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Abstract

The CREB-CREM transcription factors are the main gene regulatory effectors of the cAMP signaling pathway. The investiga-
tions of this family of transcription factors had a profound impact on the understanding of signaling-induced gene transcrip-
tion. Here we discuss some key aspects of the underlying biology, review transcriptional activation by CREB proteins through
transcription cofactors and present novel insights into the context- and position-specific function of CREB on complex genes.
(Mol Cell Biochem 212: 5–9, 2000)
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Biology

The cAMP-pathway is a widely used signaling process that
senses and amplifies the response of cells to hormones,
growth factors and neurotransmitters. Among the target pro-
teins of protein kinase A are the transcription factors CREB
and CREM. Gene regulatory programs induced by CREB
control different biological processes (for review see [1])
such as T cell development, spermatogenesis, long term
memory but also the regulation of the blood pressure through
angiotensin. The latter is the focus of this issue.

Angiotensins

There is increasing evidence, that the protein CREB is in-
volved in the biology of the renin-angiotensin system (RAS),
which plays an important role in the regulation of the blood
pressure. Expression of the rat angiotensinogen gene is posi-
tively influenced by CREB in a cAMP-dependent manner
[2]. The stimulating effect of CREB depends on a functional
cAMP-responsive element (CRE), located in the 5′-flanking
region of the angiotensinogen gene [3]. The expression of
testis angiotensin converting enzyme depends on a functional

CRE although it does not appear to be responsible for its tes-
tis-specific expression [4]. CREB seems to also function as
an effector of angiotensin II signaling. The stimulatory ef-
fect of angiotensin II depends on a cAMP-responsive element
within the fibronectin promoter [5]. Angiotensin II stimu-
lation leads to moderate induction of the CREB protein in
human mesangial cells. Angiotensin II increases interleukin-
6 expression in a dose-dependent manner, which is mediated
through a cAMP-responsive element in the interleukin-6 pro-
moter [6]. As one other example a cAMP-responsive element
is found in the tyrosine hydroxylase gene promoter [7]. In
this study the CRE proves to be one critical angiotensin II-
responsive element in cultured bone adrenal medullary cells.

Regulation of long term memory

A correlation between memory and cAMP pathways became
first evident in genetic studies. Flies were trained to discrimi-
nate between two different odors, one accompanied with an
electric shock, and the other not associated with a shock.
Chemically mutagenized flies were used to find mutants
which failed to learn the discrimination between the two
odors without being affected in other characteristics like lo-
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comotion or odor detection [8]. Four mutants were found and
the corresponding genes were identified. Remarkably, three
out of four mutants affect molecules that are involved in
cAMP signaling [9]. Long term – in contrast to short term
memory storage depends on transcriptional activity and the
synthesis of new proteins [10]. Studies in Drosophila and
Aplysia demonstrated that CREB is critically involved in this
process [11]. One model implies that CREB-mediated tran-
scription activates a gene expression program that ultimately
leads to the production of new synapses between neurons and
a prolonged stabilization of the synaptic facilitation (see re-
view [12]).

CREB function in the immune system

ATF/CREB proteins are involved in the development and
function of T lymphocytes. The signal transduction pathways
in T cells after T-cell receptor engagement, which lead to
phosphorylation and activation of CREB, include protein
kinases C, RAS, RAF-1, MEK and RSK2 [13]. Functional
binding sites for members of the ATF/CREB family were
identified in the promoters and enhancers of many T-cell
specific genes, including the TCR-α and -β enhancers [14,
15], the CD3δ enhancer [16] and the TCR Vβ promoters [17].
Transgenic models provided strong in vivo evidence for the
importance of CREB/ATF proteins in the immune system.
CREB knock-out mice show defects in the development of
specific T-cell lineages [18]. A dominant negative form of
CREB under the control of the T-cell specific CD2 promoter/
enhancer leads to a profound defect in T cell proliferation
after stimulation of the T-cell receptor pathways [19].

CREB structure

The CREB/ATF family consists of a large number of genes
that include the factors CREB, CREM, ATF-1, ATF-2, ATF-
3 and ATF-4 (also known as CREB2). Various splice variants
of each of these proteins have been identified which activate
or repress transcription (see review [20]). CREB, first iden-
tified [21], is probably one of the most meticulously charac-
terized transcription factors in eukaryotes.

A common feature of all the family members is a basic re-
gion leucine zipper (bZIP) domain (Fig. 1). The leucine zip-
per consists of an α-helical coiled-coil structure, which forms
homo- and heterodimers. A particular ‘dimerization code’
determines which heterodimers are possible [22]. The basic
region is responsible for the sequence-specific DNA-bind-
ing of the CREB transcription factors to cyclic AMP-response
element (CRE). The cognate DNA-recognition motif for the
CREB homodimer is a symmetric palindromic motif with se-
quence 5′-TGACGTCA-3′ [23]. In addition to the core se-

Fig. 1. Structure of ATF-1, CREB and CREM proteins. The P-box, the
glutamine-rich domains (Q1 and Q2) and the DNA binding region (leucine
zipper and basic domain) are indicated. Sequence alignment of the P-boxes
of CREB and CREM. Serine and threonine residues can be phosphorylated
by the indicated kinases as marked by arrows.

quence, flanking bases are important for binding of CREB
[24].

The members of the CREB family of transcription factors
share structural features within their transactivation domains.
Transcriptional activation is mediated through two regions
(compare Fig. 1). One region contains several recognition
motifs for protein kinases. It is therefore called kinase in-
ducible domain (KID) or phosphorylation box (P-box). The
transactivation potential of CREB proteins critically depends
on their phosphorylation status [25, 26]. The other constitu-
tive activation region, contained in CREB and CREM, con-
sists of two glutamine-rich motifs, called Q1 and Q2, which
flank the kinase inducible domain [27]. Mammalian ATF-1
lacks Q1 but contains Q2 [28]. Glutamine-rich regions can
be found in many regulatory, coactivator and basal transcrip-
tion factors and serve as interaction surfaces for other tran-
scription factors. It has been suggested that CREB and CREM
require the P-box and at least one glutamine-rich domain [27,
29] to activate transcription.

Several isoforms of each member of the CREB family of
transcription factors were identified. Glutamine-rich regions
can be removed via alternative splicing, either partially (in
Drosophila CREB2b) or completely (in mammalian CREMα,
CREMβ and CREMγ), with the consequence that these pro-
teins display repressor function [29]. The insertion of pre-
mature stop codons in the CREB gene results in truncated
proteins that lack the DNA-binding region and that also func-
tion as repressors. In Aplysia, a CREB isoform was identi-
fied, which lacks the nuclear localisation signal [30]. This
cytoplasmic form (CREB1c) regulates the activity of kinases
that phosphorylate nuclear CREB.
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Signal-induced activation by CREB

CREB binding sites had been identified in a multitude of
inducible promoters. Examples are the somatostatin- [31] and
the proenkephaline promoter [32] as well as many others (see
reviews [1, 20]) The critical region in CREB for the response
to cAMP [25] is the phosphorylation box (P-box) or kinase-
inducible domain (KID). As depicted in Fig. 1, the P-box
contains several consensus phosphorylation sites for kinases
such as PKA, PKC, glycogen synthase kinase-3 and casein
kinases (CK) I and II [25]

, 
[33]. Upon activation of the ade-

nylate cyclase pathway, the serine at position 133 of CREB
(serine 117 in CREM) is phosphorylated by PKA, which
enhances the transcriptional activity of the proteins CREB
and CREM.

In addition to PKA, other signal transduction pathways tar-
get the CREB protein, in order to either increase or decrease
its transcriptional activity. For example, the Ca2+-calmodulin-
dependent kinase IV (CaMKIV) phosphorylates CREB at
Ser133 after membrane depolarization in neuronal cells [34].
Also signal transduction pathways triggered by growth fac-
tors and inflammatory cytokines lead to a phosphorylation
of CREB (see review [35]). Ca2+-calmodulin-dependent kinase
II (CaMKII) phosphorylates CREB at Ser133 and Ser142.
Remarkably, phosphorylation of Ser142 by CaMKII neutral-
izes the activity of CREB [36].

CREB and CREM activate through
transcription cofactors

A breakthrough in the understanding of inducible CREB fun-
ction came from the discovery of the cofactor CBP (CREB
binding protein) that interacts specifically with the phospho-
rylated CREB P-box domain [37]. In the current model, the
cofactor CBP and its close relative p300 serve as bridging
factors between the activator CREB and the general transcrip-
tion factors [27, 38]. These cofactors also possess a histone
acetyltransferase (HAT) activity, which is thought to play a
critical role for gene activation in the chromatin (reviewed
in [39]). CBP and p300 bind to other cofactor complexes
among them PCAF, SRC-1/NcoA-1, TIF-2/NcoA-2 and pCIP/
ACTR which also possess histone acetyltransferase activity
(reviewed in [40]). There are indications for the formation
of gene- and pathway-specific complexes. For example, bind-
ing of CBP to PCAF and pCIP has been reported to be neces-
sary for induced CREB function [41]. The interaction between
cofactors and the P-box of CREB and CREM is not always
phosphorylation-dependent. A new route for transcriptional
activation by CREB and CREM was reported recently, dem-
onstrating the functional interaction between ACT (for acti-
vator of CREM in testis) and CREM [42]. ACT appears to

be a tissue-specific coactivator for CREM. It possesses an
intrinsic activation domain and interacts with CREM in a
phosphorylation-independent manner. In addition to the in-
ducible P-box domain, CREB also contains a constitutive
activation domain (CAD), which is responsible for the inter-
action with one or more of the TATA-box associated factors
(TAFs), one of which is TAF

II
110 (the drosophila homolog

of human TAF
II
130). The constitutive activation domain of

CREB can be subdivided into three regions, which are rich
in either serine, hydrophobic amino acids, or glutamine. All
three regions are necessary for effective interaction with
TAF

II
110 in a yeast two-hybrid assay [43].

Transcriptional effects of CREB are
context- and position-specific

The biological effects of the cAMP pathway through CREB
are entirely based upon a gene expression program initiated
by the activator. Hence, unraveling of CREB transcriptional
activation is crucial for the understanding of the biological
processes. Above we have discussed CREB-structure and -
function through cofactors. Additional important parameters
for CREB function are the context in which CREs are em-
bedded and the position of CREs relative to the start site of
transcription. This has been most clearly demonstrated on the
gene encoding the T-cell receptor beta (TCRβ) chain [44].
These studies could have model character for the many other
target genes of cAMP-induced CREB proteins and, therefore,
will be briefly reviewed here.

The TCRβ gene is an attractive model for the study of pro-
moter and enhancer function. This is mainly based upon the
fact that the genome contains many different promoters that
can be compared. A functional TCRβ gene is generated through
recombination events in which the enhancer is brought into
the relative vicinity of one of the many Vβ promoters (al-
though it remains a distal element, several kilobases apart
from the promoter). The rearranged TCRβ gene contains
CREs in three different positions that seem to fullfill alter-
native tasks (Fig. 2). Firstly, CREs are contained within the
distal TCRβ enhancer [15]. Secondly, in many Vβ promot-
ers one CRE is found in a promoter-proximal position [17],
in between position –100 to –40 upstream of the start site of
transcription. In our studies of the human Vβ 8.1 promoter
we could also detect a third cryptic CRE within the core pro-
moter region [44], located in between position –30 and +11
(compare Fig. 2). This is the region where TFIID and the
other general transcription factors bind to the promoter.

In the enhancer CREB appears to be part of a multiprotein
enhanceosome [15]. The enhancer is efficiently repressed by
overexpression of the 12S form of adenovirus encoded E1A,
which is known to compete for the CREB-binding proteins
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CBP and p300. One simple scenario would imply that CBP
binds to and functions via binding to CREB in the enhancer.
However, E1A retained its repression potential even after
removal of the CRE. Repression by E1A seems to be rather
correlated to the overall enhancer activity. This suggests that
CBP is part of, or functions through, the multiprotein en-
hanceosome rather than through individual activators alone
such as CREB [45]. Further evidence for this hypothesis came
from experiments with multimerized CREs that proved to act
as a poor enhancer element at a distance (unpublished obser-
vations). The promoter-upstream (UAS) CRE mainly serves
as a platform for the enhancer. This is concluded from the fact
that it raises relative enhancer activity but displays little in-
fluence on the promoter [44, 45]. Activation requires an in-
tact PKA phosphorylation site in CREB. In contrast, the third
functional CRE within the core promoter contributes strongly
to Vβ 8.1 promoter activity. This low affinity CRE can be ac-
tivated through overexpression of CREB, but not through a
mutant lacking Ser133. Moreover, replacement of the weak
CRE by a consensus CRE efficiently raises promoter activ-
ity [44]. Thus, the core CRE is critical for promoter function,
whereas the two other CREs help to establish a functional
enhancer. Related mechanisms could add a new level of com-

plexity to the control of cAMP-induced gene activation in
other biological processes.
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