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Summary 

Post-translational modifications (PTMs) are pivotal to cellular information processing 

but how combinatorial PTM patterns (‘motifs’) are set remains elusive. We develop a 

computational framework, which we provide as open source code, to investigate the 

design principles generating the combinatorial acetylation patterns on histone H4 in 

Drosophila melanogaster. We find that models assuming purely unspecific or lysine 

site-specific acetylation rates were insufficient to explain the experimentally 

determined motif abundances. Rather, these abundances were best described by an 

ensemble of models with acetylation rates that were specific to motifs. The model 

ensemble converged upon four acetylation pathways; we validated three of these 

using independent data from a systematic enzyme depletion study. Our findings 

suggest that histone acetylation patterns originate through specific pathways 

involving motif-specific acetylation activity.  
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Introduction 

Post-translational protein modifications (PTMs) are central to the regulation of most 

cellular systems (Beltrao et al. 2013). Depending on their specific localization, PTMs 

can either fine-tune protein function, modulate protein-protein interactions or target 

proteins for destruction. Recent advances in mass spectrometry-based proteomics 

have greatly improved the mapping of PTMs (Olsen and Mann 2013). Individual 

modifications mark specific residues, or ‘sites’, but if PTMs reside close to each other 

on a protein domain they may constitute a modification pattern, or ‘motif’ (Figure 1A). 

The observation of clustered modifications suggests functions for motifs beyond that 

of individual site modifications. However, little is known about the mechanisms that 

generate modification motifs. Specifically, how do pre-existing chemical marks affect 

further modifications in their neighborhood? Do they arise from the cumulative 

effects of uncoordinated enzymatic activities or via dedicated, ordered pathways? 

Answering these questions requires the quantitative measurement of modification 

motif abundances and a theoretical framework that enables generating testable 

hypotheses about the nature of the modification network (see Supplemental 

Experimental Procedures section 1). 

Histones, the main constituents of chromatin and mediators of genome function and 

stability, provide a well-studied example of regulation by PTM motifs. Histones are 

multiply modified and the resulting motifs have been suggested to constitute a ‘code’ 

(Strahl and Allis 2000; Turner 2000; Jenuwein and Allis 2001) or, alternatively, to 

integrate cellular and environmental signals and mediate appropriate responses 

(Smith and Shilatifard 2010). These modifications generate a rich landscape that is 

read out by interacting proteins to regulate gene expression programs and establish 

persistent ‘epigenetic’ states (Kouzarides 2007; Suganuma and Workman 2011). 

Of all the histone modifications, acetylation at specific lysine residues is particularly 

critical for the establishment of transcriptional programs and governs cell 

differentiation and organismal development (Voss and Thomas 2009; Haberland, 

Montgomery, and Olson 2009). Moreover, deregulation of acetylation contributes to 

aging and diseases (Dawson and Kouzarides 2012; Gräff and Tsai 2013; Cosentino 

and Mostoslavsky 2013; Morgan and Shilatifard 2015).  
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Acetylation of specific motifs is likely to convey specific functions. Indeed, the role of 

one combinatorial histone acetylation motif is already known: The doubly acetylated 

histone H4 at lysines 5 and 12 (H4.K5acK12ac) is generated by the 

acetyltransferase HAT1 (Parthun 2012) and exhibits functions distinct from the singly 

acetylated K5 or K12 isoforms (see Supplemental Experimental Procedures section 

1).  

In order to comprehensively characterize the histone acetylation system, we recently 

developed and employed a liquid chromatography-mass spectrometry (LC-MS)-

based method (Feller et al. 2015). This technique enabled the precise and accurate 

quantification of the 16 possible motifs formed on the H4 N-terminal ‘tail’ domain by 

combinatorial acetylation of lysines K5, K8, K12 and K16 (Figure 1B). As a proof of 

concept, we focused on Drosophila melanogaster, specifically KC cells, which serve 

as a well-established model for histone acetylation biology, with reduced complexity 

compared to human cells (Straub and Becker 2011; Lucchesi and Kuroda 2015). In 

this previous study, we found that histone H4 acetylation in wild type KC cells is 

unequally distributed across lysines and certain combinations of acetylations occur 

much more frequently than others (Figure 1B). Using a second, independent 

approach, we investigated the pathways by which those acetylation motifs are 

generated by systematically depleting all known and suspected lysine 

acetyltransferases (KATs) and lysine deacetylases (KDACs) expressed in KC cells 

(Feller et al. 2015). However, due to the complex interplay between the network 

components, the principles underlying the observed acetylation motif abundances 

could not be deduced using standard analysis. 

Here, to interrogate data like these, we introduce a computational framework and 

use lysine acetylation in Drosophila KC cells as a test case. Our framework allows us 

to investigate the genesis of combinatorial histone acetylation motifs. Specifically, we 

assess the relative importance of dedicated synthesis pathways versus 

uncoordinated enzymatic activity in producing the complement of lysine acetylation 

marks observed in bulk measurements. We trained our model on published data 

from unperturbed cells and validated predicted pathways using the independent KAT 

depletion dataset. Our modeling strategy provides insight into the design principles 

of PTM motifs, which will become increasingly relevant as further LC-MS datasets 

become available. 
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Results 

A computational framework for modeling endogenous acetylation motif 
abundances 
To help understand the complement of H4 acetylation isoforms observed in the KC 

cell-derived LC-MS datasets, it is useful to conceptualize the data in terms of ‘layers’. 

The number of layers equals the number of lysines in the H4 tail, and each layer is 

comprised of the set of H4 isoforms containing the same total number of acetylations 

(Figure 1B). The abundance of each of the possible 16 histone H4 acetylation 

isoforms (here called ‘motifs’) is unevenly distributed both within layers (representing 

the diversity of motifs with the same total number of acetylations) and across layers 

(that is, the total number of acetylated lysines, see Figure 1B). However, the general 

design principles underlying this complex acetylation patterns remain elusive. We 

hypothesized that motif-specific reactions contribute to the skewed abundance 

distribution, where enzymes are sensitive to adjacent modifications (or their 

absence), and hence catalyze (de)acetylations only for specific acetylation motifs 

(Feller et al. 2015). 

To test this hypothesis, we assess three hypothetical acetylation scenarios (Figure 

1C): 

1) Lysine acetylation could be unspecific, i.e. not dependent on the site or motif, 

and therefore be governed by a single, basal acetylation rate constant αr = αb 

for all reactions r (Figure 1C, left). 

2) Acetylation could be site-specific with some or all of the four lysine sites K5, 

K8, K12, K16 being acetylated by site-specific enzymes, resulting in a 

common acetylation rate for each reaction that targets that site, independent 

of neighbouring modifications (e.g. αK5 ≠ αK16 ≠ αb; Figure 1C, middle). 

3) Acetylation could be motif-specific with enzymes being sensitive to the 

modification state of nearby lysines. In the depicted example, the acetylation 

rate at site K12 is different from the basal rate when K16 (but not K5 or K8) is 

already acetylated (αK16→K12K16 ≠ αb; Figure 1C, right). 

We developed a series of mathematical models to encompass these three 

acetylation scenarios. For each model, we predicted the abundance of all acetylation 
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motifs as a function of the acetylation rates and infer the most likely acetylation rates 

by fitting the model to the measured abundances (Figure 1D). 

In the following, we use the symbol m to denote a motif (e.g. m = 0ac for the state 

with no acetylations, m = K5 for acetylated lysine 5 and no modifications at lysines 8, 

12, 16, etc.) and xm for the relative abundance of m, for each of the 16 acetylation 

motifs. In our model we assume:  

● Acetylation and deacetylation occurs stepwise, i.e. only one acetylation or 

deacetylation event can occur at a time. Thus, a motif can be generated via a 

single acetylation of a less acetylated state, or a single deacetylation of a 

more acetylated state (Figure 1C). 

● Deacetylation is unspecific, such that the rate constant is the same for all 

reactions r connecting two motifs, consistent with current views on 

deacetylation and measured response upon KDAC depletion in Drosophila 

cells (Seto and Yoshida 2014; Feller et al. 2015); Supplemental Experimental 

Procedures, sections 2 and 3). 

● Histone H4 acetylation follows mass action kinetics: the rate of each 

acetylation or deacetylation reaction is proportional to the abundance of the 

substrate of that reaction. 

● The measured motif abundances are assumed to be in steady state. This is 

consistent with the fact that acetylation and deacetylation progresses are 

much faster than the cell cycle and histone protein turnover (Katan-

Khaykovich and Struhl 2002; Toyama et al. 2013). 

For a more detailed explanation of this approach, see the Supplemental 

Experimental Procedures, sections 2 and 3. 

For the site-specific and motif-specific scenarios, it is unknown which of the sites or 

motifs are acetylated with a non-basal rate, therefore, we considered models 

containing any combination of site-specific or motif-specific reactions. In the case of 

site-specific acetylation there are 11 different combinations of site-specific and basal 

acetylation rates: 4 possibilities with one site-specific rate, 6 possibilities with two 

site-specific rates, and one possibility where every site has a site-specific acetylation 

rate. Note that the case of three site-specific rates and a basal rate is identical to four 

site-specific rates. For the motif-specific acetylation scenario, there are a total of 232 
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= 4.295·109 possible combinations of motif-specific reactions among the 32  

acetylation reactions.  

In each case, we evaluate the likelihood of the model using a log-error model for the 

measured abundances from unperturbed Drosophila cells. We then optimized model 

parameters to obtain the best fit, given by the maximum likelihood estimator (MLE). 

This approach also allows us to calculate confidence intervals for the estimated 

parameters and abundances, which is not possible using a likelihood-free approach, 

such as least-squares fitting. Using these likelihoods, we determined for each model 

the Bayesian Information Criterion (BIC), which penalizes additional model 

parameters. With the BIC we can compare different models with each other: the 

smaller the BIC the more suitable a model is to describe the data. This prevents 

overfitting the data with highly complex models premits the identification of the 

simplest models capable of describing the data (Figure 1D and Supplemental 

Experimental Procedures, section 3). 

The basic assumptions explained above, along with the inference procedure and 

model selection strategy, enable us to identify quantitative candidate models of the 

acetylation network (Figure 1B), which is necessary for evaluating the hypothetical 

acetylation scenarios and deriving testable predictions. 

Testing three hypothetical acetylation scenarios: models containing 
motif-specific reactions are favored over models with only basal and 
site-specific reactions 
We start by analyzing the simplest scenario, which contains only one basal reaction 

rate governing all acetylation reactions. In this unspecific model all motifs with the 

same total number of acetylations (0, 1, 2, 3 and 4), known as positional isoforms, 

will have the same abundance due to symmetry of the model. Using MLE we 

determined that a basal rate constant αb = 0.182 [0.170, 0.195] (95% confidence 

interval estimated using the profile likelihood) best fits the data. The basal reaction 

rate is hence approximately 18% of the deacetylation rate. The net effect of this bias 

towards deacetylation is the prevalence of motifs in layers with less acetylation. This 

simple scenario already suffices to capture the overall trend of decreasing 

abundance with increased degree of acetylation apparent in the data (Figure 2A). 
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However, comparison of the predicted and the experimentally-determined values 

shows that the abundance for motifs with a single or two acetylated lysines (except 

K5K12) is overestimated by this very simple model. Moreover, it cannot capture the 

large abundance variability present for the multiply acetylated motifs. In total, we find 

that 86.6% (13 out of 15 measured abundances) are not explained by this simple, 

unspecific scenario, because they fall outside the estimated 95% confidence 

intervals of the model. We therefore conclude that the unspecific scenario is 

insufficient to explain the majority of observed lysine acetylation abundances. 

Next, we analyze the site-specific acetylation scenario, in which the acetylation rates 

of each site K5, K8, K12 and K16 are allowed to differ. We constructed all 11 

possible models and in each case obtained the MLE of the parameters. We 

compared the models using the BIC, and found that the most complex model with 

four different site-specific reaction rates best explains the measured abundances. 

This model yields the site-specific acetylation rate constants αK5 = 0.225 [0.181, 

0.280], αK8 = 0.126 [0.104, 0.154], αK12 = 0.417 [0.331, 0.528] and αK16 = 0.107 

[0.088, 0.131]. We note that, as for the unspecific scenario, the acetylation rates are 

all less than 1, indicating that deacetylation is faster than acetylation in this dynamic 

equilibrium. Since in this model, each site possesses a different acetylation rate, it is 

possible for motifs within a single layer to achieve different abundances. Indeed, this 

extra flexibility allows the model to achieve better agreement with the data compared 

to the unspecific model (Figure 2B), and is favored by the BIC (644.5 for the site-

specific model as compared to 697.3 for the unspecific model). We find that 46.6% of 

all replicates of the measured motif abundances (0ac, K5, K12, K5K8, K8K12, 

K12K16 and 4ac) fall outside the 95% confidence intervals of the predicted 

abundances, representing a roughly two-fold improvement compared to the purely 

unspecific model. However, the substantial fraction of measurements not explained 

by the model suggests that a more complex model, which accounts for differences 

among individual motifs, is required. 

Finally, we analyzed the motif-specific acetylation scenario, which takes into account 

the context of nearby modifications. We computed the BIC score of each model and 

find that the BIC reaches its minimum for 7 motif-specific rates and then increases 

again monotonically (Figure S1). Thus, we conservatively limit the analysis to 

maximally 11 motif-specific rates, thereby reducing the number of candidate models 
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from 4.295x109 to 2.366x108 models. Of the motif-specific models, the model that 

best fits the data has 7 motif-specific reaction rates, while all other reactions are 

governed by the same basal reaction rate. Six motif-specific rates are faster than the 

basal rate of αb = 0.067 ± 0.004 and three reactions (K5 → K5K12, K12K16 → 

K8K12K16 and K8K12K16 → 4ac) have an acetylation rate constant αr > 1, 

indicating faster acetylation than deacetylation (Table S1). The obtained BIC of 67.1 

indicates a strong preference of the motif-specific scenario over the unspecific (ΔBIC 

= 631.2) and the best site-specific scenario (ΔBIC = 577.4), which is corroborated by 

the observation that the best motif-specific model captures all measured mean motif 

abundances (Figure 2C).   

Motif abundances are best described by an ensemble of similar models 
with distinct motif-specific rates 
Our analysis of the three hypothetical scenarios provides strong evidence that motif-

specificity is a necessary component of a model that accurately recapitulates 

experimentally measured motif abundances. Until now we considered only unspecific 

or exclusively site- or motif-specific models. However, by allowing both site- and 

motif-specificity simultaneously, it might be possible to obtain an even better 

candidate model. Thus we re-fit all models containing up to 11 motif or site-specific 

acetylation rates (9.3x108 total models) and compared the models using the BIC 

score. Interestingly, we found that permitting both site- and motif-specific rates 

improves the corresponding model BICs only minimally (Figure S2A). The model 

comparison reveals that the best model in this mixed scenario is exactly the same 

candidate found in the motif-specific scenario, that is, no site specific reactions 

included (Figure 2C). Taken together, this implies that site-specificity is not essential 

to describe the observed abundances and confirms our previous finding (Figures 2A-

C) that motif-specificity strongly contributes to the acetylation network. 

Although the best model candidate has been independently identified twice, it is 

possible that other candidates are nearly as good at explaining the data. Thus, we 

compared the best model with all other models by examining the distribution of BIC 

scores over all scenarios. This analysis reveals that i) the BIC scores of motif-

specific models are vastly reduced compared to site-specific or unspecific models, 

confirming the essentiality of motif-specificity (Figure S2A), and ii) there are 
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approximately 100 motif-specific and motif-and-site-specific models with very similar 

BIC scores to the best model (ΔBIC < 6) (Figure S2B). However, a ΔBIC of less than 

6 is insufficient to reject one model in favor of another (see Supplemental 

Experimental Procedures section 2), therefore, we retained an ensemble of 

candidate models for further consideration. 

Ensemble analysis: the best models share common features 

Next, we examined the ensemble of the best 100 models to ascertain similarities and 

differences between them. All models in the ensemble contain between 6 and 9 

motif-specific reaction rates (Figures S2C, S2E and Table S2) and 89 of the best 100 

models have only one or no site-specific rate (Figures S2D, S2E). Not all specific 

rates appear equally within the model ensemble: particular motif-specific and site-

specific rates are over-represented (Figure 3A). We find that the motif-specific 

reaction K5 → K5K12 is common to almost all models in the ensemble (99%). With 

an average acetylation rate constant of αK5→ K5K12 = 2.255 ± 0.505, it is on average 

35 times faster than the basal acetylation rate constant αb = 0.064 ± 0.012. Notably, 

this observation resonates with independent genetic and biochemical observations: 

K5K12 is the only acetylation motif that has been demonstrated to have a dedicated 

genesis pathway via the KAT HAT1 (see Introduction and Supplemental 

Experimental Procedures section 1).  

Average rate constants within the ensemble of 100 best models also have literature 

support. We find that the ensemble average effective basal acetylation rate constant, 

i.e. the ratio of basal acetylation to deacetylation, is of the same order of magnitude 

as the one previously reported using chromatin-immunoprecipitation (ChIP) and 

pulse-chase LC-MS metabolic-labeling experiments (0.1-0.2 in Katan-Khaykovich 

and Struhl (2002); Zheng et al. (2012); Evertts et al. (2013)). The relatively high 

abundance of multiply acetylated states suggests the need for acetylation rates that 

are higher than the basal acetylation rates, which in the model is implemented by 

site-specific and motif-specific acetylation rate enhancement. In total, we conclude 

that our modeling approach robustly identifies motif-specificity as a system property 

of histone acetylation, capable of capturing the only yet known motif-specific reaction 

rate (K5 → K5K12) and recovering a basal effective acetylation rate with values 

similar to previous estimates. 
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Computational prediction of pathways that lead to combinatorial 
acetylation motifs 
In order to explore the commonalities among the best models, we grouped them 

using an unsupervised clustering algorithm on the reaction rates of the models. By 

doing so, we identified three large model families (at least 5 models per family), 

distinguished by similar patterns among their reaction rates (Figure 3C).  

We examined the frequency distribution of motif-specific reactions within the 

ensemble (Figure 3A), and discovered a subset of overrepresented motif-specific 

reactions which occur in more than 50% of the candidate models (Figure 3B). Each 

family also contained a different collection of frequently occurring motif-specific rates 

(Figures S3A-C). This procedure allows us to analyze properties of the model 

families in terms of their common features. In each model family, we conservatively 

threshold the motif-specific reaction frequencies at 60% to yield a set of essential 

motif-specific reactions (Figures S3D-F), and connect adjacent motif-specific 

reactions from this set to construct hypothetical acetylation pathways (Figures 4A-D).  

We identify four pathways, which are distinct between the three model families 

(Figures 4A-D). Pathway 1 (supported by 45.8% of the models in family 3, Figures 

4A, S3C, S3F), suggests that K5K12 is not only generated via K5 → K5K12 (100% 

of the models in family 3) but also via K12 → K5K12 (45.8% of the models in family 

3). Pathway 1 further suggests that K5K12 is subsequently acetylated at K8 to 

generate K5K8K12 (78.0% of the models in family 3). Furthermore, most models 

(84.8%) in family 3 contain pathway 4 (Figures 4D, S3C, S3F), which yields the fully 

acetylated isoform 4ac via the serial acetylation K16 → K12K16 → K8K12K16 → 

4ac. We also discover alternative pathways to the fully acetylated 4ac state in model 

families 1 and 2. Pathway 2 (contained in 81.8 % of the models in family 1, Figures 

4B, S3B, S3E) suggests K8 → K5K8 → K5K8K12 → 4ac while pathway 3 (contained 

in 42.3% of the models in family 2, Figures 4C, S3A, S3D) suggests K8K12 → 

K5K8K12 → 4ac .  

Validation of computationally predicted pathways against a systematic 
KAT depletion dataset 
After having trained our model ensemble on the dataset derived from unperturbed 

Drosophila cells, we validated the pathways it predicted using an independent 
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dataset. To generate these data, individual KATs were depleted by RNA interference 

(Figure S4, Feller et al. 2015). For a detailed discussion on enzyme annotation and 

methods used to generate these data, refer to Supplementary Experimental 

Procedures, section 4. 

Pathway 1 (Figure 4A) clearly resembles the known HAT1-mediated acetylation of 

K5K12 via K5. Upon HAT1 depletion (Figure S4) we see a strong decrease in the 

abundances of K5 and K5K12, while the unused substrate K12 increases. Pathway 1 

additionally reveals a promiscuous acetylation activity of HAT1 for K5K12 → 

K5K8K12, an observation consistent with a previous biochemical report (Makowski, 

Dutnall, and Annunziato 2001) and the observation that the newly synthesised 

histones engaged in chaperone assemblies contain low levels of K5K8K12 

(Verreault et al. 1996).  

Pathway 2 (Figure 4B) suggests a route to the 4ac motif via K8 → K5K8 → 

K5K8K12. By analyzing our depletion dataset we propose CBP, NAA10, NAT10 and 

MGEA5 to contribute to pathway 2, whose ablation leads to a reduction of the 

corresponding motifs. We find no clear evidence for pathway 3 (Figure 4C) after 

having visited our depletion dataset. 

The acetylation pathway 4 (Figure 4D) suggests successive acetylation of the H4 tail 

starting from K16 and propagating towards the N-terminus until lysine 5. By 

analyzing our depletion dataset we propose this pathway to be generated by 

subsequent acetylation activity of MOF (0ac → K16), TIP60 (K16 → K12K16) and 

CBP (K8K12K16 → 4ac), since the reaction products K16, K12K16, and 4ac are 

strongly reduced upon depletion of MOF, TIP60, and CBP, respectively. Importantly, 

as predicted by the model, the unused substrate for the first TIP60 reaction (i.e. K16) 

is increased after TIP60 depletion. Additionally, the depletion dataset provides 

support for the K12K16 → K8K12K16 reaction by both TIP60 and CBP. Consistent 

with the predicted pathway, the abundance of K12K16 is increased if the enzyme 

catalyzing K12K16 → K8K12K16 is depleted, which is consistent with the outcome of 

the CBP depletion experiment, unless the enzyme also contributes to the generation 

of K12K16, as depicted above for TIP60. 

In summary, our analysis identifies three acetylation pathways that can be linked to 

known and recently reported enzyme activity (Figure 4E). The combinatorial 
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acetylation motif K5K12 is generated by HAT1 via K5 (red pathway in Figure 4E). 

The fully acetylated 4ac state appears to originate from two main routes: The 

‘inverse K5K8 zipper pathway’ (blue pathway in Figure 4E) relies on the enzymes 

CBP, NAA10, NAT10, MGEA5, and the ‘K16 zipper pathway’ (orange pathway in 

Figure 4E) is brought about by the coordinated activity of MOF, TIP60 and CBP. The 

‘K16 zipper pathway’ was previously proposed based on the skewed abundance 

distribution in many human cell types as well as in other selected species (Zhang et 

al. 2002; Garcia et al. 2007). In those species the abundance of K16 exceeds by far 

that of other mono-acetylated motifs, a trend that continues also for di- and tri-

acetylated motifs that contain acetylated K16. While established for other species, 

such a pathway has not been previously described for Drosophila, nor is it evident 

from the measured abundances alone (Figure 1B). The identification of the K16 

zipper pathway is therefore an unexpected result from our modeling framework and 

has direct implications for the evolution of the histone H4 acetylation system and the 

specialized chromosome-wide transcriptional control system present in male 

Drosophila cells (dosage compensation system; Prestel, Feller, and Becker 2010; 

Bachtrog et al. 2014; Lucchesi and Kuroda 2015). 

Discussion 

In this study, we developed a modeling framework to investigate how combinatorial 

motifs of PTM modifications are generated and maintained using acetylation of the 

histone H4 N-terminal tail domain as a model system. Our findings strongly suggest 

that motif-specific acetylation is an essential feature of the histone H4 acetylation 

system in Drosophila. In particular, our results argue that i) site-specific reactions are 

not the main driving force shaping the skewed distribution of histone abundances, as 

commonly assumed, but ii) motif-specific reaction rates exist and are essential 

components of the histone H4 acetylation network, and iii) motif-specific reactions 

create pathways that generate the combinatorial acetylation patterns. These 

conclusions arise directly from aspects of the modeling framework we have 

introduced here. The framework is exhaustive, in that we compare all model 

topologies; this allows us to discriminate between possible models. It utilizes an 

established information-theoretic technique to rigorously evaluate candidate models, 
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and it is directly interpretable, revealing acetylation rates, and site- and motif-

specificity.  

Our framework can also be extended. Using the presented approach, one can 

identify pathways that are directly testable, aiding in hypothesis generation and 

experimental design. One may also ‘reverse-engineer’ complex and diverse PTM 

networks. Besides including additional PTM types, it is also possible to change the 

parameters of the model. For example, while our assumption of a universal, constant 

deacetylation rate is justified by our current knowledge on KDAC activities in 

Drosophila cells (Feller et al. 2015), the higher complexity of the human KDAC 

network and the differential response upon KDAC inhibitor treatment in some human 

cells may motivate an extension which relaxes this assumption (Yang and Seto 

2007; Joshi et al. 2013, also see the Supplemental Experimental Procedures, 

section 3). 

Implications for histone modification biology and beyond 

A common notion in histone acetylation biology is that modifications at neighboring 

sites may serve largely redundant functions, either through unspecific ‘reader’ 

proteins that bind acetylated lysines with low affinity and specificity for individual 

acetylation sites or through charge neutralisation (Dion et al. 2005; Ruthenburg et al. 

2007; Allahverdi et al. 2011). Furthermore, KATs are generally thought to target 

either a single site with high specificity (e.g. MOF acetylates unmodified histone H4 

at lysine 16) or multiple residues with relaxed specificity (e.g. CBP for lysine residues 

K5, K8, and several sites on histone H3). However, the comprehensive 

characterization of the motif targets of even a single KAT is greatly limited by the 

inadequacy of current biochemical methods (see the Supplemental Experimental 

Procedures, section 1, for details). 

Our computational results on the acetylation genesis side (that is, the ‘writer’ proteins 

that perform lysine acetylation) are congruent with emerging evidence from the 

‘reader’ side, which recently demonstrated that the affinity and specificity of some 

bromodomains to interact with acetylated lysines is modulated by additional nearby 

modifications (Morinière et al. 2009; Filippakopoulos et al. 2012). Importantly, our 

findings also are consistent with the only acetylation motif with a suspected 

functional role and dedicated genesis, K5K12 (see the Supplemental Experimental 
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Procedures, section 1). Together, these independent observations on the histone 

acetylation system are congruent with alike observations from histone methylation 

studies (Strahl and Allis 2000; Jenuwein and Allis 2001; Smith and Shilatifard 2010; 

Suganuma and Workman 2011).  

In this work we comprehensively investigated lysine acetylation at the N-terminus of 

histone H4. However, this represents only a small part of the vast histone 

modification network, which includes over 20 known PTM types and over 150 

modification sites. Thus a comprehensive characterization would require expanding 

the current model to include additional PTM types and motifs and their respective 

interactions. Such extensions will be possible to include in our framework once these 

datasets become available, as heralded by recent and foreseeable progress in MS-

based technologies and complementary (proteo-) genomic, systems biochemistry 

and genetics methodologies (Günesdogan, Jäckle, and Herzig 2010; Tran et al. 

2011; Cox and Mann 2011; Gillet et al. 2012; Bensimon, Heck, and Aebersold 2012; 

Nguyen et al. 2014; Stasevich et al. 2014). Supplied with such data, quantitative, 

dynamic models of the chromatin modification system in healthy and diseased cells 

will yield a detailed characterization of PTM network and may provide the means to 

rationally design specific modulators of epigenetic regulation as a basis for effective 

therapy. 

 

Experimental Procedures 

Model definition 
To model the reaction network of histone H4 tail acetylation and deacetylation we 

use a step-wise reaction network (Figure 1B) wherein only a single acetyl group can 

be added or removed at a time. We use mass action kinetics (Van Kampen 2007; 

Zheng et al. 2012) to describe the acetylation and deacetylation reactions r (r = 0ac 

→ K5, r = K5 → K5K12, etc.) with acetylation rate constants ar and deacetylation 

rate constants dr. The change of the abundances of a particular motif xm is given by 

the difference between influx from and the outflux to neighboring motif abundances 

𝑑/𝑑𝑡 𝑥! = 𝑅!,!!(𝑎! ,𝑑!) ⋅ 𝑥!!

 

!!

         (𝐸𝑞. 1). 
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The reaction matrix Rm,m’ incorporates all possible reactions between the motifs 

within the step-wise reaction network. For example, the change of the abundance of 

motif K8 

𝑑
𝑑𝑡 𝑥!! =  𝑎!!𝑥!!" + 𝑑!!𝑥!!!! + 𝑑!!"𝑥!!!!" + 𝑑!!"𝑥!!!!" 

−(𝑎!! + 𝑎!!" + 𝑎!!" + 𝑑!!)𝑥!! 

is given as the difference between the influx from (terms with positive sign) and the 

outflux to (terms with negative sign) neighboring motifs (i.e. motifs differing by 

exactly one acetyl group). 

We and others previously found that deacetylation occurs broadly with only little 

evidence for motif-specificity in the analyzed cell system (Feller et al. 2015). Thus, 

we additionally assume that deacetylation is unspecific, and therefore proceeds with 

the same rate constant d for all motifs. We then simplify by dividing Eq. 1 by the 

deacetylation rate constant d, thus converting all acetylation rate constants ar to 

rescaled, effective rate constants αr = ar / dr. 

The time scale of acetylation and deacetylation is much faster than the cell cycle and 

measured histone protein half-life. Therefore we assume the reactions to be at 

steady state 

𝑑/𝑑𝑡 𝑥! = 0      (𝐸𝑞. 2). 

To take into account that the abundances of the motifs are not measured in total 

numbers but are given as fractions that are normalized to one, we solve for the 

steady states subjected to the constraint of unity total abundance, i.e. we solve 

𝑅!,!!(𝛼 )𝑥!!

 

!!

= 0   𝑠. 𝑡.   𝑥!

 

!

= 1      (𝐸𝑞. 3).  
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Figure legends 

Figure 1. Overview on modeling framework to test histone H4 acetylation 
scenarios. (A) Nucleosome with protruding N-terminal histone ‘tail’ domains (left), 

with four potential lysine (K) acetylation residues (‘sites’) on the histone H4 peptide 

G4-R17 (center) which together form the histone H4 N-terminal acetylation ‘motifs’ 

(right). The motif K16 (right bottom) arises by acetylation of lysine 16 from the 

unmodified 0ac motif (right top). (De-)acetylation reactions are mediated by lysine 

acetyltransferases (KATs) and lysine deacetylases (KDACs). Only two out of 16 

possible acetylation motifs are shown (unmodified: white, acetylated: grey). (B) 

Skewed abundance distribution within and across layers of the histone H4 

acetylation motifs in Drosophila cells. Network representation of the abundances for 

the 16 histone H4 acetylation motifs as determined by liquid chromatography-mass 

spectrometry (LC-MS) (data from Feller et al. 2015). Box sizes depict log10 

abundances. Note that the box size for K5K16 was set to scale with the lowest 

quantifiable H4 motif (K5K8K16), because the K5K16 motif is below the 

quantification limit (see Supplementary Experimental Procedures 1). (C) Testing 

hypothetical acetylation scenarios: unspecific acetylation scenario with the same 

unspecific, basal reaction rate αb for all lysines (left); site-specific acetylation 

scenario with site-specific reaction rate(s) for individual site(s) (blue, center); and 

motif-specific acetylation scenario with rate(s) specific to the modification context of 

lysines 5, 8, 12 and 16. In the depicted case, acetylation of lysine 12 requires pre-

acetylated lysine 16 (green). (D) Outline of computational modeling framework. All 

models are based on mass action kinetics with rate constants αr for the r reactions. 

The models are fitted to the LC-MS data from (B) via maximum likelihood estimation 

(MLE). To find the model with an optimal trade-off between complexity and goodness 

of fit, we perform model selection based on the Bayesian Information Criterion (BIC), 

a score which penalizes more complex models. Applying this approach allows to test 

the different acetylation scenarios shown in (C) with a rigorous quantitative 

assessment.  

Figure 2. Motif-specific models are preferred over unspecific and site-specific 
models for explaining the measured motif abundances. (A-C) Comparison 

between modeling-derived predicted motif abundances (grey whisker box, 
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percentiles 0.5/0.95) and LC-MS measured motif abundances (red and black ‘x’, 

data with 18 biological replicates from Feller et al. 2015) for different acetylation 

scenarios. Red ‘x’: measurement falls outside of confidence interval (CI) of predicted 

motif abundance. Black ‘x’: measurement is within CI of predicted abundance value. 

Model selection based on Bayesian Information Criterion (BIC) shows strong 

preference for the best motif-specific acetylation model over the best site-specific 

model (ΔBIC = 577.4) and unspecific model (ΔBIC = 630.2). (A) The unspecific 

model is inadequate to explain the measured abundances, because the mean 

abundance values from 13/15 measured motifs do not fall within the 95% confidence 

intervals (CI) of the model. (B) The site-specific models are improved over the 

unspecific model but still insufficient to explain most measurements (shown is data 

for best out of 11 possible models: 8/15 within 95% CI). (C) The motif-specific 

acetylation models explain the measured abundances best. Shown is the data for 

the best motif-specific model out of 4.295x109 possible models (15/15 within 95% 

CI). Only the best 2.366x108 models were tested, allowing for up to 11 motif-specific 

reaction rates (BIC stopping criterion see Figure S1, Results and Supplemental 

Experimental Procedures, section 2). 

Figure 3. Hierarchical clustering reveals distinct model families characterized 
by motif-specific reaction rates. (A) The histogram shows the abundance 

distribution for all motif-specific reaction rates among the best 100 models. K5 → 

K5K12 is supported by 99/100 best models. Seven reaction rates occur with a 

frequency more than 50%. (B) The motif-specific reactions occur with variable 

frequency within the best 100 models. (C) We performed hierarchical clustering to 

group models according to similarity patterns in their estimated acetylation rates. The 

resulting clusters can be categorized into three model families and a small group of 5 

uncategorized models. The black dots in the heatmap indicate cases where the 

motif-specific reaction rate supersedes the site-specific rate (left columns). The color 

key shows the magnitude of the log fold-change of reaction rates (colored, right) 

relative to the basal rate of each model (gray, left). Best model (ranked 1) is 

highlighted in red (line 75). 
 

Figure 4. Hypothetical acetylation pathways derived from the model ensemble 
and schematic representation of proposed enzyme activity. (A-D) Predicted 
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acetylation pathways that are composed of connected motif-specific acetylation rates 

with more than 60% support within a family (see Figure S3). Each model family is 

characterized by distinct acetylation reaction pathways. (E) We validate the predicted 

pathways by an independent KAT depletion dataset (Figure S4) and propose 

candidate enzymes for the acetylation pathways. We find evidence for pathway 1, 2 

and 4 (Figures 4A, B, D) whereas we exclude pathway 3 (Figure 4C). In pathway 1 

(red), HAT1 catalyzes the two main steps of the K5K12 pathway, and a potential 

third ‘promiscuous’ step to yield K5K8K12 (not shown). CBP, NAA10, NAT10 or 

MGEA5 are putative candidates for the first two reactions of the inverse K5K8 zipper 

(pathway 2, blue, solid). The remaining links of pathway 2 (blue, dashed) are inferred 

by the model, but the dataset does not allow the assignment of the associated 

enzymes. In pathway 4 (orange), the K16 zipper is likely generated by the 

subsequent actions of MOF (0 → K16), TIP60 (K16 → K12K16 and K12K16 → 

K8K12K16) and CBP (K12K16 → K8K12K16 and K8K12K16 → 4ac). 


