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ABSTRACT 

Background: Previous studies have observed associations between air pollution and heart 

disease. Susceptibility to air pollution effects has been examined mostly with a test of effect 

modification, but little evidence is available whether air pollution distorts cardiovascular risk 

factor distribution. 

Objectives: This paper aims to examine distributional and heterogeneous effects of air pollution 

on known cardiovascular biomarkers. 

Methods: A total of 1,112 men from the Normative Aging Study and residents of the Boston 

Greater area with mean age of 69 years at baseline were included in this study during the period 

1995-2013. We used quantile regression and random slope models to investigate distributional 

effects and heterogeneity in the traffic-related responses on blood pressure, heart rate variability, 

repolarization, lipids, and inflammation. We considered 28-day averaged exposure to particle 

number, PM2.5 black carbon, and PM2.5 mass concentrations (measured at a single monitor near 

the site of the study visits). 

Results: We observed some evidence suggesting distributional effects of traffic-related 

pollutants on systolic blood pressure, heart rate variability, corrected QT interval, low density 

lipoprotein (LDL) cholesterol, triglyceride, and intercellular adhesion molecule-1 (ICAM-1). For 

example, among participants with LDL cholesterol below 80mg/dL, an interquartile range 

increase in PM2.5 black carbon exposure was associated with a 7mg/dL (95%CI: 5; 10) increase 

in LDL cholesterol while among subjects with LDL cholesterol levels close to 160mg/dL, the 

same exposure was related to a 16mg/dL (95%CI: 13; 20) increase in LDL cholesterol. We 

observed similar heterogeneous associations across low versus high percentiles of the LDL 

distribution for PM2.5 mass and particle number. 

Conclusions: These results suggest that air pollution distorts the distribution of cardiovascular 

risk factors, and that, for several outcomes, effects may be greatest among individuals who are 

already at high risk. 
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INTRODUCTION 

Air pollution concentrations have been reduced in the past decades in the United States. 

However, ambient air pollution still causes adverse health outcomes at low concentrations below 

standards (Amancio and Nascimento 2014). Previous studies have shown evidence of 

heterogeneity in air pollution effects among individuals with different characteristics. Common 

analytic approaches to examine effect modification include the use of interaction terms (Bateson 

and Schwartz 2004; Breton et al. 2011; Hicken et al. 2013; Shumake et al. 2013; Yang et al. 

2009) or the use of random slopes to examine between subjects variability in air pollution 

estimates (Tager et al. 1998). However, these approaches have not provided sufficient 

understanding of how air pollution changes the shape of the distribution of risk factors or health 

outcomes. In particular, if larger effects were seen in people at the adverse end of such 

distributions, that would have important public health implications, and would be quite important 

for health impact assessments. Investigating variations in air pollution effects based on the 

outcome of interest has received less attention but would address this issue. 

Associations with air pollution can be estimated for individuals at different percentiles of 

the outcome distribution using quantile regression. The goal of this technique is to quantify the 

associations between exposure and specific quantiles of the outcome distribution, thereby 

allowing one to identify whether specific individuals with certain outcome levels are more 

affected by exposure. Hence, the use of quantile regression over the entire range of an outcome 

produces estimates that can be used to detect potential heterogeneity in exposure-outcome 

associations according to individual outcome levels. Another advantage of quantile regression is 

that it does not require assumptions about the distribution of the outcome (or the model 

residuals) and can therefore be used to estimate associations between air pollution and 
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biomarkers of disease that are not normally distributed. An alternative approach, but only 

available with repeated measures, is to fit random slopes for each subject and use those slopes to 

examine heterogeneity of responses within the study population. In addition to requiring repeated 

measures per subject, this approach also makes assumptions about the distributions of the 

random slopes, typically assumed to be mean zero normal random variables. 

Using these approaches, this article first aimed to examine whether air pollution distorts 

the distribution of established cardiovascular risk factors. Secondly, this study investigated 

whether air pollution associations with these cardiovascular risk factors vary by baseline 

individual levels of the same cardiovascular outcome, and whether those differences vary by 

pollutant. We investigated air pollution association on quantiles of blood pressure, heart rate 

variability, lipids, and inflammatory markers. We focused our investigation on elderly 

participants, who might be more susceptible to traffic-related air pollutants. We compared results 

from the quantile regression and random slopes approached to evaluate the sensitivity of our 

conclusions to modeling assumptions. 

METHODS 

Study population 

Participants included in this analysis were part of the Normative Aging Study (NAS), a 

longitudinal investigation established in Boston in 1963 by the U.S. Veterans Administration and 

limited to men (Bell et al. 1966). At the time of initial enrollment, participants were free of heart 

disease, hypertension, diabetes, cancer, recurrent asthma, or bronchitis. We measured 

cardiovascular-related outcomes on a total of 1,112 individuals one to seven times with intervals 

of three to five years (nobservations=3,615) during the 1995-2013 period. The age range at baseline 

and over the entire study period was 49 to 97 years and 49 to 100 years, respectively. Medical 
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visits including on-site physical examinations and detailed questionnaires occurred after smoking 

abstinence and an overnight fast. 

This study was approved by the Harvard School of Public Health and the Veteran 

Administration Institution Review Boards (IRBs). Subjects provided written informed consent to 

participate in this study, which was approved by the Veteran Administration IRB. 

Air pollution 

Previous studies have suggested that the relevant exposure window for the association 

between air pollution association exposures and cardiovascular-related outcomes ranges from 

hours to years (Brook et al. 2010; Devlin et al. 2014; Foraster et al. 2014; Ruckerl et al. 2007). 

We chose to explore an intermediate-term exposure window, since it can serve as a median 

choice between short- and long-term windows. We a priori focused on air pollution 

concentrations measured during the 28-day period preceding each participant’s medical visit. 

From 1995 onward, we measured ambient particle concentrations at the Harvard supersite 

located near downtown Boston and approximately 1 km from the medical center where the 

subjects were examined. We measured hourly particle number per cm3 (which captures fine and 

ultrafine particles with a 0.007–3 µm range in diameter) with a Condensation Particle Counter 

(TSI Inc, Model 3022A, Shoreview, MN), hourly PM2.5 mass concentrations (particles ≤ 2.5 µm 

in diameter) using a Tapered Element Oscillation Microbalance (Model 1400A, Rupprecht and 

Pastashnick, East Greenbush, NY), and hourly PM2.5 black carbon (black carbon particles ≤ 2.5 

µm in diameter) with an Aethalometer (Magee Scientific Co., Model AE-16, Berkeley, CA). A 

detailed description of the supersite has been previously published (Kang et al. 2010). Particle 

number measurements started in October 1999. 
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Cardiovascular outcomes 

At each medical visit, we measured systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) once in each arm while the subject was seated, using a standard cuff. We 

calculated the mean of right and left arm values and used it in these analyses. 

In plasma, we measured plasma fibrinogen using a thrombin reagent called MDA 

Fibriquick, C-reactive protein concentrations using an immunoturbidimetric assay on the Hitachi 

917 analyzer (Roche Diagnostics-Indianapolis, IN), and concentrations of intercellular adhesion 

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) using an enzyme-linked 

immunoabsorbent assay method (R&D Systems, Minneapolis, MN). 

After a 5-minute rest, we measured cardiac rhythm for 5 to 10 minutes in a sitting 

position with a two-channel electrocardiogram monitor using a sampling rate of 256 Hz per 

channel (Trillium 3000 model, Forest Medical, East Syracuse, NY). We obtained the standard 

deviation of normal-to-normal intervals (SDNN), low frequency (LF; 0.04 to 0.15 Hz), high 

frequency (HF; 0.15 to 0.4 Hz), and the natural logarithm of the ratio LF/HF with a fast Fourier 

transform using standard software (Trillium-3000, PC-Companion Software, Forest Medical). 

We measured QT interval from the QRS onset to the end of the T-wave only on normal or 

supraventricular beats. We calculated corrected QT values using the Bazett’s formula (Bednar et 

al. 2001), and the mean of corrected QT for the length of the recording as the outcome 

corresponding to each participant’s visit. 

Before November 2000, we obtained serum concentrations of total cholesterol, high-

density lipoprotein (HDL), and triglyceride using the BM/Hitachi 747-100 Automatic Analyzer 

(Roche Diagnostics Corporation, formerly Boehringer Mannheim Corp., IN, USA). From 
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November 2000 to December 2006, we used the Olympus AU640/AU400 Chemistry Analyzer 

(Olympus America Inc., PA, USA), and from January 2006 to 2013 we used Abbott Architect 

assays (Abbott Diagnostics, IL, USA). We calculated low density lipoprotein (LDL) cholesterol 

in mg/dL using Friedewald’s formula (Friedewald et al. 1972). 

LDL cholesterol = Total cholesterol – HDL cholesterol – (Triglyceride / 5)  [1] 

Statistical methods 

We examined whether 28-day moving average air pollutant levels were associated with 

percentiles of the outcome distribution in the 10% increments (10th to 90th deciles). Because we 

measured each outcome of interest repeatedly for 77% of the participants, we fit quantile 

regressions for longitudinal data (Koenker 2004). Briefly, this method allows one to fit fixed-

effects and correlated random-effects quantile regression models while relying on Bootstrap 

inference. We reported the quantile regression coefficients, scaled to correspond to differences in 

a given percentile of the outcome associated with an interquartile range increase in the 28-day 

mean concentration of air pollution prior to the medical visit. We use the interquartile range 

because it reflects the spread of the distribution (i.e., 25th-75th percentiles) in the observed data. 

Note that these differences are directly expressed in the outcome unit. We adjusted for 

the following potential confounders: temperature (24h-mean of the day of the study visit and 

modeled continuously), relative humidity (24h-mean of the day of the study visit and modeled 

continuously), as well as sine and cosine terms as a function of day of the season. We also 

controlled for time-varying factors likely to influence the outcome but not exposure such as: age 

(continuously modeled), physician-diagnosed diabetes (yes vs. no), body mass index 

(continuously modeled), smoking status (never vs. former vs. current), cumulative cigarette 

pack-years calculated for current and former smokers (continuously modeled), and statin use 
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(current use vs. not). For blood pressure and heart rate variability, we also adjusted for current 

use of antihypertensive medications (angiotensin-converting-enzyme inhibitors, β blockers, 

calcium channel blockers, angiotensin receptor blockers and diuretics). For SDNN, we also 

controlled for heart rate because standard deviation is likely to be larger as heart rate increases. 

We assume that the missing mechanism of the exposures happened completely at random 

and conducted complete-case analyses. For instance, for particle number, our analysis is 

restricted to the period between October 1999 and February 2013, for which particle number 

measurements were obtained. 

We assess heterogeneity in the exposure-outcome association across quantiles of the 

outcome distribution using visual diagnostics of patterns of increasing or decreasing associations 

over the distribution. Because there can always be some variation due to noise in estimates from 

one decile to another, we rely on monotonic trends to detect potential “real” patterns of 

heterogeneity.  

Sensitivity analyses 

As secondary analyses, we fit linear mixed-effects models with random intercepts and 

slopes for individual air pollutant effects to check for heterogeneous associations with the same 

outcomes of interest. Conditional on algorithm convergence, we obtained the subject-specific 

random slopes and calculated the individual effects (by adding the fixed and random effects) for 

participants with more than one visit. Subsequently, we plotted these individual effects versus 

the outcome of interest measured at baseline. 

RESULTS 

Table 1 shows longitudinal characteristics of the population. Participants were all male, 

with a median age at baseline of 69 years old. At baseline, only 6% were current smokers, but a 
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majority of the subjects were former smokers. Compared to subjects having a fewer number of 

visits, participants with more visits seem healthier (e.g., more likely to be non-diabetics or a 

never smoker, to take no medication, at the first medical visit). Characteristics of the outcomes at 

baseline and of the weather and air pollution during the study period are presented in Table 2 and 

Table 3, respectively. The estimates of interquartile range used as exposure increments in this 

analysis can be found in Table 3. While less than 2% of observations were missing for PM2.5 

black carbon and PM2.5 mass, more than half of the observations were missing for particle 

number due to a delayed start of measurement. 

Our results showed that the associations between air pollution and blood pressure, heart 

rate variability, repolarization abnormality, lipids, and inflammation were generally not constant 

across quantiles. Figure 1 suggests increased blood pressure levels (fairly heterogeneous for 

systolic blood pressure and fairly homogeneous for diastolic blood pressure) for all individuals in 

response to extended concentrations of particle number, black carbon, and PM2.5 mass. For 

instance, while among participants with systolic blood pressure exceeding 155 mmHg (i.e., 90th 

percentile), an interquartile range increase in PM2.5 black carbon exposure was significantly 

associated with an increase of 7.2 mmHg (95%CI: 5.5; 8.8) in systolic blood pressure, among 

individuals with systolic blood pressure around 110 mmHg (i.e., 10th percentile), an interquartile 

range increase in PM2.5 black carbon exposure was significantly associated with an increase of 

3.5 mmHg (95%CI: 2.2; 4.7) in systolic blood pressure. While the positive association between 

particle number and systolic blood pressure was stronger in the lower quantiles of that outcome’s 

distribution (e.g., 10th percentile estimate=4.9, 95%CI: 1.4; 8.6), the same association with PM2.5 

black carbon and PM2.5 mass was stronger in the upper quantiles (e.g., 90th percentile 

estimate=3.6, 95%CI: 1.6; 5.7).  
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Figure 2 indicates that among individuals with SDNN exceeding 0.08 s (i.e., 80th 

percentile), an interquartile range increase in PM2.5 mass exposure was significantly related to a 

decrease of 0.016 s (95%CI: -0.030; -0.001) or more in SDNN, and that among particpants with 

SDNN around 0.02 s (i.e., 20th percentile), PM2.5 mass exposure was not significantly associated 

with SDNN (20th percentile estimate=-0.0002, 95%CI: -0.003; 0.003). We observed significant 

positive associations of PM2.5 black carbon and PM2.5 mass with corrected QT interval mostly in 

individuals with corrected QT interval less than 380 ms (i.e., between the 30th and 40th 

percentiles). While among individuals with corrected QT lower than 360 ms (i.e., 10th 

percentile), an interquartile range increase in PM2.5 black carbon exposure was significantly 

related to an increase of 48 ms (95%CI: 21; 75) in corrected QT, PM2.5 black carbon exposure 

was not significantly associated with corrected QT among participants with corrected QT 

exceeding 420 ms (90th percentile estimate=-3, 95%CI: -15; 9). We did not observe any obvious 

heterogeneity in the exposure-outcome association across the distributions of heart rate and 

LH/HF ratio, except for the positive association between PM2.5 black carbon and LF/HF ratio 

(that was observed among individuals above the median (median≈-0.1) of the LF/HF ratio 

distribution). 

Figure 3 also suggests some heterogeneity in the air pollution-lipid association across 

deciles of the lipid distributions. For example, among participants with LDL cholesterol below 

80 mg/dL (i.e., 10th percentile), an interquartile range increase in PM2.5 black carbon exposure 

was associated with a 7 mg/dL (95%CI: 5; 10) increase in LDL cholesterol while among subjects 

with LDL cholesterol levels close to 160 mg/dL (i.e., 90th percentile), the same exposure was 

related to a 16 mg/dL (95%CI: 13; 20) increase in LDL cholesterol. Moreover, while the 

negative PM2.5 black carbon-HDL cholesterol association was stronger for individuals with HDL 
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cholesterol levels above 50 mg/dL (i.e., between the 60th and 70th percentiles), the associations 

between all air pollutants of interest in this study were stronger at the highest percentiles of the 

triglycerides distribution. 

Figure 4 exhibits fairly homogenous air pollution-inflammation associations (i.e., no 

meaningful monotone patterns across quantiles of fibrinogen and VCAM-1). However, for 

participants with C-reactive levels exceeding 2 mg/L (i.e., 60th percentile), an interquartile range 

increase in particle number was associated with a 0.4 mg/L (95%CI: 0.1; 0.7) increase or more in 

C-reactive protein, while we observed null associations for the 10th to 60th quantiles. In addition, 

while an interquartile range increase in PM2.5 mass was associated with a 12 ng/mL (95%CI: 6; 

18) increase in the 10th percentile of the ICAM-1 distribution (corresponding to 200 ng/mL), it 

was associated with a 23 ng/mL (95%CI: 11; 34) increase in the 90th percentile (corresponding to 

375 ng/mL). 

We note that the quantile regression coefficients tend to have greater estimated variance 

when estimated at the tails of the distributions, which may be due to a fewer number of 

observations at the tails (compared to the center) used in the quantile regression. 

Sensitivity analyses 

As secondary analyses, we assessed the associations between baseline level of risk 

factors and individual effects estimates (obtained by mixed-effects models). These analyses 

included the subset of men with more than one medical visits (i.e., 77% of the study population).  

Similarly as our results in Figure 1 (i.e., increasing black carbon-systolic blood pressure 

associations and decreasing particle number-systolic blood pressure associations), the positive 

effects of PM2.5 black carbon (and PM2.5 mass) on systolic blood pressure appeared to be 

stronger among participants with higher systolic blood pressure measured at baseline, while the 
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particle number-systolic blood pressure association appears to be stronger for participants with 

lower systolic blood pressure at baseline (Supplemental material, Figure S1).  

The mixed-effects model did not converge when estimating the association between heart 

rate and particle number (due to missing data for particle number), but results suggest stronger 

negative effects of PM2.5 black carbon and PM2.5 mass among participants with lower baseline 

heart rates (Supplemental material, Figure S2), in contrast with quantile regression estimates that 

were relatively flat over the heart rate distribution (Figure 2). Consistent with the quantile 

regression results, stronger negative associations were estimated for all of the air pollutants 

among participants with higher baseline SDNN. Both analyses also suggested stronger positive 

associations of PM2.5 black carbon and PM2.5 mass with corrected QT intervals among those with 

lower baseline corrected QT interval. However, while the quantile regression suggested no 

association with particle number other than a negative association among those with the lowest 

corrected QT interval (Figure 2), the estimates from the mixed-effects model approach suggested 

stronger positive associations as baseline QT interval increased (Supplemental material, Figure 

S2). While the air pollution-LH/HF ratio association was fairly homogenous across quantiles 

(Figure 2), the mixed-effects model approach suggested stronger positive associations between 

all pollutants and the log LH/HF ratio among those with higher baseline log LH/HF ratio. 

Stronger positive associations with LDL cholesterol and triglycerides were estimated for 

all examined air pollutants among individuals with higher baseline levels (Supplemental 

material, Figure S3), consistent with the quantile regression results (Figure 3). However, the 

mixed-effects models suggested positive associations of particle number with HDL that were 

stronger as baseline HDL increased, whereas quantile regression did not suggest a consistent 

pattern of associations between particle number and HDL over the HDL distribution. In addition, 
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while quantile regression suggested that the negative association between PM2.5 black carbon and 

HDL was stronger among those with higher HDL levels (Figure 3), estimates from the mixed-

effects model did not suggest a consistent pattern of associations according to baseline HDL. 

While air pollution-fibrinogen associations from quantile regressions did not show a 

consistent increases or decreases along the fibrinogen distribution (Figure 4), the mixed-effects 

model estimates suggested stronger associations with particle number and PM2.5 black carbon 

among participants with higher baseline fibrinogen (Supplemental Figure S4). In contrast, 

mixed-effects model estimates suggested that associations between fibrinogen and PM2.5 mass 

were strongest among those with the lowest baseline fibrinogen levels. The mixed-effects model 

did not suggest variation in associations between particle number and C-reactive protein 

according to baseline levels (Supplemental Material, Figure S4), in contrast with a pattern of 

stronger associations among those with higher C-reactive protein concentrations based on 

quantile regression (Figure 4). The mixed-effects models also suggested stronger associations 

between VCAM-1 and all three air pollutants (especially PM2.5 black carbon and PM2.5 mass) in 

contrast with relatively consistent associations across the distribution based on quantile 

regression (though PM2.5 black carbon did show positive associations at the low end of the 

distribution only). Associations with ICAM-1 were stronger for higher baseline exposures based 

on both approaches, though the patterns appear much more pronounced for mixed-effects 

estimates. 

DISCUSSION 

Our findings add further support for effects of ambient particulate air pollution on known 

cardiovascular risk factors (i.e., systolic blood pressure, heart rate variability, repolarization 

abnormality, lipids, and inflammation). For those outcomes, we found evidence that the air 
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pollution association is not merely a shift in the distribution of the biomarkers in an adverse 

direction, but a change in the distribution across the population. These associations are missed 

when standard regression techniques are applied. In particular, associations were often stronger 

among individuals whose biomarker levels already suggested higher risks. For example, the 

association between PM2.5 black carbon and LDL cholesterol was strongest in men with LDL 

concentrations above 140 mg/dL, and the association between PM2.5 black carbon and systolic 

blood pressure was strongest in men with systolic blood pressure exceeding 140 mmHg. 

Findings were not always consistent between the two approaches (i.e., differential 

quantile regression coefficients along the outcome distribution and differential individual 

associations by baseline outcome level using mixed-effects models with subject-specific random 

intercepts and slopes). For example, the subject-specific associations for PM2.5 black carbon and 

PM2.5 mass were higher in participants with higher systolic blood pressure measured at baseline. 

However, this approach cannot be used when there are no repeated measures, whereas quantile 

regression can. That is, because random slope models assume a normal distribution of the 

subject-specific slopes about the population mean. In contrast, some of the findings from the 

quantile models suggest that the distribution is quite skewed and thus the normality assumption 

does not hold (e.g., the association between particle number and C-reactive protein appear to not 

be centered around the population mean, but have a long upper tail, Figure 4). This is because the 

response is null except for participants at one extreme of the distribution of baseline outcomes. 

The violation of the normality assumption could explain some of the inconsistencies between the 

two approaches. 
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Previous evidence on shifts in changes of risk factor distributions 

A previous study has reported a shift in the heart rate distribution due an air pollution 

episode in 1985 in Central Europe (Peters et al. 2000). The authors found no obvious 

distributional distortions on heart rate when comparing air pollution episode to non-episode, 

which is consistent with our analysis that found no evidence against homogeneous associations 

along the heart rate distribution. Our quantile regression results are also directionally fairly 

consistent with mean regression analyses investigating the same cardiovascular outcomes either 

in the same cohort (Mordukhovich et al. 2009; Ren et al. 2010; Zeka et al. 2006), or in previous 

studies (Hampel et al. 2010; Hoffmann et al. 2012; Peters et al. 1999; Ruckerl et al. 2007), but 

capture additional shifts in the distribution. For instance, in the same Normative Aging Study 

cohort, exposure to PM2.5 black carbon (7-day) was associated with increased systolic and 

diastolic blood pressure (Mordukhovich et al. 2009). While this previous study did not find any 

association between PM2.5 mass and mean blood pressure, our quantile regression analysis 

(including more recent data) revealed associations between PM2.5 mass and increased systolic 

and diastolic blood pressure along the entire distributions. An important feature of quantile 

regression is that the effect estimate is expressed in mmHg and thus can be directly clinically 

interpretable unlike studies analyzing log-transformed outcome data. Moreover, an experimental 

study examining healthy and asthmatic volunteers also reported a decrease in SDNN associated 

with controlled exposures to ambient coarse particles (Gong et al. 2004). Previous studies have 

identified heterogeneity in the association between air pollution and cardiovascular outcomes 

based on risk factors such obesity and diabetic status (Baja et al. 2010), high viscosity (Peters et 

al. 2000), psychological factors (Madrigano et al. 2012), temperature (Ren et al. 2011), genetic 

variants (Ljungman et al. 2009; Park et al. 2006; Ren et al. 2010; Wilker et al. 2010), and 

epigenetic changes (Bind et al. 2012). In this study, we observed disparities based on outcome 
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levels, which is a useful summary of multiple vulnerability cardiovascular risk factors (for this 

population, i.e., elderly white men). 

Variation among air pollution exposures 

While PM2.5 black carbon was positively correlated with PM2.5 mass (Spearman 

correlation = 0.77), particle number was not correlated with PM2.5 black carbon or PM2.5 mass 

(Spearman correlation = -0.07 and Spearman correlation = 0.07, respectively). 

Quantile regression allowed us to identify evidence of effects on the overall shape of the 

outcome distribution, rather than shifts in the population mean only. For example, particle 

number concentration was positively associated with systolic blood pressure among men with 

systolic blood pressure in the lower percentiles of the distribution, but not among men with 

higher systolic blood pressure. This suggests that exposure to higher particle number 

concentrations will shift the left tail of the distribution of systolic blood pressure toward the 

mean, without altering systolic blood pressure of participants in the upper tail of the distribution. 

In contrast, the association between PM2.5 black carbon and systolic blood pressure was positive 

for all men, but strongest among men with higher systolic blood pressure, suggesting a larger 

shift in the upper tail than the lower tail of the systolic blood pressure distribution. While both 

are particles from traffic, particle number concentration represents the concentration of ultrafine 

and fine particles between 0.007 and 0.300 µm, including ultrafine particles that are freshly 

generated, whereas PM2.5 black carbon particles are a mix of freshly generated ultrafine particles 

(aerodynamic particle diameter size da<0.1µm) and aged traffic particles (mostly in the 

accumulation mode, 0.1<da<1.0µm) (Kang et al. 2010). Different types of particles may 

therefore affect differently certain parts of the systolic blood pressure distribution. This finding 

provides evidence that different biological mechanisms may be involved in the adverse responses 
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induced by fine and ultrafine particles. Finally, we did not observe any monotonically increasing 

or decreasing pattern in the associations between traffic-related particles and diastolic blood 

pressure across the distribution of this outcome. Generally, associations between the three 

particle metrics investigated in this study and diastolic blood pressure were fairly homogenous 

across the diastolic blood pressure distribution. 

This quantile analysis reveals some association between PM2.5 mass and the upper tail of 

the SDNN distribution but no association between PM2.5 mass and the lower tail of the 

distribution. In addition, we observed positive associations between PM2.5 mass and the higher 

percentiles of the log(LF/HF) ratio distribution, indicating that the mean effect was driven by the 

highest percentiles of the distribution. For PM2.5 mass, SDNN was reduced and the log(LF/HF) 

ratio was increased at the higher end of their distribution. This result suggests a health effect of 

PM2.5 mass involving a decrease in high frequencies, and thus point towards a potential impact 

on the parasympathetic pathway. For corrected QT interval, our results suggest that participants 

with low corrected QT interval were susceptible to increases in this outcome due to exposure of 

PM2.5 black carbon and PM2.5 mass. We also observed negative associations between particle 

number and the lowest quantiles of the corrected QT interval, which was opposite to that found 

for PM2.5 mass. 

Our findings for lipids suggest that for high traffic-related exposures the right-tail of the 

LDL cholesterol and triglycerides distributions became longer with increases in exposure, again 

indicating that participants already at higher risk were impacted more. For HDL cholesterol, 

results from both statistical approaches (i.e., quantile regression and mixed-effects model) were 

not consistent. The main inconsistency was found with particle number and HDL cholesterol. 

While the quantile regression approach suggested homogenous particle number-HDL cholesterol 
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associations along the HDL cholesterol distribution, the mixed-effects model approach indicated 

heterogeneity in the individual responses according to baseline HDL cholesterol level.  

Particle number was associated with C-reactive protein only at the highest percentiles of 

the distribution; suggesting an effect in participants who already had elevated C-reactive protein 

levels. That is, results suggest that the right tail of the C-reactive protein distribution is extended 

by exposure to particle number concentration, similarly as what was observed for IFN-γ DNA 

methylation in the same cohort (Bind et al. 2015). High levels of C-reactive protein have been 

related to cardiovascular disease (Ridker et al. 2010). Hence, this may suggest that individuals 

with higher risk of inflammation and cardiovascular disease may be the ones primarily being 

affected by exposure to particle number concentration. However, this result was not confirmed 

by the secondary analysis, which highlighted few participants at the extreme tail of the C-

reactive protein distribution. For participants who already had high levels of ICAM-1, the effect 

of PM2.5 mass exposures on ICAM-1 was almost doubled (compared to individuals with lower 

ICAM-1 levels). This result demonstrates that in the presence of effect heterogeneity across the 

distribution of an outcome it is not adequate to report the mean estimate because it summarizes 

these effect estimate that differ across the range of the distribution, including those with 

opposing signs. 

Strengths and limitations 

Unlike mean regression analysis, the statistical approach using quantile regression is 

distribution free; thus, no transformation of the outcome is necessary. Estimates from quantile 

regression can therefore be directly expressed in the unit of the outcome of interest and provide 

clinically interpretable health impact. This method may capture associations that occur only at 

the tails of the distribution and might be otherwise missed. Another advantage of the quantile 
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regression is that it captures distributional distortion. Finally, using both methods (quantile 

regression and mixed-effects model), we could sometimes demonstrate fairly similar 

heterogeneous effects of traffic-related air pollutants, but sometimes obtain inconsistent results 

(possibly due to the difference in methods and their associated assumptions). 

One limitation of our study is the use of a single air pollution monitoring site. Since the 

study participants lived in the Greater Boston area with a median distance of about 20 km, we 

assumed that the ambient air pollutant concentrations measured at the central monitoring site 

could serve as surrogates of their exposures. We also assumed the measurement error of the air 

pollutants concentrations to be primarily Berkson. A previous study supports this assumption of 

Berkson measurement error for air pollution exposures assessed at a central site (Zeger et al. 

2000). Two studies support the use of exposure measured at a central monitoring site (e.g., for 

PM2.5 and PM10) in epidemiological studies (Alexeeff et al. 2015; Janssen et al. 1998). Whether 

these findings are generalizable to the present study would partly depend on where the studies 

were conducted. However, correction for measurement error may yield less biased estimates for 

spatially heterogeneous air pollutants, such as black carbon and particle number. The proportion 

of missing of particle number is also relatively high, mostly due to the fact that measurement 

started later than for the other air pollutants. The results for this exposure, therefore, relates to a 

different study period. This study period likely had lower levels over the full study period, as 

pollution levels have been declining steadily in the New England region. Therefore, ultimately 

this loss of data could be expected to reduce our power to detect associations with this exposure, 

but note we still detect associations with particle number.  

We focused on intermediate-term associations with traffic-related air pollution (i.e., using 

28-day moving average), and it could be the case that other exposure time windows are more 
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relevant to these outcomes. In addition, this longitudinal design following an elderly cohort is 

subject to loss of follow-up. Therefore, the studied population constitutes a healthier subset of 

the population for later visits. 

CONCLUSIONS 

Our results suggest that air pollution distorts the distribution of established cardiovascular 

risk factors, and provides evidence that, in many cases, effects may be more pronounced in men 

who are already at increased risk of cardiovascular disease. More thorough preventive measures 

are required for individuals exposed chronically to high levels of particulate matter air pollution. 

Future studies could investigate whether these findings generalize to younger or female 

population and to different ethnicities. Moreover, quantile regression may be used to obtain more 

accurate risk assessments and should be considered in environmental epidemiology 

investigations. 
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Table 1: Demographic characteristics of the Normative Aging Study participants by 
number of visits 

 Age 
(in years) 

Cumulative 
smoking 

(pack-years*) 

Current 
statin  
user 

Obesity
** 

Medica-
tion*** 

Diabetic
**** Smoking status 

Visits Median Median % % % % 
Never 

% 
Former 

% 
Current 

% 

Baseline 
(n=1,112) 

69 14 18 25 47 10 28 66 6 

Among participants having one visit (n=259)  

Visit 1 72 20 18 22 51 14 25 65 10 

Among participants having two visit (n=220) 

Visit 1 72 13 22 25 53 10 28 66 6 
Visit 2 76 13 37 29 64 15 28 67 5 

Among participants having three visits (n=147) 
 

Visit 1 70 15 20 25 54 14 20 75 5 
Visit 2 73 15 34 28 66 20 20 76 4 
Visit 3 77 15 46 27 73 23 20 75 5 

Among participants having four visits (n=136) 
 

Visit 1 70 11 17 28 46 10 32 60 8 
Visit 2 73 11 32 29 60 13 32 62 6 
Visit 3 77 11 47 29 68 16 31 65 4 
Visit 4 80 11 57 24 80 20 30 68 2 

Among participants having five visits (n=178) 

Visit 1 66 11 12 29 40 4 29 67 4 
Visit 2 70 11 31 30 54 11 29 67 4 
Visit 3 73 11 52 29 65 13 29 67 4 
Visit 4 76 11 63 29 70 20 29 68 3 
Visit 5 80 11 70 27 78 21 28 69 3 

Among participants having six visits (n=163) 

Visit 1 64 10 16 23 37 3 32 64 4 
Visit 2 67 10 31 29 42 6 32 65 3 
Visit 3 70 10 42 23 53 8 32 66 2 
Visit 4 73 10 55 24 62 12 32 66 2 

Visit 5 76 10 63 23 69 15 32 66 2 
Visit 6 80 10 62 21 75 18 32 67 1 

Among participants having seven visits (n=9) 
 

Visit 1 65 0 0 22 33 0 56 44 0 
Visit 2 68 0 11 33 44 0 56 44 0 
Visit 3 70 0 22 22 56 0 56 44 0 
Visit 4 74 0 22 22 56 0 56 44 0 
Visit 5 76 0 44 22 56 11 56 44 0 
Visit 6 78 0 56 22 56 11 56 44 0 
Visit 7 81 0 67 22 56 11 56 44 0 
*pack-year is defined as the number of packs of cigarettes smoked per day times the number of years the person has smoked 
**Obesity status was defined as body mass index greater than 30kg/m2 
***Current use of antihypertensive medications (angiotensin-converting-enzyme inhibitors, β blockers, calcium channel blockers, angiotensin 
receptor blockers and diuretics) 
****Diabetic status was diagnosed by a physician  



Environ Health Perspect DOI: 10.1289/ehp.1510044 
Advance Publication: Not Copyedited 
 

27 

Table 2: Baseline statistics of the cardiovascular-related 
outcomes of the 1,112 NAS participants 

Outcomes Mean 5th 
percentile Median 95th percentile 

Blood pressure     
Systolic 
(mmHg) 

137 111 135 170 

Diastolic 
(mmHg) 

82 68 82 98 

Heart rate variability and repolarization abnormality     
Heart rate 
(beat/min) 

65 47 65 85 

SDNNa (s) 0.05 0.01 0.03 0.20 

log10 (LF/HF) -0.09 -1.06 -0.03 0.56 

Corrected QT 
interval (ms) 

386 313 384 459 

Lipids (measured in serum)     
HDL (mg/dL) 43.6 28 42 65 

LDL (mg/dL) 145 86 144 205 

Triglycerides 
(mg/dL) 

152 61 129 308 

Inflammation (measured in plasma)    
Fibrinogen 
(mg/dL) 

369 249 357 554 

CRP (mg/L) 3.8 0.4 2.3 24.5 

ICAM-1 
(ng/mL) 

291 156 270 533 

VCAM-1 
(ng/mL) 

1015 606 979 1821 

a Standard deviation of all NN intervals  
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Table 3: Distributions of the weather and air pollution variables (1995-2013) 

Variable nobservations
* nmissing

** IQR Percentiles 
5th 50th 95th 

Temperature (ºC) 
24h-mean (day of the 
study visit) 
 

 
3606 

 
9 

 
14ºC 

 
-3ºC 

 
13ºC 

 
25ºC 

Relative humidity (%) 
24h-mean (day of the 
study visit) 
 

 
3604 

 
11 

 
25% 

 
41% 

 
68% 

 
92% 

Particle number 
(number per cm3) 
28-day mean (prior visit) 
 

 
1,770 

 
1845*** 

 
13845 

 
8651 

 
17874 

 
41629 

Black carbon (µg/m3) 
28-day mean (prior visit) 
 

 
3,563 

 
52 

 
0.43 

 
0.48 

 
0.84 

 

 
1.69 

PM2.5 (µg/m3) 
28-day mean (prior visit) 

 
3,606 

 
9 

 
4.0 

 
6.2 

 
10.3 

 
16.4 

* Number of men=1,112 and number of observations (study visits)= 3,615 
** Number of study visits with missing information 
*** Measurements of particle number concentrations started in October 1999 
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FIGURE LEGENDS 

Figure 1: Associations between traffic-related air pollutants and quantiles of the distributions of 

systolic blood pressure and diastolic blood pressure (adjusted for temperature, relative humidity, 

sine and cosine terms of the days of the season, age, physician-diagnosed diabetes, body mass 

index, smoking status, cumulative cigarette pack-years, current use of statin, and current use of 

antihypertensive medications). The y-axes represent the outcome difference (in the outcome unit) 

for an interquartile range increase in exposure. IQR for particle number=13,845 number per cm3, 

IQR for PM2.5 black carbon=0.43 µg/m3, and IQR for PM2.5 mass=4.0 µg/m3. The numbers next 

to each point estimate indicate the deciles. Error bars represent 95% Bootstrap confidence 

intervals. 

Figure 2: Associations between traffic-related air pollutants and quantiles of the distributions of 

heart rate, SDNN, log(LF/HF), and corrected QT interval (adjusted for temperature, relative 

humidity, sine and cosine terms of the days of the season, age, physician-diagnosed diabetes, 

body mass index, smoking status, cumulative cigarette pack-years, current use of statin, and 

current use of antihypertensive medications). For SDNN, we also controlled for heart rate 

because standard deviation is likely to be larger as heart rate increases. The y-axes represent the 

outcome difference (in the outcome unit) for an interquartile range increase in exposure. IQR for 

particle number=13,845 number per cm3, IQR for PM2.5 black carbon=0.43 µg/m3, and IQR for 

PM2.5 mass=4.0 µg/m3. The numbers next to each point estimate indicate the deciles. Error bars 

represent 95% Bootstrap confidence intervals. 

Figure 3: Associations between traffic-related air pollutants and quantiles of the distributions of 

HDL cholesterol, LDL cholesterol, and triglycerides (adjusted for temperature, relative humidity, 

sine and cosine terms of the days of the season, age, physician-diagnosed diabetes, body mass 

index, smoking status, cumulative cigarette pack-years, and current use of statin). The y-axes 

represent the outcome difference (in the outcome unit) for an interquartile range increase in 

exposure. IQR for particle number=13,845 number per cm3, IQR for PM2.5 black carbon=0.43 

µg/m3, and IQR for PM2.5 mass=4.0 µg/m3. The numbers next to each point estimate indicate the 

deciles. Error bars represent 95% Bootstrap confidence intervals. 
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Figure 4: Associations between traffic-related air pollutants and quantiles of the distributions of 

fibrinogen, C-reactive protein, ICAM-1, and VCAM-1 (adjusted for temperature, relative 

humidity, sine and cosine terms of the days of the season, age, physician-diagnosed diabetes, 

body mass index, smoking status, cumulative cigarette pack-years, and current use of statin). The 

y-axes represent the outcome difference (in the outcome unit) for an interquartile range increase 

in exposure. IQR for particle number=13,845 number per cm3, IQR for PM2.5 black carbon=0.43 

µg/m3, and IQR for PM2.5 mass=4.0 µg/m3. The numbers next to each point estimate indicate the 

deciles. Error bars represent 95% Bootstrap confidence intervals.
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Figure 1. 
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Figure 2. 
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Figure 4. 

 


