN4, as well as both quantum-

chemistry and VCCLAB-Pt models predicted higher logP (the average differences in logP values 

were ΔlogP > 1) than the observed experimental values for compounds 30-32. This result is in 

agreement with the hypothesis about the influence of DMSO on logP measurements. If we assume 

that the predicted experimental values for complexes 30-32 have the same accuracy as for other test 

set compounds, ~ RMSE = 0.6 - 0.7 log units, the observed difference of >1 log unit is dominated 

by the effect of co-solvent. Considering that DMSO is frequently used as a solvent for storage of 

chemical compounds, its presence during the experimental logP measurements can significantly 

bias them. This hypothesis requires more careful experimental investigation.  

If we exclude these three compounds the RMSE of the best performing for Pt(IV) set models, 

ASNN1 and ASNN3, decreased to RMSE = 0.58, such that their performance became similar to 

that for Pt(II) complexes.  

 

Influence of chiral centers 

The statistical methods used for logP modeling (Estate indices, fragmentor and EFG) only use 2D 

representation of molecules and thus are insensitive to differences in stereochemistry and do not 

distinguish stereoisomers (for, e.g. isomeric complexes with N,N' disubstituted ethylenediamine) 

respectively. However, we also addressed this effect for 3D algorithms. MOPAC PM6-DH2 

geometry optimisations were performed on cis and trans isomers of [Pt(1,4-dimethyl-en)Cl2] 

(compound 6 from the test set). The trans form is 2.8 kJ mol-1more stable than cis, at the semi-

empirical level used. Descriptors calculated from these calculations varied only very slightly 

between isomers: the volume of the trans isomer is 1.3 Å3 less than that of the cis (actual volumes 

are cis 213.29, trans 211.95 Å3 so the change is 0.6%), while atomic charges differ by less than 0.01 

e. This leads to a change in predicted logP of 0.24 for QC1 model, i.e. significantly less than error 
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associated with predictive models. However, this result can be of interest for some practical 

applications of both diastereoisomers. 

 

Development of the final model 

The final model was developed using all Pt data available in this study with an exception of 

complexes 30-32 from the test set and ((SP-4-3)-(ethane-1,2-diamine)(2-ethoxy-3-

carboxypropanoato)platinum(II) from the training set, which may have problems with experimental 

values as described above. It has CV RMSE = 0.39 ± 0.02 that is similar to the RMSE=0.41 ± 0.03 

calculated using the training set. Since it was developed with the biggest set of Pt complexes, the 

model has the largest applicability domain [59] and can be used to predict properties of novel Pt(II) 

and Pt(IV) complexes. 

 

Conclusions 

The blind benchmarking of models developed to predict logP of Pt(II) and Pt(IV) complexes was 

performed using data coming from two different experimental laboratories. The calculated results 

showed that existing modeling techniques allow an accurate prediction of logP for platinum 

complexes. We studied two approaches to predict logP of Pt compounds: based on representation of 

chemical structures using general sets of descriptors as well as those exploring quantum-chemistry 

parameters of molecules. In this study the models based on quantum-chemistry descriptors provided 

lower prediction ability compared to those based on simpler descriptors. The poor performance of 

the QC models seems to be related to a lack of diversity in the original training sets, which did not 

contain several of the functional groups present in the test set used here. 

 

The local models developed with Pt data only (ASNN1 - ASNN3) had lower RMSE for prediction 

of test set compounds compared to the model based on combined set of organic molecules and Pt 

complexes (ASNN4) for Pt(IV) complexes. However, similar accuracy of both types of models was 
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observed for Pt(II) complexes. Thus, this study was unable to conclude which approach, i.e., 

development of global models using diverse sets of molecules or just making focused models based 

on compounds sharing same framework or scaffold, is the better one. More data and more diverse 

dataset are required to make conclusions about the advantages of each methodology. 

 

The MMP approach allowed an easy explanation of outlying compounds. While one can easily find 

errors on the predicted versus experimental plot, their explanation can be difficult. An analysis of 

such molecules with help of chemical transformation patterns allows an easy identification and 

explanation of outlying molecules, as it was shown in this work. 

We also concluded that addition of DMSO prior to shake-flask experiments could lower 

octanol/water partition coefficients compared to the true values measured in the absence of the co-

solvent. The observed differences between predicted and measured logP values, which were on 

average more than one log unit, confirmed the theoretical analysis. Additional studies are required 

to verify whether the presence (as residual solvent, which was used to store chemical compounds) 

or intended use of DMSO as a co-solvent can significantly bias the measured logP values.  

The main motivation of this study was to develop a publicly available model for prediction of logP 

of Pt(IV) complexes. The goal was fully achieved and the developed model is publicly available at 

http://ochem.eu/article/76903. It can be used to predict logP of new platinum (both Pt(II) and 

Pt(IV)) complexes as well as to screen large virtual libraries of Pt complexes. Moreover, we 

published 45 new logP values for Pt complexes, i.e. contributed almost 25% of new values. The 

academic community can use these values to develop new and/or compare and improve the existing 

approaches. Publishing of models and providing online data is an important way to share the results 

of research, to make them available to academy and industry and to allow their re-use by the readers 

will contribute certainly to the development of the field of computational chemistry [60]. 
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Table of Abbreviations 

ASNN Associative Neural Networks 

CV Five fold cross-validation 

MLRA Multiple Linear Regression Analysis 

MMP Molecular Matched Pair 

OCHEM On-line Chemical Modeling Environment 

r2 Coefficient of determination 

RMSE Root Mean Squared Error 

EFG Extended Functional Groups 
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Table 1. Pt (II/IV) complexes, together with their experimental logP values, used as the 

benchmarking dataset for the models. 

N Name Formula LogP 

 Pt(II) complexes  

1a 

(SP-4-2)-(cyclobutane-1,1-

dicarboxylato)(N,N'-dimethylethane-

1,2-diamine)platinum(II) 
 

-1.72 ± 

0.06 

2a 
(SP-4-2)-(N,N'-dimethylethane-1,2-

diamine)ethanediatoplatinum(II) 

 

-2.36 ± 

0.36 

3a 
(SP-4-2)-(N,N'-dimethylethane-1,2-

diamine)propanedioatoplatinum(II) 

 

-2.15 ± 

0.13 

4 

(SP-4-2)-

bis(pyridine)propanedioatoplatinum(

II) 

 

-1.08 ± 

0.09 
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5 

(SP-4-2)-(cyclobutane-1,1-

dicarboxylato)bis(pyridine)platinum(

II) 
 

-0.06 ± 

0.04×10-1 

6 

(SP-4-2)-dichlorido(N,N'-

dimethylethane-1,2-

diamine)platinum(II) 
 

-1.66 ± 

0.14 

7 
(SP-4-3)-dichlorido(N-methylethane-

1,2-diamine)platinum(II) 

 

-1.78 ± 

0.15 

8 

(SP-4-3)-dichlorido(N,N-

dimethylethane-1,2-

diamine)platinum(II)  

-1.51 ± 

0.12 

9 

(SP-4-3)-dichlorido(N,N,N'-

trimethylethane-1,2-

diamine)platinum(II) 
 

-1.22 ± 

0.07 

10 
(SP-4-3)-dichlorido(propane-1,2-

diamine)platinum(II) 
 

-2.00 ± 

0.18 

11 
(SP-4-2)-dichlorido(meso-butane-

2,3-diamine)platinum(II) 
 

-1.87 ± 

0.16 

 Pt(IV)	complexes	  
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12 

(OC-6-33)-

dichloridodihydroxidobis(methylami

ne)platinum(IV) 
 

-2.75 ± 

0.20 

13 

(OC-6-33)-

dichloridodihydroxidobis(isopropyla

mine)platinum(IV) 

 

-1.26 ± 

0.28 

14 

(OC-6-43)- 

dichloridodihydroxido(N-

methylethane-1,2-

diamine)platinum(IV)  

-2.81 ± 

0.03×10-1 

15 

(OC-6-43)-

dichloridodihydroxido(N,N,N'-

trimethylethane-1,2-

diamine)platinum(IV)  

-2.60 ± 

0.06 

16 

(OC-6-33)-

dichloridodihydroxido(N,N,N',N'-

tetramethylethane-1,2-

diamine)platinum(IV)  

-2.23 ± 

0.17 
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17 

(OC-6-33)-

dichloridobis(cyclobutanamine)dihy

droxidoplatinum(IV) 

 

-0.54 ± 

0.08 

18 

(OC-6-33)-

dichloridobis(cyclopentanamine)dihy

droxidoplatinum(IV) 

 

-0.23 ± 

0.23 

19 

(OC-6-33)-

dichloridobis(cyclohexanamine)dihy

droxidoplatinum(IV) 

 

0.57 ± 

0.19 

20 

(OC-6-33)-

diamminedihydroxido(propanedioato

)platinum(IV) 
 

-2.55 ± 

0.02 

21 

(OC-6-33)-

dihydroxidobis(methylamine)(propa

nedioato)platinum(IV) 
 

-2.53 ± 

0.23 
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22 

(OC-6-33)-(ethane-1,2-

diamine)dihydroxido(propanedioato)

platinum(IV) 
 

-2.50 ± 

0.04 

23 

(OC-6-33)-

(ethanedioato)dihydroxido(N,N'-

dimethylethane-1,2-

diamine)platinum(IV)  

-2.69 ± 

0.01 

24 

(OC-6-33)-diammine(cyclobutane-

1,1-

dicarboxylato)dihydroxidoplatinum(I

V)  

-2.25 ± 

0.20 

25 

(OC-6-33)-(cyclobutane-1,1-

dicarboxylato)(cyclohexane-1R,2R-

diamine)dihydroxidoplatinum(IV) 
 

-1.72 ± 

0.05 

26 

(OC-6-33)-(2-

acetamidomalonato)diamminedihydr

oxidoplatinum(IV) 
 

-1.89 ± 

0.09 

27 

(OC-6-33)-diammine(2-

benzamidomalonato)dihydroxidoplat

inum(IV) 
 

-2.18 ± 

0.17 

28 

(OC-6-33)-(2-

benzamidomalonato)dihydroxidobis(

methylamine)platinum(IV) 
 

-1.36 ± 

0.08 
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29 

(OC-6-33)-(2,3-diamino-N-

isopropylpropanamide)dichloridodih

ydroxidoplatinum(IV) 
 

-2.34 ± 

0.02 

30b 

(OC-6-33)-

bis(benzoato)dichlorido(cyclohexane

-1R,2R-diamine)platinum(IV) 

 

1.11 ± 

0.11 

31b 

(OC-6-33)-dichlorido(cyclohexane-

1R,2R-diamine)bis(2-

phenylacetato)platinum(IV) 

 

0.92 ± 

0.01 

32b 

(OC-6-33)-dichlorido(cyclohexane-

1R,2R-diamine)bis(3-

phenylpropanoato)platinum(IV) 

 

0.48 ± 

0.04×10-1 

33 

(OC-6-32)-

ammine(cyclohexylamine)tetrahydro

xidoplatinum(IV) 
 

-1.70 ± 

0.29 
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34 

(OC-6-33)- 

bis(acetato)diammine(cyclobutane-

1,1-dicarboxylato) platinum(IV) 

 

-1.42 ± 

0.06 

35 

(OC-6-33)-diamminebis(4-

carboxybutanoato)(cyclobutane-1,1-

dicarboxylato) platinum(IV) 

 

-1.42 ± 

0.03 

36 

(OC-6-33)-diamminebis(4-carboxy-

3-methylbutanoato) (cyclobutane-

1,1-dicarboxylato) platinum(IV) 

 

-0.48 ± 

0.07 

37 

(OC-6-33)-diammine(cyclobutane-

1,1-dicarboxylato)bis((4-ethoxy)-4-

oxobutanoato)platinum(IV) 

 

0.06 ± 

0.08 

38 

(OC-6-33)-diammine(cyclobutane-

1,1-dicarboxylato)bis((4-propyloxy)-

4-oxobutanoato)platinum(IV) 

 

0.95 ± 

0.06 



	 37	

39c 

(OC-6-33)-diammine(cyclobutane-

1,1-dicarboxylato)bis((4-

cyclopentylamino)-4-oxobutanoato) 

platinum(IV) 
 

0.77± 0.06 

40 

(OC-6-33)-diammine(cyclobutane-

1,1-dicarboxylato)bis((4-

cyclohexylamino)-4-oxobutanoato) 

platinum(IV)  

1.33 ± 

0.03 

41 

(OC-6-33)-dichloridobis((4-ethoxy)-

4-oxobutanoato) 

bis(isopropylamine)platinum(IV) 
 

1.30 ± 

0.11 

42 

(OC-6-42)-diamminebis((4-ethoxy)-

4-

oxobutanoato)glycolatoplatinum(IV) 

 

-1.24 

±0.07 

43 

(OC-6-42)-diamminebis((4-

cyclopentylamino)-4-

oxobutanoato)glycolatoplatinum(IV) 

 

-0.39 ± 

0.12 
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44 

(OC-6-33)-diamminedichlorido 

bis((4-ethoxy)-4-oxobutanoato) 

platinum(IV) 

 

-0.36 

±0.02 

45 

(OC-6-22)-bis(1,1´-

cyclobutandicarboxylato)ethane-1,2-

diamineplatinum(IV) 

 

-0.66 ± 

0.01 

46 

(OC-6-32)-

ammine(cyclohexylamine)bis(malon

ato)platinum(IV) 

 

-1.00 

±0.02 

 

a These complexes are obtained as a 9:1 mixture of inseparable isomers. b Rather insoluble 

complexes that required the use of a small amount of co-solvent (DMSO, 5%) in the measurements. 

c logP value is from ref [37] (published after the model development step). 
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Table 2. RMSE of models developed with different sets of descriptors for the combined set Pt(II) + 

Pt(IV) with ASNN and MLRA methods. 

Descriptors type N ASNN CV ASNN Bagging MLRA CV  

RMSE r2 RMSE r2 RMSE r2 N’ 

Fragmentor[52] 2D 140 0.53 0.88 0.46 0.91 0.84 0.70 14 

GSFrag[61] 2D 171 0.76 0.76 0.67 0.81 1.10 0.50 45 

Mera, Mersy[62] 3Db 229 0.80 0.73 0.81 0.72 1.08 0.51 10 

ChemAxon 3Db 79 0.70 0.80 0.56 0.87 1.09 0.51 9 

Inductive[63] 3Db 38 0.68 0.80 0.58 0.86 1.08 0.51 18 

Adriana[64] 2D 108 1.00 0.52 0.90 0.56 1.1 0.3 10 

Dragon[65]a 2D 803 0.58 0.86 0.54 0.88 2.00 <0 98 

CDK[58]a 2D 39 0.62 0.84 0.53 0.88 0.72 0.78 18 

MolPrint[66] 2D 234 0.77 0.75 0.71 0.79 1.28 0.30 15 

EFG[49] 2D 40 0.48 0.90 0.45 0.91 0.78 0.74 9 

ECFP4[67] 2D 282 0.67 0.81 0.61 0.84 1.15 0.44 18 

Estate[68] 2D 90 0.54 0.88 0.48 0.90 20 <0 54 

Consensus: Estate +  

EFG +  

Fragmentor  

2D  0.45 0.92 0.41 0.93    

a Calculation of 3D descriptors was not possible. Majority of calculated descriptors were based on 3D 

structure of molecules while some individual descriptors were also based on 2D representation. b3D 

structures were generated using CORINA [69]. N is number of descriptors after the unsupervised filtering, 

RMSE is Root Mean Squared Error, r2 is coefficient of determination, ASNN is Associative Neural Network, 

MLRA is Multiple Linear Regression Analysis, CV is Cross-Validation protocol and N’ is number of 

descriptors in MLRA model.  
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Table 3. RMSE of models analyzed in the current study 

Model Training data set ref Training set, CV Test set predictions 

Pt(II) Pt(IV) Pt(II) Pt(IV) 

VCCLAB-Pt(II)  12.9k organic molecules  

+ 67 Pt(II) 

[16] - - 0.48± 0.06 2.0 ± 0.2 

QC1 28 Pt(IV) [17] - 0.35 2.7 ± 0.1 2 ± 0.1 

QC2 24 Pt(II) [14] 0.35 - 1.3 ± 0.1 0.9 ± 0.1 

ASNN1  87 Pt(IV) 

Th
is

 w
or

k 

- 0.36 ± 0.04 0.47 ± 0.08 0.66 ± 0.08 

ASNN2 100 Pt(II) 0.50 ± 0.04 - 0.55 ± 0.07 0.81 ± 0.07 

ASNN3  87 Pt(IV) + 100 Pt(II) 0.45 ± 0.04 0.36 ± 0.04 0.37 ± 0.07 0.65 ± 0.06 

ASNN4 12.9k organic molecules +  

87 Pt(IV) + 100 Pt(II) 

0.55 ± 0.07 0.41 ± 0.04 0.36 ± 0.06 0.72 ± 0.07 
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Figure captions: 

Synopsis for the Graphical Abstract: 

Performance of the consensus model for the training and test set complexes. The logP values of the 

test set compounds were kept blind during the model development steps. 

 

Figure 1. Histogram of distribution of logP values in the training sets of the ALOGPS 2.1 (A) and 

of the Pt compounds (B). 

Figure 2. Model and predicted MMP plot calculated for it. Left panel shows predicted (y) versus 

experimental (x) values for consensus logP model, ASNN3, developed with combined set of Pt(II) 

and Pt(IV) molecules. Green corresponds to Pt(II) complexes, while red corresponds to Pt(IV) 

complexes. The right panel shows predicted MMP (each dot is one MMP), which are present in the 

data and were learnt by the model. The points near to the diagonal correspond to MMPs, which 

were correctly learnt by the model. Both plots are screenshots obtained using OCHEM software and 

are accessible at the profile of ASNN3 model available at http://ochem.eu/article/76903. 

Figure 3. Analysis of outlying molecules using predicted MMPs plot. Green dots on the plot 

indicate MMPs corresponding to a transformation, which changes hydrogen to an ethyl group. The 

highlighted dot and the shown MMP indicate a pair of molecules one of which ((SP-4-3)-(ethane-

1,2-diamine)(2-ethoxy-3-carboxypropanoato)platinum(II), on the left) has a possibly incorrectly 

measured experimental value. The MMP plot is a screenshot, which was obtained using OCHEM. It 

is available at the lower right corner of the ASNN3 model available at http://ochem.eu/article/76903. 
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Figure 3.  

 


