Characteristic Patterns in the Fibrotic Lung
Comparing Idiopathic Pulmonary Fibrosis with Chronic Lung Allograft Dysfunction
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Abstract

Tissue fibrosis, a major cause of death worldwide, leads to significant
organ dysfunction in any organ of the human body. In the lung,
fibrosis critically impairs gas exchange, tissue oxygenation, and
immune function. Idiopathic pulmonary fibrosis (IPF) is the most
detrimental and lethal fibrotic disease of the lung, with an estimated
median survival of 50% after 3-5 years. Lung transplantation
currently remains the only therapeutic alternative for IPF and other
end-stage pulmonary disorders. Posttransplant lung function,
however, is compromised by short- and long-term complications,
most importantly chronic lung allograft dysfunction (CLAD). CLAD

affects up to 50% of all transplanted lungs after 5 years, and is
characterized by small airway obstruction with pronounced epithelial
injury, aberrant wound healing, and subepithelial and interstitial
fibrosis. Intriguingly, the mechanisms leading to the fibrotic
processes in the engrafted lung exhibit striking similarities to those in
IPF; therefore, antifibrotic therapies may contribute to increased graft
function and survival in CLAD. In this review, we focus on these
common fibrosis-related mechanisms in IPF and CLAD, comparing
and contrasting clinical phenotypes, the mechanisms of fibrogenesis,
and biomarkers to monitor, predict, or prognosticate disease status.
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Because of a paucity of curative therapeutic
regimens, many patients with end-stage
chronic lung disease are listed for lung
transplantation as a last therapeutic option.
Idiopathic pulmonary fibrosis (IPF) is the
most detrimental and lethal fibrotic disease
of the lung, as such patients with IPF
constitute one of the largest groups receiving
lung transplants per year worldwide.
Posttransplantation lung function, however,
is compromised by short- and long-term
complications, most importantly chronic
lung allograft dysfunction (CLAD). CLAD,
which affects up to 50% of all lungs
transplanted after 5 years, is characterized
by small airway obstruction with
pronounced airway epithelial injury,
aberrant wound healing, and subepithelial
and interstitial fibrosis. Both IPF and CLAD
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share common disease features, such as
extracellular matrix (ECM) deposition,
architectural disruption, epithelial
activation, or fibroblast hyperproliferation.
To date, IPF is considered a predominantly
“alveolar” disease, whereas CLAD mainly
exhibits a “small airway” localization.
Intriguingly, both diseases share common
pathophysiological mechanisms that may
provide deeper understanding of conserved
mechanisms of fibrosis in the lung. Both
conditions do exhibit similar survival
curves: for both IPF and post-lung
transplantation, median survival is about
3-5 years.

In this review, we thus focus on
common fibrosis-related mechanisms in IPF
and CLAD, comparing and contrasting
clinical phenotypes, mechanisms of

fibrogenesis, and biomarkers to monitor,
predict, or prognosticate disease status.
The purpose of this review is not to outline
classification-related details, because this
has been reviewed by Verleden and
colleagues (1).

Definition and
Clinical Features

Tissue fibrosis, a major cause of death
worldwide (2), leads to significant organ
dysfunction in any organ of the human
body. In the lung, fibrosis critically impairs
gas exchange, tissue oxygenation, and
immune function (3). IPF is the most
detrimental and lethal fibrotic lung disease
(4); it develops predominantly in elderly
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males with clinical symptoms occurring

in the sixth and seventh decades of life,
including a long and progressive history of
shortness of breath and cough, a restrictive
pattern in lung function (FEV;/FVC ratio,
<80%), and a decrease in the diffusing
capacity of the lungs for carbon monoxide.
Interstitial abnormalities, defined as a usual
interstitial pneumonia pattern, are found
on radiological and histological assessment
and, after careful exclusion of other

causes of diffuse parenchymal lung disease,
a multidisciplinary consensus usually
establishes the diagnosis of IPF when
patients have already developed advanced
lung remodeling (5). At present, two
antifibrotic therapies are approved by the
U.S Food and Drug Administration (FDA)/
European Medicines Agency (EMA)
(nintedanib/Ofev [6] and pirfenidone/
Esbriet [7]), which have been shown to
moderately decrease disease progression
(8,9).

Because these pharmacological
regimens do not stabilize or cure IPF, lung
transplantation remains the only definitive
therapeutic alternative for advanced IPF
and other end-stage lung diseases. Although
transplantation prolongs survival of
patients with end-stage IPF, acute and
chronic rejection of the graft limit
median posttransplantation survival to
55% (10). The processes that limit post-
transplantation graft function and life
expectancy include primary graft
dysfunction, infections, large airway
complications, thromboembolism, pleural
effusions, and chronic graft rejection,
among others (11). Importantly, patients
with IPF and chronic obstructive pulmonary
disease exhibit the worst median survival
of all lung diseases, for which lung
transplantation is performed (7). As such,
understanding the mechanisms of chronic
lung allograft dysfunction, in particular the
mechanisms leading to the fibrotic processes
in the engrafted lung, may ultimately
contribute to increased graft function and
survival using antifibrotic therapies.

To better understand and define
chronic rejection processes after lung
transplantation, the term “chronic lung
allograft dysfunction” (CLAD) was
introduced to account for the various
manifestations of chronic allograft rejection
(1). First, lung allograft dysfunction was
identified on the basis of the FEV response
after treatment with the neomacrolide
azithromycin and high bronchoalveolar
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lavage (BAL) fluid neutrophil counts
(=10% FEV; increase after a 2- to 3-mo
treatment). Those patients were designated
as having azithromycin-responsive allograft
dysfunction (ARAD). However, only 35%
of these patients showed an initial response.
Patients not responding to azithromycin
were designated as having CLAD, defined
as a persistent decline in FEV| of at least
20% compared with the mean of the two
best postoperative values (12). The CLAD
definition has been extended to include
restrictive CLAD (rCLAD; also named
restrictive allograft syndrome, RAS) and
obstructive CLAD (oCLAD; also called
bronchiolitis obliterans syndrome, BOS).
rCLAD (RAS) is characterized by

a restrictive physiology; a persistent decline
in VC and TLC, which is accompanied

by a decline in FEV; of more than 20%;
and a predominantly pleuroparenchymal
pattern of fibrosis. In contrast, oCLAD is
characterized by a strictly airway-related
pathology (13). Importantly, rCLAD
(RAS) exhibits poorer graft function after
diagnosis compared with oCLAD (BOS)
(median survival, 0.6-1.5 vs. 3-5 yr) (14),
even if early-onset BOS limits prognosis for
all posttransplantation patients (15). The
mechanisms of airway fibrosis in CLAD
are likely multifactorial, but have been
extremely poorly studied up to now.

Mechanisms of Injury and
Cellular Phenotypes in
CLAD and IPF

Several studies have explored the
pathomechanisms of CLAD. Those studies
that have used and characterized human
samples, in particular, have not been
properly classified into the CLAD
phenotypes known today. Therefore, this
section summarizes data from those studies,
although it remains unclear in many
instances whether they included rCLAD or
oCLAD phenotypes. It is also likely that
other manifestations of CLAD, such as
ARAD, were included in those studies.
Thus, care should be taken when
interpreting and extrapolating those studies
to the new CLAD nomenclature.

Although IPF and CLAD clearly
exhibit distinct disease origins, both
syndromes have overlapping characteristics
with respect to pathophysiology (Table 1).
These pertain to epithelial cell injury and
activation, increases in ECM production

Fibrosis in IPF and CLAD

and deposition, immune cell activation, and
fibroblast proliferation, albeit this partially
occurs in different lung compartments.

To date, IPF is characterized by alveolar
epithelial injury, dysfunction, and
hyperplasia, subepithelial accumulation
of a-smooth muscle actin-positive
fibroblastic foci, and increased deposition
of ECM components, such as collagens
or fibronectin (4). Similarly, oCLAD
(BOS) is characterized by pronounced
airway epithelial cell injury and
dysfunction, aberrant wound healing with
peribronchiolar leukocyte infiltration, and
peribronchiolar fibroblast accumulation,
remodeling, and fibrosis. Further,
dysbalanced cellular mechanisms, such

as growth factor dysregulation (16-18),
protease—antiprotease imbalance (19, 20),
endoplasmic reticulum (ER) stress and the
unfolded protein response (UPR) (21), and
the epithelial-to-mesenchymal transition
(22), contribute to the pathology of both IPF
and CLAD.

ER Stress and the Unfolded
Protein Response

The UPR is an evolutionarily conserved
adaptive machinery of the ER reaction

to a variety of cellular stressors. The UPR,
which is highly conserved in mammals
and other organisms, aims to clear unfolded
proteins and restore ER homeostasis.
When ER stress cannot be reversed, cellular
functions are critically impaired, which
often leads to cell death (23). Thus far,
evidence of UPR has been documented

in a large number of diseases, such as
neurodegenerative disorders (24, 25),
kidney diseases (26), and cancer (27, 28),
thereby identifying this homeostatic
pathway as an important therapeutic
target in many diseases (29).

There is a growing body of evidence
that an altered UPR represents a major
contributor to alveolar injury and disease
perpetuation in IPF (30). Initially,
mutations in surfactant protein C (SP-C)
in familial interstitial pneumonia have
been associated with increased ER stress
and UPR in alveolar epithelial cells (AECs)
(30, 31). This is supported by data from
mouse models expressing the mutant
L188Q SFTPC exclusively in type II
alveolar epithelium, which showed an
exaggerated UPR and fibrotic response to
bleomycin-induced fibrosis (21). Biopsies
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Table 1. Pathomechanisms contrasting idiopathic pulmonary fibrosis and chronic lung

allograft dysfunction

Pathomechanism IPF

Fibrosis/ECM Subpleural and interstitial
deposition
Epithelial Hyperplastic and apoptotic

dysfunction
epithelium

ER stress SP-C mutations in AEC

alveolar and distal bronchial

CLAD

rCLAD: Pleural and parenchymal

oCLAD: Small airway

Bronchial epithelium: EMT and
regeneration failure

HBECSs: Hyaluronan induction

myofibroblast differentiation

Definition of abbreviations: AEC = alveolar epithelial cell; CLAD = chronic lung allograft dysfunction;
ECM = extracellular matrix; EMT = epithelial-to-mesenchymal transition; ER = endoplasmic reticulum;
HBECs = human bronchial epithelial cell; IPF = idiopathic pulmonary fibrosis; oCLAD = obstructive
CLAD; rCLAD = restrictive CLAD; SP-C = surfactant protein C.

of patients with sporadic IPF also
demonstrated UPR activation in AECs
lining areas of fibrotic remodeling, as
evidenced by expression of apoptotic
cleaved caspase-3 and ER stress markers
(p50, ATF-6, ATF-4, CHOP, XBP-1) (32).
Importantly, not only AECs, but also
fibroblasts show signs of ER stress during
fibrosis, for example, in fibroblast-
myofibroblast differentiation induced by
transforming growth factor (TGF)-B (33).
Taken together, there are several lines of
evidence that indicate that ER stress is
a contributor to AEC injury in lung fibrosis.
To date, there is a paucity of data
supporting a definitive role of ER stress in
disease onset or progression of CLAD, or
with respect to stratification to a specific
CLAD phenotype (rCLAD or oCLAD).
On the basis of the literature, ischemia—
reperfusion injury and acute rejection
episodes can induce ER stress in transplanted
organs (34). In vivo, ER stress was detected
in 40% of bronchial epithelia of patients
with BOS and associated with subepithelial
hyaluronan deposition (35). In vitro,
bronchial epithelial ER stress led to the
expression of lymphocyte-trapping
hyaluronan (36). These limited data
reinforce the need for more studies to
better understand the role of ER stress
in CLAD.

Epithelial Injury and
Hyperplasia, Epithelial-
Mesenchymal Transition

Epithelial injury, hyperplasticity, and
epithelial-to-mesenchymal transition
(EMT) on injury have been documented in
multiple diseases (37), especially in cancer

S36

(38). Although the process and
contribution of EMT to IPF remains

a controversial topic to date, several groups
have investigated the contribution of
epithelial cells to the activated fibroblast
pool and ECM production in the fibrotic
lung (39). Fate mapping studies in mice
have shown that about 30% of the S100A4
fibroblast pool is epithelial in origin in

the multiple-hit bleomycin model (40).
Importantly, subsequent studies using
different mouse lines were unable to

show contribution of the epithelium to

the myofibroblast pool, but instead
reported that mesenchymal cells, such

as pericytes, are precursors of activated
myofibroblasts after injury (41). In humans,
immunohistochemical stainings of IPF
tissue have shown that fibroblasts in
fibroblast foci stained positive for epithelial
markers (42), and epithelial-like cells lined
fibrotic areas positive for fibroblast markers
(43). Importantly, other groups have found
no histological evidence of EMT in IPF
(44). It is therefore critical to highlight that
EMT is difficult to document in vivo in
humans; nonetheless, there is substantial
evidence that the hyperplastic epithelium
contributes to fibrotic injury by secreting
ECM components and soluble mediators
that enhance fibroblast proliferation and
survival.

There are numerous studies that
document evidence of EMT in CLAD after
lung transplantation. Here, isolation of
primary bronchial epithelial cells from
patients with BOS exhibit evidence of EMT
(45). In detail, 15% of epithelial cells in
biopsy sections from lung transplant
recipients stained positive for SI00A4 and
matrix metalloproteinase (MMP)-7.
Similarly, primary human bronchial

epithelial cells from transplant recipients
showed baseline expression of MMP-2,
MMP-9, cytokeratin, and S100A4;
coexpression of E-cadherin with vimentin
and fibronectin in single cells was also
detected (46, 47). Common injuries, such as
infections with Pseudomonas aeruginosa
(48) or graft ischemia (49, 50), may also
induce EMT in bronchial epithelial cells.

Club cells (Clara cells) serve as
progenitor cells capable of renewing
the bronchial epithelium during injury
(51). Many groups have shown that
dysregulation of club cell secretory
protein (CCSP) is associated with BOS
development. Initially, Nord and colleagues
(52) showed in a 2-year follow-up cohort
that patients with BOS had significantly less
CCSP in serum and BAL compared with
control subjects (no BOS), which was later
confirmed by others (53). Additional
studies suggested that the decreased CCSP
levels were due to a regenerative failure of
club cells (54, 55). Bourdin and colleagues
demonstrated that the reduced potential
for club cell-related repair was related to
an A38G single-nucleotide polymorphism
(SNP) in the donor CCSP gene, which was
associated with decreased CCSP levels early
after lung transplantation and poor long-
term outcome (56). Further, reduced
expression of surfactant protein (SP)-A in
tissue and BAL, as well as poor prognosis
of BOS, was associated with an SP-A2 gene
SNP (57).

The data summarized above highlight
the pathogenic relevance of the bronchial
epithelium in CLAD. Although these cells
have been neglected for a long time in
IPF, several studies have highlighted that
dysregulation of bronchial-related secreted
factors, in particular mucins, occurs in IPF.
Data from the Schwartz laboratory have
identified an SNP in the promoter region
of an airway mucin gene (MUC5B), which
was associated with increased production of
MUCS5B and IPF (58). Further work from
the same group and others confirmed
these associations (59), and uncovered
other polymorphisms (e.g., TERT, TERC,
FAM13A, DSP, OBFC1, ATP11A, and
DPP9), which might also be associated
with IPF. Importantly, the expression of
cilium-associated genes was shown to
identify a unique molecular phenotype
of IPF, characterized by extensive
honeycombing and higher expression of
MUC5B and MMP-7 (60). The histological
lesion termed “honeycombing” is
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suggested to derive from the distal
airway epithelium, which was defined as
a pseudostratified mucociliary epithelium
predominantly expressing MUC5B (61, 62).
In summary, these novel data suggest that
alterations in bronchial epithelial-related
processes contribute, to a much greater
extent, to altered repair mechanisms of the
IPF lung than previously appreciated (63).
Clearly, the above-mentioned
characteristics of the CLAD phenotypes
ARAD, oCLAD (BOS), and rCLAD (RAS)
vary in extent and magnitude (1). Therefore,
comprehensive mechanistic studies are
required to determine and understand the
distinct cellular pathomechanisms in these
entities. For instance, specific expression of
alveolar alarmins was discovered on tissue
damage and activation of the immune
system (64), which may differentiate CLAD
phenotypes. As published, BAL of patients
with rCLAD (RAS) exhibited higher
S100A9, S100A8/9, S100A12, S100P, and
HMGBI levels compared with patients with
oCLAD (BOS) or control subjects, yet the
functional consequence of these elevated
alarmin levels remains to be elucidated
(65). These data relate to similar findings
of activated growth factors during lung
fibrosis, such as TGF-3 (16), hepatocyte
growth factor (66), platelet-derived growth
factor (67), or fibroblast growth factor
(68). In CLAD, several reports detected
an increase in BAL fluid of hepatocyte
growth factor, a growth factor known to
influence epithelial differentiation (45, 69).
Moreover, high levels of TGF-B;, the
prototypic profibrotic growth factor, were
detected in BAL and tissue of patients
with BOS (17, 70).

Mesenchymal Cells
and Myofibroblasts

Cells from the mesenchymal lineage play
a prominent role in any fibrogenic process.
Resident lung-specific mesenchymal
stromal cells (MSCs) were initially detected
in BOS tissue samples and demonstrated
distinct proliferation, migration, and
differentiation properties in vitro after
isolation from BAL. These MSCs exhibited
increased levels of o-smooth muscle actin,
collagen I, and endothelin-1, as well

as decreased SP-B levels (71, 72). An
inhibitory effect was observed after treating
MSCs with prostaglandin E,, suggesting
that an autocrine—paracrine mechanism

Fernandez, Heinzelmann, Verleden, et al.:

exists (73). Lung-resident allograft-derived
MSCs from BAL expressed forkhead/
winged helix transcription factor forkhead
box (FOXF) mRNA, which correlated with
the number of MSCs detected in BAL.

In addition, FOXF1 positively stained
myofibroblasts of fibrotic lesions (71),
suggesting that lung-resident MSCs can
possibly give rise to myofibroblasts.
Circulating fibrocytes of recipient origin
may also be involved in the development of
BOS, as higher fibrocyte numbers were
reported in patients with BOS compared
with control subjects (53, 74). Analysis of
circulating precursor cells demonstrated
that 15-30% of myofibroblasts were of
recipient origin, which supports the idea
of involvement of circulating precursor
cells in the development of fibrotic lesions.
Further, an increased number of fibrocytes
and mesenchymal progenitor cells
correlated with BOS development and
severity; therefore, these cells may be used
as a biomarker and/or potential therapeutic
target in BOS (74-76). Several groups have
discussed the role of neutrophils in BOS,
because neutrophilia is a common finding
in patients with BOS and is associated
with a pronounced protease-antiprotease
imbalance (70, 77).

Immune Cells and Mediators

Neutrophilia in stable recipients is reported
to exhibit a predictive value to identify
recipients at risk for BOS (78, 79). Lately,
the role of neutrophilia in CLAD was
analyzed in properly classified patients,
where neutrophilia was associated with
ARAD and persistent airway neutrophilia,
but not with oCLAD or rCLAD (80).
Evidence also suggested that BAL
eosinophilia is a strong predictor for
CLAD development (81), particularly
rCLAD (82). Interestingly, high levels of
eosinophils are also described in patients
with IPF, where they are detected in BAL
and tissue, and negatively correlate with
lung function and survival rate (83, 84).
The role of these immune cells therefore
seems to be critical in CLAD pathogenesis,
but clearly requires additional studies with
patients with properly stratified CLAD to
evaluate, in detail, the contribution of
neutrophils and eosinophils in CLAD.
High levels of IL-1a, IL-1P, and
IL-8 were previously related to BOS in
general (70), to ARAD and persistent

Fibrosis in IPF and CLAD

airway neutrophilia (80), but not to ocCLAD
or rCLAD. In contrast, the chemoattractant
peptide proline-glycine-proline (PGP)
was increased in the BAL of patients
with BOS, and CXCR3 ligand was highly
abundant during the phase of diffuse
alveolar damage (85, 86). Interestingly,
when cytokine expression levels were
measured in preimplanted donor lungs,
high IL-6 expression was predictive
for posttransplantation CLAD (87).
Furthermore, the chemokine CXCR2 seems
to be important for early neutrophil influx
and subsequent vascular remodeling in
BOS (85, 88). Neutrophil recruitment leads
to activation of proteases, mainly MMP-9
and -2 (89-91). Interestingly, increased
levels of MMP-8, -9, and tissue inhibitor
of metalloproteinase-1 were detected in
BAL of posttransplantation patients,
independent of infection or rejection (92).
In general, chronic rejection is
characterized by fibrotic changes of the
implanted organ parenchymal structure that
affects graft function. This is thought to
be initiated by a host anti-graft immune
response, in an antigen-dependent
or -independent manner, involving cell- and
humoral-mediated immunity leading to
graft dysfunction (93, 94). In the lung,
a large body of evidence supports the
idea that circulating donor-specific HLA
antibodies are associated with BOS
(95, 96). Autoimmune responses to
autoantigens potentially exposed during
injury and tissue remodeling were related to
increased expression of proteases and ECM
components in the lung microenvironment
(89, 91, 92). In particular, type V collagen
(97-99) and anti-K-«a; tubulin have been
shown to significantly contribute to the
pathogenesis of BOS in animal models and
clinical samples alike (100-102). Various
cytokines have been related to CLAD, such
as the CXCR3 ligands CXCL9, CXCL10, and
CXCL11, which have been shown to be
associated with the diffuse alveolar damage
lesion in CLAD (85). A modulator of
cytokine signaling and critical component of
the lung ECM, hyaluronic acid, is localized
within intraluminal fibrotic tissue in patients
with BOS (35, 103, 104). Hyaluronic acid is
increased in the BAL and blood of patients
with BOS compared with control subjects,
and mRNA levels of hyaluronan synthases
1 and 3 are detected in patients with end-
stage BOS (105). Todd and colleagues also
confirmed, using a murine orthotropic lung
transplant model, that low-molecular-weight
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hyaluronic acid triggers lung allograft
rejection, via an increase in neutrophils
and expansion of allogeneic CD4 " T cells.
This reaction is promoted by dendritic
cell presentation of low-molecular-weight
hyaluronic acid, which induced helper

T type 1 and type 17 responses via

a Toll-like receptor-mediated
mechanism (105).

Monitoring and Phenotyping
Disease: Biomarkers in IPF
and CLAD

Biomarkers are useful in various situations:
they can help stratify the risk for disease
development, diagnose disease (sub)types,
monitor treatment responses, and predict
disease severity and/or outcome, among
others (106). Whereas significant advances
in biomarker discovery and validation, as
well as therapeutic development (with

two drugs for IPF approved by the FDA),
have been achieved in IPF, these processes
are currently underway in CLAD. Because
CLAD has been categorized in subtypes,
imaging and pulmonary function testing
remain the main monitoring strategy
available. Although potential targets

that reflect ongoing rejection have been
discussed, there are currently not

enough data, using large cohorts with
replication and validation approaches
that support biomarkers, at this time for
clinical use.

Two publications significantly increased
our knowledge about lesion characteristics
and physiological phenotyping of CLAD.
Verleden and colleagues (107) have
thoroughly described the obstructive
airway lesion in CLAD in unprecedented
detail: After lung transplantation, lesions
are located in conducting airways and
uniformly distributed within the lungs.
These CLAD lesions develop in airways
with a mean lumen diameter of 647 = 317 pm,
and the mean length of the obstructive
lesion has been measured as 1,063 = 157 pm.
No lesions are observed in larger
airways and terminal bronchioles, and
the alveolar surface area usually remains

unchanged. Histologically, lesions seem
to be heterogeneous: obstructive, fibrous,
and mostly rich in collagen. Several groups
have shown that 30% of patients with
CLAD have an FVC decline at CLAD
onset, a feature associated with worse
survival, which largely may be rooted in
more fibrotic CLAD lesions (108, 109).

It is important to note, however, that
bringing biomarkers to clinical practice
is a challenging task. Although an
unprecedented body of literature has
described and validated biomarkers for
IPF diagnosis and outcome prediction in
multiple cohorts and centers, none have
yet entered the clinical arena. Ley and
colleagues have comprehensively reviewed
the available biomarker scenario in IPF
(110), highlighting the limited number of
biomarkers entering clinical practice in
IPF. These include MUC5B genotyping
(58) and peripheral blood measurement
of MMP-7 (111, 112), which should by
now be used throughout academic
centers working in IPF.

Outlook

CLAD is a severe disease of patients

who have undergone lung transplantation,
affecting 50% of all patients, and it limits
overall posttransplantation survival. In

the last two decades, several studies

have been performed to elucidate the
pathomechanisms underlying CLAD;
however, detailed knowledge is still
limited and curative therapeutic approaches
are not available. Several aspects in the
study of CLAD are challenging: One
aspect is the heterogeneity of the CLAD
process, which has led to the new
classification including restrictive CLAD
(rCLAD; also named restrictive allograft
syndrome, RAS) and obstructive CLAD
(oCLAD; also called bronchiolitis obliterans
syndrome, BOS). In early studies, the
common terminology BOS prevailed,
which is now a subcategory of CLAD.
Therefore, many initial studies may have
to be reconsidered/reevaluated in terms of
inclusion criteria and subphenotyping.

Moreover, the nature of the fibrotic process
in CLAD and its subtypes is not fully
understood yet, especially in the context
of tissue remodeling and ECM deposition.
A lack of knowledge also exists of the
characteristic cellular phenotypes driving
this process. Largely, cell types were
generated from BAL or bronchial epithelial
brushings, limiting the analysis of structural
cell types and tissue composition. Although
MSCs have been studied in detail, the role of
other mesenchymal cells, such as fibroblasts
or bronchial smooth muscle cells, has not
been characterized thus far. As these cells, as
well as alveolar epithelial cells, are of great
importance in the context of ECM production
and angiogenesis, their specific role in
CLAD might be of special interest. Finally,
the tissue microenvironment is influenced
by immunomodulatory cells, such as
macrophages, because the innate immune
system contributes to the development of
BOS. Therefore, including cell types of

the immune system in great detail will be
important in the future. Genetic studies
of CLAD are rare because of limited
patient cohort sizes, and although a pool
of biomarkers is associated with CLAD
or one of its subcategories, these will
have to stand the test of time in large
validation studies.

Importantly, the number of lung
transplantations has continuously
increased, and it will continue to do
so in the future. Intensive research in
CLAD will be necessary at this point to
significantly improve the outcome of lung
transplantation and push graft function
to levels of other solid organs. Therefore,
scientific approaches will have to lead to
a better understanding of the cellular
pathomechanisms driving the CLAD
process and the identification of biomarkers
helping to determine different CLAD
phenotypes and outcome at early stages of
the disease. In our view, using the lessons
learned from a decade of world-class
research in IPF may help to achieve these
goals. M

Author disclosures are available with the text
of this article at www.atsjournals.org.
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