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Abstract—Analytical (closed-form) inversion schemes have
been the standard approach for image reconstruction in op-
toacoustic tomography due to their fast reconstruction abilities
and low memory requirements. Yet, the need for quantitative
imaging and artifact reduction has led to the development of more
accurate inversion approaches, which rely on accurate forward
modeling of the optoacoustic wave generation and propagation.
In this way, multiple experimental factors can be incorporated,
such as the exact detection geometry, spatio-temporal response
of the transducers, and acoustic heterogeneities. The model-
based inversion commonly results in very large sparse matrix
formulations that require computationally extensive and memory
demanding regularization schemes for image reconstruction,
hindering their effective implementation in real-time imaging
applications. Herein, we introduce a new discretization procedure
for efficient model-based reconstructions in two-dimensional op-
toacoustic tomography that allows for parallel implementation on
a graphics processing unit (GPU) with a relatively low numerical
complexity. By on-the-fly calculation of the model matrix in each
iteration of the inversion procedure, the new approach results
in imaging frame rates exceeding 10Hz, thus enabling real-time
image rendering using the model-based approach.

Index Terms—optoacoustic tomography, photoacoustic tomog-
raphy, model-based reconstruction, real-time imaging

I. INTRODUCTION

Much like other tomographic imaging modalities, optoa-
coustic tomography (OAT) relies upon a mathematical recon-
struction procedure to render images of biological samples.
The algorithm employed strongly influences the imaging per-
formance, affecting a number of parameters, which include
image contrast, spatial and temporal resolution, severeness of
image artifacts, and overall image quantification abilities.

Several approaches have been suggested for tomographic
image reconstruction in OAT [1]–[12]. The reconstruction
performance may vary in each case depending on the exact
tomographic configuration employed as well as on acoustic
properties of the imaged volume [8]–[11], [13]–[15]. Although
analytical (closed-form) inversion algorithms, such as filtered
back-projection [2], may generally result in fast and memory-
efficient reconstructions, model-based approaches based on
numerical (or semi-analytical) inversion of an optoacoustic
forward model provide extra flexibility in terms of their
applicability to different types of imaging systems and sam-
ples [10], [11]. In this way, one could for instance account
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for specific experimental and modeling imperfections, such as
spatially-dependent response of the ultrasound transducers [9],
[16], [17] or acoustic heterogeneities and attenuation in the
sample and the surrounding medium [18]–[20].

Model-based reconstruction methods based on the time-
domain optoacoustic wave equation are typically associated to
large sparse matrix formulations. The main operations in the
iterative inversion procedure are the multiplication of vectors
with the model matrix and its transpose. Even though the
model matrix is sparse, the large dimensionality of the problem
leads to a significant computational complexity and memory
overhead. Several approaches have been introduced to reduce
both the computational operations and the memory require-
ments of model-based inversions. For example, it has been
shown that the forward model can be significantly simplified
in a cross-sectional acquisition geometry by assuming that
the optoacoustic sources lie in a plane [21]. Thereby, the
resulting two-dimensional model matrix can readily be stored
in memory, in a way that fast inversion can be achieved with
standard inversion algorithms. A discrete wavelet packet de-
composition can be used to further speed up the computations,
since the inversion is decoupled into smaller subproblems [22],
although memory requirements are not significantly reduced.
Both the computational complexity and memory overhead
can be reduced by decreasing the number of measurements
(projections) and applying appropriate regularization for sparse
recovery [23]. On the other hand, inherent symmetries of the
acquisition setup can be exploited to reduce the necessary
memory [24]–[26]. Alternatively, the memory requirements
can be drastically reduced by on-the-fly calculating the matrix
vector products without explicitly storing the model ma-
trix [27]. Efficient parallel implementation of this approach
on a graphics processing units (GPU) is then feasible, so
that the reconstruction time can be substantially accelerated
in the same way as in other reconstruction methods [28].
Recently, other reconstruction approaches based on efficient
sparse decomposition of the sequence of acquired signals
have also been shown to significantly accelerate model-based
reconstructions when handling multi-frame data [29], [30].
However, real-time visualization implies image reconstruction
between the subsequent laser pulses, which cannot be achieved
if multiple frames need to be accumulated prior to image
rendering.

The proposed method drastically reduces the computational
complexity of on-the-fly calculations of the matrix-vector
products by storing a small table of precalculated values. The
new approach then results in imaging frame rates exceeding
10Hz, thus enabling real-time image rendering using a model-
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based inversion method. Note that the term real time is
usually employed in optoacoustics to refer to the capability
to reconstruct images with no significant delay between data
acquisition and image display, even for acquisition times larger
than 1 s [31], [32]. Additionally, 10 Hz represents the optimal
frame rate for attaining the best signal-to-noise performance
while staying below the maximum permissible laser expo-
sure limits, namely 20 mJ/cm2 energy density per pulse and
200 mW/cm2 average power density. For pulse repetition rates
higher than 10 Hz, the energy per pulse must then be reduced,
leading to a suboptimal signal-to-noise performance [33].

II. METHODS

A. The forward model

For short-pulsed laser illumination fulfilling the so-called
thermal confinement conditions [34], a Dirac’s delta function
can be assumed to closely resemble the temporal profile of the
light intensity, in which case the optoacoustically-generated
pressure wave follows the following equation [35], [36]

∂2p(r, t)

∂t2
− c2∇2p(r, t) = ΓH(r)

∂δ(t)

∂t
, (1)

being Γ the dimensionless Grüneisen parameter, c the speed
of sound in the medium and H(r) the amount of energy
absorbed in the tissue per unit volume. An exact analytical
solution of (1) is subsequently given by the Poisson-type
integral as [35], [37]

p(r′, t) =
Γ

4πc

∂

∂t

∫
S

H(r)

|r′ − r|
dS(t), (2)

where the integral is performed along a spherical surface S(t)
defined as |r′ − r| = ct. In cross-sectional tomography, the
optoacoustic sources are assumed to lie in the same plane as
the measurement points, in which case (2) is reduced into a
two dimensional formulation [21], i.e.

p(r′, t) =
∂

∂t

∫
L(t)

H(r)

|r′ − r|
dL(t), (3)

where L(t) denotes a circumference for which |r′ − r| = ct.
Note that the latter equation is expressed in arbitrary units
after neglecting all the constant terms.

B. Discretization on a Cartesian grid

In order to discretely represent the temporal profiles of
the measured pressure signals, one may define a regular
Cartesian grid covering all the optoacoustic sources in the
imaged volume, as depicted by solid circles in Fig. 1 a). Each
point in the Cartesian grid represents one single pixel of a
two dimensional image corresponding to the distribution of
the absorbed optical energy. According to (3), the pressure
signal at the transducer location r′ = (x′, y′) and time instant
t equals to the derivative of the integral of the absorption
distribution on an arc, as shown in Fig. 1 a). The absorption
at an arbitrary location r within the grid can be subsequently

interpolated from the known absorption values at the pixel
points. Thus, (3) can be approximated via

p(r′, t) =
∂

∂t

∫
L(t)

∑
i

H(ri)K(r − ri)

|r′ − r|
dL(t)

=
∑
i

H(ri)
∂

∂t

 1

ct

∫
L(t)

K(r − ri)dL(t)

 , (4)

where K(r− ri) is the interpolation function, i.e., the contri-
bution of the pixel at location ri to the optical absorption at
location r. Accordingly, we define

pi(r
′, t) =

∂

∂t

 1

ct

∫
L(t)

K(r − ri)dL(t)

 (5)

as the pressure contribution of the ith pixel to the pressure
signal p(r′, t), which can be further expressed as

p(r′, t) =
∑
i

H(ri)pi(r
′, t). (6)

In the following subsections, we introduce two different in-
terpolation models to calculate pi(r′, t) when the pixel size is
much smaller than the distance ct travelled by the optoacoustic
wave. In general, many interpolation methods are applicable
within the framework of the suggested reconstruction ap-
proach, each exhibiting a different trade-off between accuracy
and computational complexity. In this work, we used the
standard bilinear interpolation method and a simpler approach,
termed ”circular interpolation”, mainly in order to optimize the
reconstruction runtime.

1) Bilinear interpolation: The absorbed energy at an ar-
bitrary location H(r) = H(x, y) can be calculated as a
function of the absorption at its 4 neighboring pixels by using
bilinear interpolation. In this way, pixel i only contributes to
the absorption distribution in an area within the 4 neighboring
grid points (Fig. 1 b)). The interpolation function is then given
by

K(r − ri) =

{
0 for ‖r − ri‖∞ > ∆xy

K̃ for ‖r − ri‖∞ < ∆xy
, (7)

where
K̃ =

(
1− |x− xi|

∆xy

)(
1− |y − yi|

∆xy

)
, (8)

and ∆xy is the corresponding grid width.
Let the distance between the measuring location r′ and the

pixel position ri be denoted by s. Considering a grid size ∆xy
much smaller than s, the integral in (5) can be approximated
as the integral along a straight line in the square region for
which K(r − ri) is not zero, as illustrated in Fig. 1 c). We
define d as the distance from ri to the integration line and α
as the angle with respect to the horizontal axis [cf. Fig. 1 c)].
Since d = s− ct, one may rewrite (5) as

pi(r
′, t) = −c ∂

∂d

( 1

s− d

) ∫
L(t)

K(r − ri)dL(t)

 , (9)
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Fig. 1: Illustration of the discretization procedure for the cross-sectional (two-dimensional) optoacoustic imaging problem. a)
Discretization of the forward model on a Cartesian grid using b) c) bilinear interpolation and d) e) circular interpolation.

or, equivalently

pi(r
′, t) = − c

(s− d)2
I(d, α)− c

s− d
dI (d, α), (10)

where
I(d, α) =

∫
L(t)

K(r − ri)dL(t), (11)

dI (d, α) =
∂

∂d

∫
L(t)

K(r − ri)dL(t). (12)

Taking into account that dI (d, α) is in the order of max[I(d,α)]
∆xy ,

the first term in (10) can be neglected, leading to

pi(r
′, t) = − c

s− d
dI (d, α), (13)

where dI (d, α) does not depend on the pixel position ri and
can be thus expressed analytically (see Appendix A for a
detailed derivation).

2) Circular interpolation: The calculation of the optical
absorption distribution at any point can be further simplified
by interpolating in a circular neighborhood of each pixel. In
this case, the interpolation function is represented instead by
the cone shown in Fig. 1 d). The circular interpolation function
is then given by

K(r − ri) =

{
0 |r − ri| > ∆xy

1− |r−ri|
∆xy |r − ri| < ∆xy

. (14)

As a result, the derivative dI (d, α) in (9) for the circular
interpolation is independent of the angle α and only depends
on the distance d (Fig. 1 e). Therefore, pi(r′, t) can be
expressed as

pi(r
′, t) = − c

s− d
dI (d). (15)

See Appendix B for more details on the calculation of dI (d)
in (15).

C. Image reconstruction

Optoacoustic tomographic reconstruction implies processing
the pressure signals collected at a set of transducer locations
r′1, · · · , r′L and time instants t1, · · · , tK .Let

pij =

 pi(r
′
j , t1)
...

pi(r
′
j , tK)

 (16)

represent the theoretical pressure signal for the considered
instants at position r′j generated by a unit absorber at pixel i
and

h =

H(r1)
...

H(rN )

 (17)

denote a vector representing optical absorption at the pixels
1, · · · , N of the reconstruction grid. By considering (6), a
linear model

p = Ah (18)

can be defined with the model matrix expressed as

A = [a1, · · · ,aN ], (19)

where

ai =

pi1
...

piL

 . (20)

Image reconstruction is then done by minimizing the least
squared error between the measured signals in a vector form
pm and the corresponding signals predicted by the forward
model, i.e.,

ĥ = arg min
h
‖pm −Ah‖2. (21)

The least squared inversion problem in (21) can be solved
with iterative methods such as LSQR [38], which requires one
calculation of a matrix-vector multiplication with the model
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matrix, Av, and one multiplication with its transpose, ATu,
in each iteration. The vectors v and u are updated in each
iteration of the LSQR algorithm using the results of the matrix-
vector products.

An additional regularization term may be included in (21).
However, no regularization is required in the LSQR inversion
of the two dimensional model provided sufficient angular
coverage is available in the cross-sectional optoacoustic to-
mographic imaging system [21].

D. GPU implementation

The most computationally demanding operations in the
above mentioned iterative inversion procedure are associated
with the matrix-vector multiplications Av and ATu. Those
operations can be significantly accelerated by a GPU-based
implementation, which can generally be done in various ways.
The most straightforward approach consists in the precalcula-
tion of the model matrix A and its subsequent storage on
the GPU memory. Despite the sparsity of A, this approach
is hindered by the relatively small internal memory resources
available on the GPUs, which may turn insufficient for storing
model matrices corresponding to the required number of image
pixels, simultaneously detected signals and their temporal
sampling resolution. This limitation is particularly relevant
for high-resolution reconstructions or three-dimensional inver-
sions [37], [39] employing very large model matrices. For
instance, the model matrix in the examples shown later in
this work (i.e., with 256 channels, 732 sampling instants
and 200x200 pixels) occupies around 300 MB of memory
in a sparse representation. The memory needed is increased
several orders of magnitude for a non-sparse representation.
Standard GPUs have an internal memory of around 1-4 GB,
which is enough to store the entire model-matrix for the
reconstruction examples shown in this paper. However, it can
be insufficient for reconstructions with a higher resolution,
number of channels or sampling instants. On the other hand,
the memory requirements exponentially increase for three-
dimensional reconstructions, where the model matrix generally
occupies many tens of GBs of memory. Another approach
consists in on-the-fly calculation of the elements of the model
matrix in each iteration of the inversion procedure [27]. This
approach is widely applicable as no storage is required, but
the required computational time is generally longer due to the
need to repeat the same operations multiple times.

We propose an alternative approach based on the precal-
culation and storage of a small look-up table containing the
derivatives dI (d, α) and dI (d) in (13) and (15) corresponding
to the different values of d and α. Such table can readily
be stored in the GPU memory, and the calculation of the
elements of the model matrix simply involves divisions and
multiplications. As opposed to the large amount of memory
that may be required for storing the entire model matrix on
a GPU, the precalculated look-up tables for dI only occupy
800 Byte and 156 KB of memory for the bilinear and circular
interpolation methods, respectively (for 200 different values
of d and 200 different values of α). Since A is highly sparse,
Av and ATu can be subsequently obtained by calculating
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Fig. 2: Illustration of the experimental cross-sectional op-
toacoustic tomography system. a) Three-dimensional repre-
sentation of the actual experimental system. b) Geometrical
distribution of transducer locations (gold dots) and Cartesian
grid (gray dots) considered for two dimensional reconstruction.

only the non-zero elements and multiplying them with the
corresponding elements of the vectors v and u. The matrix
vector multiplications Av and ATu are calculated row-wise
and in parallel. In the calculation of ATu, each computing unit
(kernel) calculates a value for each of the N pixels, namely the
multiplication of non-zero elements of ai [cf. (19)] with the
corresponding elements in vector u. In calculating Av, each
computing unit performs the operations corresponding to one
transducer position and one sampling instant, i.e. the multipli-
cation of non-zero elements of

[
p1(r′j , tk), · · · , pN (r′j , tk)

]
[cf. (13) (15)] with their corresponding elements in vector
v. The specific steps for the parallel implementation of these
operations are illustrated in Appendix C. In a practical imple-
mentation, the symmetry of the bilinear interpolation function
can be exploited to reduce the storage requirement for the
lookup table (see Appendix A).

Further acceleration of the reconstruction process is possible
if multiple images are simultaneously reconstructed since
the matrix elements are only calculated once for all the
reconstructed images. This approach is convenient for off-line
reconstructions but not appropriate for real-time imaging since,
in the latter case, the reconstruction must be accomplished in
between the consecutive signal acquisitions.

E. Experimental measurements

The performance of the proposed model-based reconstruc-
tion approach was examined with experimental data acquired
from mice. For this, a small animal optoacoustic tomogra-
phy system (MSOT256-TF, iThera Medical GmbH, Munich,
Germany) was used, which is based on signal acquisition
with 256-element arc-shaped array of cylindrically-focused
transducers covering 270◦ around the imaged object [40]. The
system attains ring-type illumination on the surface of the
imaged object by means of a fiber bundle. An illustration of the
system is shown in Fig. 2. The acquired signals were digitized
at 40 megasamples per second and band-pass filtered with cut-
off frequencies 0.1 and 7 MHz.

The proposed algorithm using both interpolation methods
was first compared to a reference model-based reconstruction
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algorithm [20]. Then, the inversion performance was evaluated
as a function of various parameters, such as number of LSQR
iterations, number of projections and number of sampling
time instants in the acquired signal (time resolution). As a
reference, we considered the image reconstructed with bilinear
interpolation, 20 LSQR iterations, 256 projections and 1098
time instants. Finally, the reconstruction times of bilinear
interpolation and circular interpolation were compared both
for single frame and multiple frame reconstructions using
the optimum parameters. All images were reconstructed with
200x200 pixels.

The reconstruction was done on a AMD Radeon HD 7900
series GPU with 3GB on-board memory and 32 computing
units (2048 stream processors). The reconstruction was imple-
mented using the OpenCL framework and executed in Matlab
(MathWorks, Natick, MA) as a mex function.

III. RESULTS

The cross-sectional images of the mice in the kidney/spleen
and liver regions are shown in Fig. 3. The images in Fig. 3 a)
and g) were reconstructed with a previously introduced model-
based algorithm [20]. The reconstructed images obtained by
using the proposed algorithm with bilinear interpolation and
circular interpolation are plotted in Fig. 3 b) h) and Fig. 3 c)
i) respectively. Fig. 3 d)-f) show close-up images of the
blue rectangular regions in a)-c). No significant difference
in the imaged small structures in the kidney regions can be
observed in the three images. For all three approaches, the
accquired pressure signals were cut and downsampled to 1098
time instants prior to reconstruction. All 256 projections were
considered and the number of LSQR iterations were set to 10.
Fig. 3 j) shows the signal to noise ratios (SNR) of Fig. 3 a)-c)
and g)-i) calculated with the absorption values in the squared
regions marked in Fig. 3 a) and g). Specifically, the SNR
was calculated as the maximum reconstructed absorption in a
region inside the mouse normalized to the standard deviation
of the reconstructed absorption in a region outside the mouse.
The obtained SNR of the kidney images a) to c) were 18.7744,
18.8475 and 18.7727 and the calculated SNR of the liver
images g) to i) were 21.7461, 21.9314 and 20.6545. No
essential differences between the reconstructed images using
the three approaches can be observed.

For the purpose of evaluting the image quality of re-
constructed images using different parameters, we used the
reference image shown in Fig. 4 e), which is obtained as
described in Section 2.5. The relative error is calculated as the
norm of the difference with the reference image normalized
with the norm of the reference image. Fig. 4 a)-d) show
examples of images with increasing numbers of iterations,
yielding resulting relative errors of 58.5%, 37.5%, 17.8% and
13% respectively. The differences of Fig. 4 a) d) with respect
to the reference image are displayed in Fig. 4 f)-i). Minor
differences can be seen in h) and i), which indicates acceptable
image quality is achieved for a relative error below 20%.

The relative error and the reconstruction time are shown as
a function of the number of LSQR iterations in Fig. 5 a) and
Fig. 5 b) for the bilinear interpolation and the circular interpo-
lation approaches respectively. The corresponding normalized

Kidney sample Liver sample
0

10

20
j)

SN
R

(d
B

)

Reference inversion
Bilinear interpolation
Circular interpolation

Fig. 3: Cross-sectional images acquired from a mouse in the
kidney and liver regions. a) and g) are reconstructed using
the standard iterative model-based inversion. Reconstructions
using the proposed algorithm are shown in b) and h) for the
bilinear interpolation and c) and i) for the circular interpolation
respectively. d)-f) close-up images of the corresponding blue
regions in a)-c). j) SNR performance of the different recon-
struction schemes.

errors with both methods are reduced to approximately 13%
and 15% after 5 LSQR iterations respectively, which was
considered an acceptable performance. On the other hand, a
two-fold reduction in the reconstruction time is achieved with
circular interpolation as compared with the bilinear interpola-
tion approach for the same number of iterations. The relative
error and reconstruction time with respect to the number
of projections (detector positions) are further presented in
Fig. 5 c) and d) for the two interpolation methods. For a given
number of projections, virtual signals were obtained by inter-
polating between the original 256 detection channels, while
the angular coverage was maintained in all cases. 5 LSQR
iterations were performed in the reconstruction. Note that a
decrease in the number of projection leads to a significant
increase in the error. Therefore, all 256 channels should be
used to optimize the image quality for the number of pixels
considered [41]. The performance results for different number
of time instants are shown in Fig. 5 e) and f) for the two
interpolation approaches. The reconstruction was done with
5 LSQR iterations and 256 projections. The length of the
signals was fixed to 30 µs in all cases. For both interpolation
approaches, no significant further improvement was achieved
when increasing the number of time samples beyond 700.
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Fig. 4: Estimated relative errors. a) - d) are images reconstructed with 1, 2, 4, and 5 iterations, respectively, using the on-the-fly
matrix calculation algorithm. Comparison to the reference image in e), reconstructed with the standard model-based algorithm
with 20 iterations, results in estimated relative errors of 58.5%, 37.5%, 17.8%, and 13%, respectively. f) - i) Differences
between the reference image and the images in a) - d).

Bilinear intropolation Circular interpolation
Single frame recon. 6 frames/s 13 frames/s

Multiple frame recon. 21 frames/s 27 frames/s

TABLE I: Performance of the single- and multiple-frame
reconstructions using bilinear and circular interpolation ap-
proaches.

The performance of the proposed algorithm is summarized
in TABLE I. The reconstruction parameters were selected
according to the results presented in Fig. 5 so that the
reconstruction time is optimized without compromising image
quality. Specifically, the number of LSQR iterations was set
to 5, all 256 projections were taken and the signals were
downsampled to 732 time instants. As shown in the table, it
was possible to achieve 6 and 13 frames per second for single
frame reconstruction by employing the bilinear and circular
interpolation models respectively. When applying the multiple
frame reconstruction approach 21 and 27 frames could be
reconstructed simultaneously within one second with the two
interpolation approaches. As a reference, standard model-
based reconstruction on the CPU using the same parameters
needs around 94s to build the model-matrix and 0.9s to
reconstruct one frame on an Intel Core i7-4820K CPU @
3.7GHz.

IV. DISCUSSION AND CONCLUSIONS

Model-based reconstruction approaches are generally
known to render better image quality and accuracy as com-
pared to the approximate analytical inversion schemes [37],
[39]. Yet, the analytical (closed-form) inversion schemes have
been so far the dominant approach for image reconstruction
in optoacoustic tomography due to their fast reconstruction
abilities and low memory requirements [28]. In this work, a
novel discretization procedure for model-based reconstruction
in two-dimensional (cross-sectional) optoacoustic tomography
has been introduced. The suggested method allows for parallel
implementation on a GPU with relatively low complexity,

which is achieved by on-the-fly calculation of the model matrix
in each iteration of the inversion procedure. Parallelization
and acceleration of the reconstruction on a GPU are equally
possible with the other model-based approaches, such as those
using pre-calculation of the model matrix. However, memory
limitations may restrict applicability of the latter approaches,
especially when handling dense image grids or large number
of voxels in three-dimensional reconstructions. In contrast,
applicability of our methodology does not depend on the
size of the model matrix as it only requires the storage of
a small look-up table on the GPU memory. Moreover, the
look-up table approach signicantly accelerates the on-the-fly
computation of the matrix elements as only one additional
multiplication and division are needed. Here two interpolation
approaches were proposed and analyzed. It was demonstrated
that reconstructions based on circular interpolation yield
slightly reduced image quality as compared to the bilinear
interpolation method, yet attain twice the reconstructed frame
rates exceeding 10 frames per second for a two-dimensional
grid of 200x200 pixels. The suggested reconstruction method
was additionally demonstrated to reconstruct multiple frames
simultanouly, in which case imaging rate exceeding 20 frames
per second were achieved. This performance matches well
the pulse repetition and spatial resolution parameters of some
common real-time optoacoustic tomography systems for small
animal imaging [33], [42]. Yet, the plea for real-time perfor-
mance is of particular importance when considering clinical
translation of the optoacoustic technology using hand-held
probes [43], [44]. The proposed framework can further be
extended to three-dimensional model-based reconstructions.
In this case, the integral in the forward model is performed
along a spherical surface instead of a circumference, thus
the integration path in the neighborhood of each pixel can
be approximated as a plane instead of a straight line. Our
future work will address the three-dimensional problem with
the suggested methodology in order to further demonstrate the
benefits of this approach.
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Fig. 5: Influence of different parameters on the image quality and reconstruction speed. Left and right columns show results
for the bilinear and circular interpolations, respectively. We vary a)-b) the number of iterations, c)-d) the number of projections
and e)-f) the number of time instants.
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APPENDIX

A. Bilinear interpolation

We derive in this section the analytical expression for
dI (d, α) for the bilinear interpolation approach. Due to the
symmetry of bilinear interpolation in a square grid it is verified
that

dI (d, α) = −dI (−d, α), (22)

and

dI (d, α) = dI (d, α′), (23)

being

α′ = min

(
|α|, |α− π

2
|, |α− π|, |α− 3π

2
|
)
. (24)

Then, we only need to derive the analytical expression for
d > 0 and for 0 6 α 6 π

4 . In that case, it can be expressed
as a linear combination of the derivative of the integral in the
squares indicated in Fig. 1 c).

dI (d, α) = dI sq1(d, α) + dI sq2(d, α) + dI sq4(d, α). (25)

The straight line along which the integral is calculated can be
expressed as

x(y) =
d

cosα
− y tanα, (26)
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where (x, y) = (0, 0) represents the position of the pixel. With

d̃I sq1 =
∂

∂d

yb∫
ya

(∆xy − x(y)) (∆xy − y)

∆xy2

dy

cosα
, (27)

we have

dI sq1(d, α) =

{
d̃I sq1 for 0 6 d <

√
2∆xy cos

(
π
4 − α

)
0 for d >

√
2∆xy cos

(
π
4 − α

) .

(28)
The integration limits ya and yb correspond to

ya =


ỹa,sq1 for ∆xy cosα 6 d <

√
2∆xy cos

(
π
4 − α

)
0 for ∆xy sinα 6 d < ∆xy cosα

0 for 0 6 d < ∆xy sinα

,

(29)
with

ỹa,sq1 =
d

sinα
− tan

(π
2
− α

)
∆xy, (30)

and

yb =


∆xy for ∆xy cosα 6 d <

√
2∆xy cos

(
π
4 − α

)
∆xy for ∆xy sinα 6 d < ∆xy cosα
d

sinα for 0 6 d < ∆xy sinα

.

(31)
With

d̃I sq2 =
∂

∂d

yb∫
ya

(∆xy + x(y)) (∆xy − y)

∆xy2

dy

cosα
, (32)

we have

dI sq2(d, α) =

{
d̃I sq2 for 0 6 d < ∆xy sinα

0 for d > ∆xy sinα
. (33)

In this case, the integration limits ya and yb are given by

ya =
d

sinα
for 0 6 d < ∆xy sinα (34)

and
yb = ∆xy for 0 6 d < ∆xy sinα. (35)

Finally, with

d̃I sq4 =
∂

∂d

yb∫
ya

(∆xy − x(y)) (∆xy + y)

∆xy2

dy

cosα
, (36)

we have

dI sq4(d, α) =

{
d̃I sq4 for 0 6 d < ∆xy cosα

0 for d > ∆xy cosα
. (37)

The integration limits ya and yb can be expressed as

ya =

{
ỹa,sq4 for

√
2∆xy sin

(
π
4 − α

)
6 d < ∆xy cosα

−∆xy for 0 6 d <
√

2∆xy sin
(
π
4 − α

) ,

(38)
with

ỹa,sq4 =
d

sinα
− tan

(π
2
− α

)
∆xy, (39)

and

yb =

{
0 for

√
2∆xy sin

(
π
4 − α

)
6 d < ∆xy cosα

0 for 0 6 d <
√

2∆xy sin
(
π
4 − α

) . (40)

The exact analytical expressions for dI (d, α) are then cal-
culated with the symbolic toolbox of Matlab and are not
displayed here due to its complexity.

B. Circular interpolation

We derive in this section the analytical expression for dI (d)
for the circular interpolation approach. The integral along the
straight line within the round neighborhood of a pixel equals
the area of intersection of a vertical plane cutting the cone
illustrated in Fig. 1 d). Since the cone is circularly symmetric,
we consider the integral along the straight line x = d without
loss of generality. We assume that the distance d is normalized
by the pixel size ∆xy. The function value of the cone with
diameter one along x = d is given by

f(y) =

{
1−

√
y2 + d2 for |y| <

√
1− d2

0 otherwise
. (41)

The area integral is thus given by

2
√

1− d2 −

√
1−d2∫

−
√

1−d2

√
y2 + d2dy =

√
1− d2

+
1

2
d2

(
log
(

1−
√

1− d2
)
− log

(
1 +

√
1− d2

))
. (42)

Consequently, the derivative of integral dI can be obtained by
differentiating (42) with respect to d

dI (d) = d

(
log
(

1−
√

1− d2
)
− log

(
1 +

√
1− d2

))
.

(43)

C. GPU implementation

The detailed implementations of ATu and Av on the GPU
kernel are described in Alg. 1 and Alg. 2. Note that we only
demonstrate the implementation of the bilinear interpolation
since the implementation of the circular interpolation is almost
identical.
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