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The simulations in this paper show that exposure measure-
ment error affects the parameter estimates of the biologically
motivated two-stage clonal expansion (TSCE) model. For both
Berkson and classical error models, we show that likelihood-
based techniques of correction work reliably. For classical er-
rors, the distribution of true exposures needs to be known or
estimated in addition to the distribution of recorded exposures
conditional on true exposures. Usually the exposure uncer-
tainty biases the model parameters toward the null and un-
derestimates the precision. But when several parameters are
allowed to be dependent on exposure, e.g. initiation and pro-
motion, then their relative importance is also influenced, and
more complicated effects of exposure uncertainty can occur.
The application part of this paper shows for two different
types of Berkson errors that a recent analysis of the data for
the Colorado plateau miners with the TSCE model is not
changed substantially when correcting for such errors. Spe-
cifically, the conjectured promoting action of radon remains
as the dominant radiation effect for explaining these data. The
estimated promoting action of radon increases by a factor of
up to 1.2 for the largest assumed exposure uncertainties.
q 2004 by Radiation Research Society

INTRODUCTION

Traditional statistical analyses of epidemiological data
and of data from animal experiments use the best available
information on exposure. It is known, however, that expo-
sures may be measured with error, either systematic or ran-
dom or both. Correlated errors may also occur when the
same uncertain quantity is used in the calculation of several
exposures. Exposure measurement error may affect not
only the estimates of parameters but their confidence inter-
vals as well (1). In most simple applications, ignoring ex-
posure uncertainties leads to an underestimation of risk.

1 Address for correspondence: GSF—National Research Center for En-
vironment and Health Institute for Radiation Protection, 85764 Neuher-
berg, Germany; e-mail: heidenreich@gsf.de.

Scientists working in radiation epidemiology are aware of
the problem (2, 3), and much work has been done to take
account of dose uncertainty for quantitative risk estimates
in occupational cohorts (5, 7), in the A-bomb survivors (6),
for residential radon (8), and by simulation (4). The pro-
ceedings of a recent workshop (9) give an up-to-date over-
view. In the statistical literature, several methods for taking
into account various forms of error structures have been
proposed. A useful summary can be found in ref. (1).

The two-stage clonal expansion (TSCE) model is a gen-
eralization of Knudson’s recessive oncogenesis model (10);
it can be thought of as a mathematical formalization of the
initiation-promotion-progression paradigm of carcinogene-
sis. Exact solutions for the hazard function and the survival
function of the model have been found for piecewise con-
stant exposures (11), which can be solved by fast recursive
calculations (12). The model describes well a wide range
of epidemiological data (13–15) and data from animal ex-
periments (16–18). In some of these applications, it was
concluded that the TSCE model can supplement epidemi-
ological analysis in risk estimates.

Especially when extrapolations are needed to exposure
schemes for which no direct data are available, e.g. for low
doses and low dose rates, the mechanistic foundation of the
TSCE model can add to the credibility of the predictions.
In all applications of the TSCE model to data, the assessed
exposures were assumed to be accurate. Due to the fast
recursive computer code mentioned above, it is now fea-
sible to account explicitly for exposure uncertainty.

Here we examine the impact of exposure uncertainty on
the estimated parameters of the TSCE model. We consider
both classical and Berkson error structures but restrict our
discussion to random errors without correlations.

In the classical error model, the recorded exposures, w,
fluctuate randomly around the true exposure, x (see Fig. 1).
This applies, for example, when the true exposure is mea-
sured inaccurately. The fluctuation can be additive, W 5 X
1 U; in this case, W is an unbiased measure of X if U has
expectation 0. The error structure may be multiplicative, W
5 X 3 U; then W is an unbiased estimate of X if the
expectation of U is 1.

In the Berkson error model, the true exposures x fluctuate
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FIG. 1. Diagrams of classical and Berkson errors. X denotes the true
exposure, W the recorded exposure. Horizontal arrows indicate the error
model, vertical arrows the generation of failure times, FT, and slanted
arrows the raw analysis.

FIG. 2. Sketch of the TSCE model.

FIG. 3. Some probability densities for the exposure uncertainty as used
in the text. They are log-normally distributed with the mean 1 and shape
parameter s.

randomly around the recorded exposures w. This applies,
for example, when an experimenter aims at a predefined
value of exposure, or when precise measurements at central
monitors are made, but the true exposures to individuals
fluctuate due to differences in behavior or in physiology.
Again an additive model with X 5 W 1 U or a multipli-
cative model with X 5 W 3 U is possible.

We show by simulation that our likelihood-based meth-
ods work well. As a concrete application, we apply these
methods to analyses of the Colorado plateau miner cohort
(15). In that part of the work, the main question to be an-
swered is whether the suggested strong promoting action
of radon might be in part an artifact of errors in dosimetry.

MATERIALS AND METHODS

The TSCE Model

A sketch of the TSCE model is given in Fig. 2. Normal healthy cells
(whose number N usually is not known) mutate with rate m1 to inter-
mediate cells. Thus these are created with the initiation rate v 5 Nm1.
They can divide into two intermediate cells with rate a, die or differen-
tiate with rate b, or divide into an intermediate cell and a malignant cell
with the transformation rate m. The progression from a malignant cell to
an observable tumor is usually described with a lag time. Not all of these
parameters can be determined from data. Therefore, identifiable param-
eters are used here. The notation and the shape of the exposure response
are similar to those in ref. (15).

An explicit form for the spontaneous hazard is (19)

(g 12q ) t0 0y [e 2 1]0sh (t) 5 . (1)
(g 12q ) t0 0g 1 q [e 1 1]0 0

It depends on three parameters that are chosen to determine characteristic
features of the hazard function. The values of the parameters are close to
those found for the background parameters in analyses of the atomic
bomb survivors (13), adjusted such that they give about 10% tumor cases
in the simulated data set. Explicitly for the product of spontaneous ini-
tiation and transformation rates, y0 5 1026 (year22) is used, for the ef-
fective clonal expansion rate g0 [ a0 2 b0 2 m0 5 0.11 (year21), and
for the stochasticity parameter, q0 5 1024 (year21). This latter parameter
is a more complicated function of the biological parameters chosen such
that for asymptotically high age the hazard takes the constant values y0 /
q0.

The action of exposure rate d is assumed on the initiation rate, the
transformation rate, the effective clonal expansion rate (promotion), or
combinations of these. The dependence on exposure rate is assumed to

be linear for the mutational events initiation [v(d) 5 v0(1 1 y1d)] and
transformation [m(d) 5 m0(1 1 m1d] and to be initially linear up to a
constant level for promotion. This gives, for the chosen identifiable pa-
rameters,

Initiation: y(d) [ v(d)m 5 y (1 1 y d),0 0 1

Promotion: g(d) [ a(d) 2 b(d) 2 m(d)

5 g 1 min(g d, g ),0 lin level

Transformation: m(d) [ m(d)/m 5 1 1 m d.0 1

(2)

The parameters in boldface are exposure-related parameters in the mod-
els. We use a lag time of 0. The values for these parameters are chosen
such that about 10% of the simulated records develop an exposure-in-
duced tumor, about the same proportion that occurs spontaneously. The
selected values are given in the respective figures. The recursive formulas
in ref. (12) are used for calculating the hazard and the survival functions.

Simulated Data

Data sets are usually simulated for 10,000 records. Twice that number
was used to increase stability when both initiation and promotion were
made dependent on dose. Only one exposure period is considered for
simplicity. The exposure pattern is obtained by randomly selecting an age
at start of exposure between 20 and 40 years, a duration between 0 and
20 years, and an exposure rate between 0 and 1, all distributed uniformly.
When simulating classical error, this exposure rate is interpreted as true
rate x; for Berkson error it is the recorded rate w.

Exposure uncertainties are included by multiplying the rate of exposure
with samples from a log-normal distribution with mean 1 and shape pa-
rameter s (see the Appendix for details). For an exposure rate of 1, the
density is plotted in Fig. 3 for several levels of uncertainty. For classical
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errors, the recorded exposure w is calculated from the true exposure x,
while for Berkson error the situation is reversed, as shown in Fig. 1.

Failure times are calculated using the TSCE model for the true expo-
sures and an exposure-independent competing risk which describes the
end of follow-up (called ‘‘death’’ here) for other reasons. Effectively two
independent ages of death for each record are calculated randomly, one
from the competing risk and one from the TSCE model. The earlier event
gives the age at death and the cause of death. To minimize the compu-
tational burden, the following procedure is applied: The age of death tc

from the competing risk is obtained by randomly choosing tc from a
Gaussian distribution, centered at age 70, with a standard deviation of 15
years. Ages below 10 years are not accepted. With the TSCE model the
survival probability for tumor S(tc) is calculated for this age. Also ran-
domly, a survival probability ST for the tumor is chosen from the evenly
distributed numbers between 0 and 1. If S(tc) . ST, then the tumor appears
later than the competing death, and tc is the failure time. Otherwise the
age at death due to tumor is calculated by bracketing, based on the value
of ST.

Likelihoods

The analyses of data with the TSCE model are usually done by max-
imizing the likelihood

L 5 Pl ,w (3)

where the product is over all records and lw is the likelihood contribution
of an individual record. When no exposure uncertainty is taken into ac-
count, the recorded exposures w and the true exposures x are equal. Then
the likelihood contribution is lw 5 lx, with

h(t)S(t) if death is caused by tumor
l 5 (4)x 5S(t) otherwise.

Here h(t) is the hazard function at age t of death, and S(t) is the corre-
sponding survival function. These are calculated using the recursion for-
mulas in ref. (12). The negative log-likelihood is minimized using the
variable-metric routine MIGRAD in the function minimizer program
package MINUIT from CERN (20). The derivatives of the negative log-
likelihood with respect to the estimated variables are calculated numeri-
cally. This is one of the standard ways to use MINUIT.

When the Berkson error situation applies, then the probability density
p(xzw)dx of the true exposure, given the recorded one, is known. The
average likelihood contribution lw of one record is (ref. 1, p. 151)

l 5 l p(x z w) dx. (5)w E x

In this equation, lx is the likelihood conditional on the particular value x
of the true exposure history. When the distribution used to describe the
error structure has more than one dimension, then multidimensional in-
tegrals are needed.

When the classical error situation applies, then the probability density
p(wzx)dw of the recorded exposure, given the true one, is known. The
distribution of the exposures p(x)dx is needed to calculated p(xzw)dx
(see also ref. 1, p. 147). In the simulations this is no problem, since the
distribution of true exposures is used to produce the data. Using the
Bayes rule, the average likelihood contribution of one record can be
expressed as

l p(w z x)p(x) dxE x

l 5 , (6)w c(w)

where c(w) 5 # p(wzx)p(x)dx. The denominator c(w) depends only on the
recorded dose w and is not required for fitting.

For the log-normal distribution of errors which is used here, the inte-
grals can be calculated efficiently using Gauss-Hermite integration, when
only a one-dimensional uncertainty distribution is used. This situation

applies in our simulations. For details, see the Appendix. The minimi-
zation of the negative log-likelihood is done in all cases exactly as de-
scribed above.

Colorado Miners

The U.S. Public Health Service (USPHS) established a database on
3,347 white and 756 nonwhite male uranium miners working in the Col-
orado Plateau between 1950 and 1964. Recently the database was updated
by NIOSH through at least the end of 1990. In addition to detailed in-
formation on the radon exposure, information on smoking was ascer-
tained by a questionnaire in 1986. This data set was analyzed with the
TSCE model in ref. (15), where more details can be found. The depen-
dence on the radon exposure rate dr of the initiation and promotion pa-
rameters in the model was very similar to what is used here in Eq. (2).
Instead of the contribution y1d to initiation used in the simulation here,
y4dr was used in ref. (15), and the functional form of the exposure de-
pendence of the clonal expansion rate (promotion) was

g(d ) [ g [1 1 g log(1 1 g d )].r 0 2 1 r (7)

Additionally, a dependence on the smoking rate and a birth-year depen-
dence of initiation were used.

The information on radon exposure in the data set is calculated from
measurements in the mine shafts. Details of this procedure and possible
levels of exposure uncertainties have been discussed recently (7). It is
beyond the scope of this paper to use all of the information. Greatly
simplified, the necessary steps are the following: The radon concentration
was typically measured in the mines a few times a year; the errors of
these measurements are of the classical type. The radon concentration has
been extrapolated to other periods and between shafts; the uncertainties
from these extrapolations are of the Berkson type. The individual expo-
sures were calculated from the durations at the workplace and the esti-
mated radon concentrations in the air of the mine shafts; uncertainties in
these calculations are again of the Berkson type. Our interest in predom-
inantly in relating true exposures to the centrally monitored measure-
ments, and the Berkson error structure is therefore used. We acknowledge
that a more precise model of exposure uncertainty could have a compo-
nent of classical error.

The cumulative exposure of some miners based on the work history
was compared in ref. (21) to lead-210 measurements in bones after the
deaths of the miners. It was found to be ‘‘within a standard error of 6
0.34 of the average of the two values’’. We conclude that a shape param-
eter s of the log-normal distribution between 0.5 and 1.0 is a plausible
magnitude for the exposure uncertainties (see Fig. 3).

There are up to 17 intervals of exposure to smoking and radon in the
data set. These time-varying patterns of exposure are modeled by piece-
wise constant exposures in the application of the TSCE model. Two great-
ly simplified types for exposure uncertainty are considered here: (1) All
radon exposures of a miner are described by the same uncertainty factor,
and (2) all intervals are treated independently with different factors. The
truth is likely in between: A treatment of uncertainty depending on mine
shaft and calendar year would be preferable. This would allow us to
include the correlation which arises between the radon concentration error
component of the Berkson error for all miners who worked in the same
shaft at the same time. The standard error of this component is estimated
at about 50% of the mean (7), which is well below our plausible mag-
nitude for the range of total Berkson error.

For the first type of Berkson error, the integral in Eq. (5) can be per-
formed using the Gauss-Hermite formalism. When all intervals are treated
independently, a multi-integral has to be calculated. This is done by Mon-
te Carlo integration with N (typically 1000) sample points xj for each
miner. When they are taken randomly from the density p(xzw)dx by using
Eq. (A1), then the integral (Eq. 5) is approximated by the mean value of
the likelihood contribution l (ref. 22, p. 306ff). Thus the likelihood con-xj

tribution for each miner is calculated with
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FIG. 4. Effect of classical exposure uncertainty on the initiation pa-
rameter y1 (see Eq. 2). Shown are the results for a simulated data set with
10,000 records and failure times based on the true exposure. The data
are also analyzed with varying degrees of exposure uncertainty. The un-
certain data with shape parameter s1 5 0.5 are assumed to be real data.
On these, further uncertainly with shape parameter s2 is added artificially.
This is repeated 50 times, and the mean of the results is plotted as a
smooth line. The combined uncertainty is calculated using

2 2s 5 Ïs 1 s .1 2

FIG. 5. Effect of Berkson error on the initiation parameter y1. Shown
are the means of the results for 50 simulated data sets with 10,000 records
each. The data are analyzed without taking account of the exposure un-
certainty (raw fit) and by using the distribution of exposure uncertainty
(correcting fit). Neighboring raw and correcting fits are done with the
same data. They are slightly shifted along the s axis to make the pre-
sentation clearer.

N1
l 5 l . (8)Ow xjN j51

The sample points xj remain unchanged during the fit.

RESULTS

Simulation of Additional Error

As a first step, the procedures used for simulation and
analysis are tested. Data sets of various sizes are simulated
and analyzed by maximizing the likelihood. Depending on
the size of the data set and the number of repetitions with
different sets of random numbers, the parameters used for
the simulation are reproduced reliably by the analysis. A
high-quality random number generator is required to avoid
bias in large data sets, or many repetitions. The portable
code ran1 from the numerical recipes (23) fulfills the tests
and is used.

Next the effect of exposure uncertainty on the parameters
of the TSCE model is studied. As expected, all parameters
are affected, but the largest consequences are for the pa-
rameters which describe exposure dependence. For the ini-
tiating action of exposure, an example simulation is shown
in Fig. 4. The fit without uncertainty reproduces the value
y1 5 35 from the simulation within the one standard error
estimate. When exposure uncertainty is added, the estimat-
ed value of y1 decreases.

A real-life data set with classical error structure and fair-
ly large dose uncertainty might correspond to the point at
s 5 0.5. To simulate a sensitivity analysis for this data set,

additional exposure uncertainty is added, and the resulting
data are analyzed. This step is repeated 50 times to reduce
noise. It can be seen that the effect of applying log-nor-
mally distributed uncertainty twice gives about the same
result as applying it only once if the shape parameter s is
calculated appropriately. It can also be seen that a sensitiv-
ity analysis may give the trend for the effects of the un-
certainty correctly.

Note that in this section all data sets used for parameter
estimates have the same failure times; they differ only in
the recorded exposure rates.

Correction of Berkson Error

Results from including exposure uncertainties with Berk-
son error structure are given in Figs. 5–8. The average of
the maximum likelihood estimate (MLE) and of the stan-
dard errors of 50 fits is given. Figure 5 gives the results for
the initiation parameter. The fit to the true data reproduces
the parameter used in the data simulation well. Adding the
log-normally distributed Berkson error does give an atten-
uation of the parameter y1, but to a smaller degree than in
the classical error situation of Fig. 4. Correcting the fit with
the likelihood Eq. (5) reproduces the fit to the true data
well. Even for massive distortions of the true exposures for
the larger values of s (compare Fig. 3), the attenuated es-
timates recover to the correct values. As expected, the es-
timated error in the parameter estimate increases slightly.
Here a different set of failure times is used for each value
of uncertainty s and each of the 50 runs. The raw fit and
the corresponding correcting fit are done with the same
data.

Comparable results are also obtained when promotion,
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FIG. 6. Effect of Berkson error on the promotion parameters. Shown
are the means of the results for 50 simulated data sets with 10,000 records
each. The data are analyzed without taking account of the exposure un-
certainty (raw fit) and by using the distribution of exposure uncertainty
(correcting fit). Neighboring raw and correcting fits are done with the
same data. They are slightly shifted along the s axis to make the pre-
sentation clearer.

FIG. 8. Effect of Berkson error on the initiation and promotion param-
eters. Shown are the means of results for 50 simulated data sets with
20,000 records each. The data are analyzed without taking account of the
exposure uncertainty (raw fit) and by using the distribution of exposure
uncertainty (correcting fit). Neighboring raw and correcting fits are done
with the same data. They are slightly shifted along the s axis to make
the presentation clearer. For comparison, results of a simulation and a
raw fit are also given when the promotion parameters are fixed to 0.

FIG. 7. Effect of Berkson error on the transformation parameter.
Shown are the means of the results for 50 simulated data sets with 10,000
records each. The data are analyzed without taking account of the ex-
posure uncertainty (raw fit) and by using the distribution of exposure
uncertainty (correcting fit). Neighboring raw and correcting fits are done
with the same data. They are slightly shifted along the s axis to make
the presentation clearer.

transformation or combinations of them are made depen-
dent on exposure. Only the effect on the exposure-relevant
parameters is shown. Figure 6 gives the result for a pro-
moting action of the exposure, Fig. 7 for a transforming
action. In both cases the exposure uncertainty leads to a
substantial attenuation of the exposure–response parameters
which is corrected by integrating over the distribution of
true exposures. As a further example, Fig. 8 shows the re-
sult when both initiation and promotion are made depen-
dent on exposure. Here the main effect of dose uncertainty
is on the initiation, while the promotion parameters are less
affected. To clarify the point, an otherwise equivalent sim-
ulation and raw fit was done with the promotion parameters
fixed to 0. The attenuation due to dose uncertainty is small-
er. No systematic analysis of such shifts in effect was at-
tempted. All parameter estimates are brought back to their
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FIG. 9. Effect of classical error on the initiation parameter y1. Shown
are the means of the results for 50 simulated data sets with 10,000 records
each. The data are analyzed without taking account of the exposure un-
certainty (raw fit) and by using the distribution of exposure uncertainty
(correcting fit). Neighboring raw and correcting fits are done with the
same data. They are slightly shifted along the s axis to make the pre-
sentation clearer. Note that the corrected values should not converge
against the value of y1 that is used in simulating the data, but against the
value estimated by fitting to the true data, since the same set of failure
times is used for the different uncertainties in this classical error situation.

FIG. 10. Effect of classical error on the promotion parameters. Shown
are the means of the results for 50 simulated data sets with 10,000 records
each. The data are analyzed without taking account of the exposure un-
certainty (raw fit) and by using the distribution of exposure uncertainty
(correcting fit). Neighboring raw and correcting fits are done with the
same data. They are slightly shifted along the s axis to make the pre-
sentation clearer. Note that the corrected values should not converge
against the value of y1 that is used in simulating the data, but against the
value estimated by fitting to the true data, since the same set of failure
times is used for the different uncertainties in this classical error situation.

true values when the correcting likelihood is used with the
correct error distribution.

Correction of Classical Error

Results for including exposure uncertainties with classi-
cal error structure are given in Figs. 9–12 for models with
the same dose dependence as those used in Figs. 5–8.
Again, the average of the MLEs and the average of their
standard errors are computed from 50 simulations, with
classical error. In all cases the correction mechanism using
the correct likelihood (Eq. 6) works very well. However,
the effects of the errors in the raw fits can be quite different:
Making the initiation parameter dependent on dose (see Fig.
9) gives the same attenuation as in Fig. 4, smoothed by the
averaging. For the model with dose-dependent promotion
in Fig. 10, the level parameter glevel is attenuated, while the
linear parameter glin is amplified. For Berkson errors (com-
pare Fig. 6), both parameters are attenuated in the raw fits.
For the transforming action in Fig. 11, the classical errors
give a strong amplification in the raw fits, contrary to the
situation with Berkson errors in Fig. 7. Here is an example
of the fact that the direction of the effect on risk may de-
pend on the error structure (1). Finally, in Fig. 12, it can
be seen that the effects on the initiation and promotion pa-
rameters also occur when both are made dependent on dose.
The trends are the same as for Berkson errors (compare
Fig. 8) but are more pronounced.

Correcting fits are also done using a deliberately misspe-
cified distribution p(x) for the true exposures in Eq. (6). As

expected, a distribution of p(x) that is too wide leads to an
under-correction, especially with larger uncertainties s.

Application to the Colorado Miner Data Set

The earlier analysis of this data set (15) suggested an
action of radon on initiation and promotion. All nine pa-
rameters of the model are newly estimated, including those
for the spontaneous hazard and the smoking risk. The em-
phasis here focuses on the three parameters that are relevant
to describe the radon risk. Since the actions of the two
parameters which describe promotion are not easily under-
stood numerically, Figs. 13 and 14 are presented. The pro-
moting effect of radon is increased with increasing Berkson
uncertainty for both assumed types of errors: For different
factors in each interval, the initiating action of radon is
slightly decreased; when the same factor is used, it is de-
creasing strongly, and it would even become negative if no
bound at y4 5 0 were used. Thus here is an example of the
fact that an exposure effect parameter can be decreased by
correcting for exposure uncertainty. But it must be noted
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FIG. 11. Effect of classical error on the transformation parameter.
Shown are the means of the results for 50 simulated data sets with 10,000
records each. The data are analyzed without taking account of the ex-
posure uncertainty (raw fit) and by using the distribution of exposure
uncertainty (correcting fit). Neighboring raw and correcting fits are done
with the same data. They are slightly shifted along the s axis to make
the presentation clearer. Note that the corrected values should not con-
verge against the value of y1 that is used in simulating the data, but against
the value estimated by fitting to the true data, since the same set of failure
times is used for the different uncertainties in this classical error situation.

FIG. 12. Effect of classical error on the initiation and promotion pa-
rameters. Shown are the means of results for 50 simulated data sets with
20,000 records each. The data are analyzed without taking account of the
exposure uncertainty (raw fit) and by using the distribution of exposure
uncertainty (correcting fit). Neighboring raw and correcting fits are done
with the same data. They are slightly shifted along the s axis to make
the presentation clearer. Note that the corrected values should not con-
verge against the value of y1 that is used in simulating the data, but against
the value estimated by fitting to the true data, since the same set of failure
times is used for the different uncertainties in this classical error situation.

that in this model promotion is strongly dominating, and
the initiation effect of radiation is minor and is not signif-
icant (15).

DISCUSSION

Large exposure uncertainty can lead to substantial bias
in the estimation of exposure–response parameters in the
TSCE model. For initiation, an attenuation due to uncer-
tainties is found. For a transforming action, the direction of
the bias depends on the type of error model. When more
than a single parameter is affected by exposure, as in pro-
motion or in initiation plus promotion, the situation may be
more complicated; both over- and underestimation of pa-
rameters is possible. Especially for promotion, uncertainties
in the exposure duration may be of great importance, but
in most data sets the beginnings and ends of the exposures
are well known. Therefore, they are kept fixed in this work.

The likelihood techniques for correcting the effects of
exposure uncertainty work very well in all cases if the dis-
tribution of error is estimated reliably. This may be more
difficult for classical error, when the distribution p(x) of true
exposures also has to be estimated. The distribution of ex-
posures could change with time due to the preferential
weeding out of the more highly exposed individuals. This
fact has not been considered in the current analyses, but
the effect is likely to be small, as has been shown by way
of simulation.

The likelihood Eq. (8) suggests another, potentially more
general approach. The sample points used in the Monte

Carlo integration are obtained from the independent distri-
butions of exposure uncertainties in various intervals. They
are computed from a few numbers which characterize these
distributions. If the dosimetrists do not provide a best es-
timate for exposure and characterize the uncertainty distri-
bution but do provide a sample of say 1000 points from
the distribution of estimated true exposures for each person,
the risk analysis can be done, taking all this information
into account. Such an approach would allow inclusion of
correlations, mixtures of random and systematic errors,
mixtures of Berkson and classical errors, etc. by the sci-
entists who know the sources of the dose uncertainties best.
We are aware that this puts a heavy burden on the dosi-
metrist, which may not be justified in general. An investi-
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FIG. 13. Colorado miners: Corrected fits if the log-normally distributed
uncertainty factors are shared by all radon exposures of a miner. Shown
is the effect on the parameter y4 which describes a linear dependence of
initiation on radon, and the effect of the radon rate dr on promotion g(dr)
for a nonsmoker.

FIG. 14. Corrected fits if different log-normally distributed uncertainty
factors are multiplies to each exposure interval of a miner. Shown is the
effect on the parameter y4 which describes a linear dependence of initi-
ation on radon, and the effect of the radon rate dr on promotion g(dr) for
a nonsmoker.

FIG. 15. Lifetime EAR per WLM at age 70 as a function of the duration of exposure (in years) for various total
exposures. The exposures are centered at age 40 for (panel a) nonsmokers and (panel b) smokers smoking 10
cigarettes/day starting at age 15. The lines are given for a cumulative exposure to 1 WLM (close to horizontal lines)
and 1000 WLM (lines with steep initial increase). The figure corresponds to Fig. 4 of ref. (15).

gation of the full implications of such an approach is be-
yond the scope of this work.

The promoting effect of radon found in ref. (15) comes
in part from time-since-exposure effects and in part from
protraction effects in the data. Therefore, the fitted model

also shows protraction effects. In Fig. 15, Fig. 4 of ref. (15)
is repeated for two of the exposures, with the effects of
exposure uncertainty included. The curves do not change
drastically. For the high exposure rate, the risk is increased
when correcting for exposure uncertainty. For the low ex-
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TABLE 1
Comparison of Computed Lifetime Relative Risks

(age 70) of Indoor Radon Exposures

Radon exposure

WLM/year Bq/m3

TSCE model

EADa Original

s 5 1

Same Different
No

smoking

Nonsmokers

0.19
0.78
3.12

50
200
800

1.26
2.03
5.01

1.06
1.29
2.50

1.05
1.25
2.37

1.07
1.32
2.73

1.075
1.33
2.54

Smokers

0.19
0.78
3.12

50
200
800

1.11
1.42
2.51

1.05
1.21
1.93

1.05
1.21
1.96

1.06
1.24
2.08

1.075
1.33
2.54

Notes. For comparison, estimates from the BEIR VI report (26) are
given. Also included (in the last column ‘‘no smoking’’) is the TSCE
result when smoking information in the data set is ignored. The table
corresponds to Table 4 of ref. (15). The fit without taking exposure un-
certainties into account is denoted Original; when the uncertainty factors
are shared by all radon exposures of a miner, it is called Same (see also
Fig. 13); when they are different for each exposure interval, it is called
Different (see also Fig. 14).

a Exposure-age-duration model.

posure rate, the trend in risk is dependent on the error mod-
el: It is increased when the factors in each interval are
different but decreased when they are the same. This gen-
eral pattern agrees with observations of Stram et al. (7),
where a substantially increased risk due to error corrections
was found at high rates but not at low rates.

Another quantity which is given in ref. (15) is the ex-
trapolated lifetime relative risk (LRR) for various lifelong
exposures to levels of radon as they are found under indoor
situations. Table 1 gives the results for the large uncertainty
of s 5 1. When different factors in each interval are used,
the estimated LRR increases slightly in all cases. The val-
ues for s 5 0.5 (not shown) lie in between.

No uncertainty analysis was done concerning the smok-
ing information in the data set. But if this information is
ignored, and the two smoking-related parameters are left
out, then the estimated LRR is only a little higher than that
for the nonsmokers in the more detailed version. This in-
dicates some correlation between smoking and radon but
not a major one. For the lower exposures, the differences
to the exposure-age-duration model of BEIR VI remains
substantial.

CONCLUSIONS

The simulation part of this work shows that the likeli-
hood techniques for including exposure uncertainty also
work for the complex and highly nonlinear TSCE model.
The computational burden can be substantial, maybe a fac-
tor of 1000 greater if Monte Carlo integration techniques
are necessary, compared to a raw fit. But for the standard
version of the TSCE model, it is feasible. Thus these tech-

niques can be put into the toolbox of biologically based
modeling with confidence.

If the exposure uncertainties are large and estimable, the
analysis should make use of this information; the potential
consequences are not easy to predict for the TSCE model,
especially if more than one quantity is affected by the ex-
posure. Both an attenuation and an amplification are pos-
sible. A cooperation of dosimetrists and risk analysts at an
early phase of work might be helpful.

The principal results for the Colorado miners from ref.
(15) are surprisingly stable when the radon exposure is tak-
en to be uncertain randomly. The estimated risks at high
exposure rates are higher. Systematic errors would modify
the risk estimates, and a more detailed study would be de-
sirable, taking into account correlations and varying de-
grees of uncertainties for different exposures. If correction
for substantial classical errors are incorporated into the
TSCE model, then some reduction in the promoting action
of radon is likely, based on the simulations described
above. However, our analysis of the Colorado miner data
has emphasized Berkson errors, which we believe to be by
far the most important component of the exposure mea-
surement errors for that cohort. The hypothesis that radon
acts as a promoter survives this test. The mechanism of a
promoting action of radon clearly needs further investiga-
tion (24).

APPENDIX

Simulation of Log-normal Distributions

It is assumed that the uncertainties are multiplicative and are log-nor-
mally distributed with a mean of 1 so that no systematic error is produced.
The shape parameter s determines the magnitude of the uncertainty, the
scale parameter and the median are 1/es2/2. Log-normally distributed ran-
dom numbers ILN with mean M are obtained from normally distributed
random numbers IN with zero mean and unit variance by (25)

M
sINI 5 e . (A1)LN 2s /2e

The routine gasdev from the numerical recipes (23) is used for calculating
normally distributed random numbers.

Integrating over Berkson Errors

When the true exposures x are log-normally distributed, with the mean
value at the recorded exposure w then the likelihood Eq. (5) becomes the
integral

`1 1 2 2 22[ln(x /w)1s /2] /(2s )l 5 e l dx. (A2)w E xxÏ2ps 0

With the transformation

2ln(x/w) 1 s /2
u 5 , (A3)

Ï2s

it takes the form

1`1 22ul 5 e l du. (A4)w E x(u)Ïp 2`

Gauss-Hermite integration approximates the integral by a sum
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n1
l ø v l , (A5)Ow i xiÏp i

where
2Ï2 su 2s /2ix [ we .i

The two n-dimensional vectors u, v are calculated with the routine gauher
from the numerical recipes (23). Tests showed that n 5 10 provides
sufficient accuracy in this context.

Integrating over Classical Errors

In this case the recorded exposures w are log-normally distributed
around the true exposures x, taken as mean value. For a general distri-
bution of true doses p(x)dx, the likelihood Eq. (6) takes the form

1`1 1 2 2 22[ln(x /w)2s /2] /(2s )l 5 e l p(x) dx. (A6)w E xc(w) Ï2psw 0

With the transformation

2ln(x/w) 2 s /2
u 5 (A7)

Ï2s

it becomes
1`1 1 x(u)22ul 5 e l p[x(u)] du. (A8)w E x(u)c(w) wÏp 2`

This can be approximated by Gauss-Hermite integration as

1 1 xil ø v l p(x ), (A9)Ow i x iic(w) wÏp i

where
2Ï2su 1s /2ix 5 we .i

The normalization c(w) can be calculated with the same technique,

1 xic(w) ø v p(x ). (A10)O i iwÏp i

Combining the two formulas gives the likelihood

v l x p(x )O i x i ii
il ø . (A11)w

v x p(x )O i i i
i

In the simulations, the probability distribution p(x)dx of true exposures
is 1 dx for rates between 0 and 1 and is 0 otherwise. Therefore, the sums
are taken for those values of xi, which are smaller than 1. To allow for
this finite upper integration limit, 50-dimensional vectors are used.
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