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Track structures of high-LET particles can be simulated by various linear approaches. The 
distribution of distances seems to be an important parameter in understanding the type of inter- 
actions which occur and the biological effects which these excitations and ionizations will create; 
therefore, the distance distributions of these simulated track structures were calculated. Three 
presentations show that their exact appearance depends on the scaling parameter: the number 
of classes. In one approach the theoretical density of the distances was calculated by the tech- 
niques of convolution and by forming mixed distributions which confirm the findings of the 
simulation. ? 1988 Academic Press, Inc. 

1. INTRODUCTION 

If radiation interacts with biological matter, excitations and/or ionizations are 
caused in molecules depending on the nature and energy of the radiation field and 
the specificity of the target. 

Tracing the sites of these events in space yields a characteristic pattern-the so- 
called "track structure"-of the interactions. An important variable of this complex 
pattern is the distribution of distances of these events, which should allow one to 
draw conclusions about the types of reaction as well as the energy depositions which 
have occurred. As a first approximation, the track structures of a particles or high- 
LET particles can be dealt with as rectilinear tracks in which the only variance is 
from the spatial sequence of depositions (ionizations) along the axis (energy strag- 
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Federal Republic of Germany. 
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FIG. 1. n + 1 equidistant points along the line L. 

gling). Therefore, we restricted our Monte Carlo simulations and calculations to a 
one-dimensional space (1, 2). 

2. LINEAR SIMULATION OF FAST ION TRACK STRUCTURES AND DETERMINATION 
OF THE DISTRIBUTION OF THE DISTANCES 

2.1. Frequency Distribution of Equidistant Points 

Suppose that n + 1 points equally spaced X apart make up a distance L so that Yi+l 
- Yi = X = constant for all i = 0,1,..., n - 1 (Fig. 1). The total number of distances, 
dij, represented by these points is n(n + 1)/2, where 

dij=Y -y1; i,j=O, 1,...,n (i>j). 

Minimum distance: yi+i - yi = X. 
Maximum distance: yn - yo = nX = L. 

Taking the minimum distance as the bin width we can classify the distances dij into 
n intervals J, = ](v - 1)X, vX] for v = 1, ..., n as shown in Fig. 2. Figure 2 shows a 
linear decline of the frequency with increasing distance. The behavior of randomly 
spaced distances is treated in the following sections. 

2.2. Frequency Distribution Produced by Randomly Spaced Points 

2.2.1. Frequency distribution with a logarithmic transformation (3). Along an axis, 
n + 1 points are distributed at increments Ayi with expected value X (Fig. 3), 
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FIG. 2. Histogram of the distance distribution from a group of equidistant points. 
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FIG. 3. n + 1 nonequidistant points along an axis of length L. 

where i = 0, ,..., n- 1, 

with the coordinates of the n + 1 points generated by the following algorithm which 
we used for our first Monte Carlo simulations: 

Yo = 0; 

Yi+I = Yi + (-X).ln(xi); 

X = constant (expected value of the increments Ayi); 

O < x < 1 (uniformly distributed random numbers) with i = 0, 1,..., n - 1. 

From this geometry, one can calculate n(n + 1)/2 different distances: 

di = yi-yj; ij = 0, ,..., (i>j). 

Maximum value for dijmax: dno = Yn - YO = Yn 
The expected value for the maximum value: E(dno) = n * X = L. 

Figure 4 shows distance distributions for two realizations differing in the number of 
points. It shows the relationship between the distribution of the distances and the 
percentile frequencies for two different X with logarithmic transformation. In its his- 
tograms the number of classes is arbitrarily set to 100. 
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FIG. 4. Distance distributions for n = 1000 and 10,000 points with corresponding X values of 1 and 0.1 
nm, respectively. 

Ayi = Yi+i - Yi, 
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FIG. 5. Frequency distribution of the distances for four different transformations with n = 2000 points 
and 25 classes (bin width = 40 nm, X = 0.5 nm). 

With a fixed number of classes it is evident that the distribution of the distances is 
triangular in form, and increasing the number of points results in a decreasing of the 
relative statistical variations. 

2.2.2. Frequency distributions with other transformations. To investigate the effect 
of the specificity of the transformation on the increments Ayi we also used for our 
simulations three other functions: arcsin(x), exp(-x), andf(xl, x2) = 1 - xl + x2, 
where x, xl, and x2 are uniformly distributed random numbers in the open interval 
]0, 1[. For every transformation, one realization was performed and plotted for n 
= 2000 points and 25, 100, and 5000 classes. Apart from statistical variations the 
relationship between frequency and distance can be called linear for all four graphs. 
To get a sufficient enlargement of the graphs in Fig. 5 it is necessary to take a smaller 
bin width (more classes). 

Inspection of Fig. 6 reveals that apart from statistical variations only the logarith- 
mic transformation shows a linear behavior of the distribution for distances in the 
range 0 < d < 2X. The other three distributions show an increase in the same region. 

Theoretical investigations will have to be made to determine the exact relationship 
between frequency and distance with the logarithmic transformation. 

2.3. Theoretical Derivation of the Distribution of Distances for the Logarithmical 
Transformation 

The distribution gained by Monte Carlo simulation is now derived for an arbitrary 
finite n. Referring again to Fig. 3, where yo represents the origin and yi the position 
of the ith point from it, the increments Ayi of neighboring points are distributed 
according to: 

Ayi = -X. ln(xi;) i = 1, 2, ...,n, (1) 
with xi being uniformly distributed random numbers in the range 
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FIG. 6. Enlargement of the four distance distributions with n = 2000 points and 5000 classes (bin width 
= 0.2 nm; X = 0.5 nm). 

O<xi< 1. 

We are looking for the distribution of the distances between the n + 1 points. 
To derive the density function we set (a) n = 1. We want to determine the distribu- 

tion of the distances between two points. For the sake of applying the rule of transfor- 
mation for densities unmodified (4) we transform 

(1) - (1') Y= X.ln(X). 

X and Yare random variables. Therefore 

Y= h(X). 

Let density of the random variable X bef(x) with (Fig. 7): 

f(x) I 
0 

forO < x < 1 

else. 

The rule of transformation for densities reads 

f(x) 

x 

FIG. 7. Density of the random variable X. 
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f(h-'(y))- (h-(y)) for a < y < b 

0 else, 

where g(y) is the density of the random variable Yand the original set of h is confined 
to the interval ]0, 1[. 

h:]0, 1[o-]-oo,0[ 

x -- X ln(x) 
Hence 

a = lim h(x) = -oo 

and 
b = lim h(x) = 0. 

X-- 1 

Applying the rule of transformation with 
(i) 

y = h(x) = X.ln(x), 
(ii) the inverse 

h-(y) = expY), 

and (iii) its derivative 
dh- (y) = - .exp 

yields as density of the distance distribution for one point 

gl(y) = f(exp()). ({) exp() for -oo < y < 0 

gy - = exp(-) for y > 0, 
gi(y) = X \ / '(3) 

0 else. 

This is the density function for the distances of next neighbor points. 
(b) n = 2. We want to determine the function g2(z), the distribution of all distances 

between the given points. These comprise the two distances of next neighbor points 
Y\ = (Y\ - yo) and Y2 = (Y2 - Yi) and one distance of the next but one points (Y2 
- Yo). With Z we denote the sum of the single distances 

Z= Y1 + Y2. (4) 

Y1 and Y2 are identically distributed random variables with the densities 

-*exp - y y > 0 
gl(Yl) =g(y2) = g(Y) = ex \ > 0 

0 else. 

The density g2(z) of the random variable Z can be calculated by a convolution (4): 
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g2(z) = gl(y)' gl(z - y)dy 
-00 

f .exp( A) ..exp(Z-Y)dy 

92(z)4 .()exp (- A)(5) 

The density of the distances results from the weighted sum of the single densities 
(density of a mixed distribution) 

f(x) = al .fl(x) + a2f2(x), (6) 

wherefi(x),f2(x) are the densities and a1, a2 the respective weights 

2 1 
a1+a2= 1; a1=, a2 - , 

f(Y) = 2 
- gl(Y) + ~. g2(y) 

f(y) = 3'- ? (2 + A) ? exp- A) 

(c) n = 3. We obtain the density g3(z) for the distribution of the sum of the distances 
from three points analogously to (b) where 

g3(z) = gl(y) g2(z- y)dy 
-00 

= A3*. (z - y). exp(- z dy 

g3(z) = 1- 
2 Xz\X \Xz 

(d) Generalization for an arbitrary natural n. Now we can generalize to the density 
of the distribution of the distances of the nth point from the origin. 

The proposition 

gn(Z) = 1 * 1' * .exp -- (7) 

is proved by complete induction. According to the proposition, it holds that 

gn(Z) = gn-l(Y)' gl(Z- y)dy 

gn(z) = 
(n-2)! A (y)n 2exp(_ ). (i-) . exp(Zj)dy Jo(n-2 2) X X\ \ \/\\ -\ 

443 



SCHAFFER, SCHERB, AND WELZL 

1 n (z (A-1 z 
gn(Z) = (n 1)!( '.exp(-). 

The general forms for the mixed distribution of n points are, n = 2, 

f2(z) 
= . gl(z) + I. g2(z), 

~~~~~~~n=3, n = 3, 
3 2 1 

f3(z) = -. gl(z) + -. g2(z) + -. g3(z) 

and n arbitrary, 

l' (n-i) 
fn(Z) = 

n(n + 1)/2 
' gi+(z) 

fn(Z)=(+). n(Z )'. i () ' .exp-) . (8) 

This formula describes the exact distribution of the density for an arbitrary finite n. 

2.4. Estimating the Limit of the Density Function for Infinite n 

Considering the case n --* oo and X -- 0 with nX = L = constant, we put X = L/n 
infn(z) which yields 

2 n- (n-i) 1 z'in' 

f (z)= 
L =O(n ) L 

exp(z. L 

n n-lzi'ni n z n-li.zi-l. i- 

2 n+l- = i!L' n+ 1 L = i!Li-' 
fn(z)= --e 

exp (z -L 

Describing the exponential function by a power series we get 
n-1 t/i nz2z n2 (Zi 

n 2 = i! L L i= i! L 

u i rn+ t L tel if\ 
i=o t L 

Thus it remains to be discussed the limiting behavior of the expression 
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1 and n = 1, 5, 30 as well as the limiting case n -> oo. The distance is 

T n z)' expnzxp ) n- z 

._n i(z) -nz 
exp 

i=0 

(9) 

for n -> oo when k = n - 1 and k = n- 2. 
It can be shown (e.g., by Laplace transformation) that limn,OO Rk(z/L) = 1 for z 

< L and limn- ooRk(z/L) = 0 for z > L. From this, we obtain the following function 
for the limiting distribution (Fig. 8): 

(10) 

This finding is in accordance with what can be expected from Crofton's theorem 
[see (5), pp. 24-26]. Our model differs slightly from Crofton's insofar as we do not 
restrict the randomly spaced points on a fixed interval. In our case the maximum 
distance is in fact unrestricted; only its expectation has the fixed value L. 

3. RESULTS AND CONCLUSIONS 

Track structures of a particles and high-LET particles have been simulated linearly 
using various transformations of a uniformly distributed random variable. For large 
but finite n, all the resulting frequency distributions of distances were triangular in 
shape when represented in a sufficiently ('coarse') way, i.e., the bin width of the histo- 
gram is larger than the expected value of the distances of next neighbor points. But 
when the frequency distribution from the same track structure is pictured in a rather 
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('fine') way, i.e., when the expected value of the distances of next neighbor points is 
greater than the bin width, differences show up in the region of small distances. 

Deducing mathematicallly the distance distribution of logarithmically transformed 
distances by calculating the density function using the techniques of convoluting den- 
sities and forming mixed distributions leads to a formula that allows one to determine 
the distance distribution for arbitrary finite n. 

By forming the limit of the density function (n -* oo, X - 0, nX = L = constant), we 
get an exact triangular distribution which confirms the results gained by simulation. 

RECEIVED: April 29, 1986; REVISED: March 26, 1987 
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