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We derive some restrictions on the possible degrees of algebraic invariant curves
and on the possible form of algebraic integrating factors, for plane polynomial vec-
tor fields whose stationary points at infinity satisfy a certain genericity condition.
The method is elementary, and we show by example that it also yields strong
results for certain non-generic vector fields. � 2000 Academic Press

1. INTRODUCTION AND PRELIMINARIES

The question of the existence of algebraic invariant curves and algebraic
integrating factors of plane polynomial vector fields goes back to Darboux
and Poincare� ; see Schlomiuk [25, 26] for remarks on the history of the
problem. They noted that, given a polynomial vector field f on C2, the
question can be answered by elementary means as soon as an upper bound
for the possible degrees of irreducible invariant algebraic curves is estab-
lished. The Poincare� problem to be discussed in this article consists of
finding such bounds, and possibly invariant curves and integrating factors.
(There are other versions of this problem; many authors discuss it in the
context of holomorphic foliations of the projective plane.)

It should be emphasized that this problem is interesting for several
reasons. Prelle and Singer [21] showed that the existence of an algebraic
integrating factor is a necessary condition for the existence of an elemen-
tary first integral. Moreover, they showed that deciding about the existence
of an algebraic integrating factor ist the only obstacle to deciding about the
existence of an elementary first integral. In his classical work [13], Lie
established a correspondence between nontrivial infinitesimal symmetries
and integrating factors of two-dimensional vector fields. Therefore, to
determine an integrating factor also means to solve the nontrivial (and not
algorithmically accessible) problem of finding a nontrivial local one-
parameter symmetry group. Finally, the existence of an algebraic integrat-
ing factor has a strong influence on the qualitative behavior of a (real)
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differential equation; see Schlomiuk [24, 25, 26] and Christopher [7] for
applications to the center problem.

While it is known from a theorem of Darboux that for every polyno-
mial vector field there exists an upper bound for the possible degrees of
irreducible invariant algebraic curves, it is a hard problem to determine
such an upper bound explicitly for any given vector field. There has been
substantial progress in recent years, and bounds have been determined
under additional conditions on the invariant curves or on the stationary
points of the vector fields; cf. Cerveau and Lins Neto [6], and Carnicer
[5]. In particular, Carnicer found degree bounds whenever the vector field
has no dicritical stationary points in the projective plane.

In this paper, the focus will be on properties of stationary points at
infinity and their application to algebraic invariant curves and algebraic
integrating factors. We first discuss (in Section 2) nondegenerate stationary
points of local analytic (or formal power series) vector fields, using the
Poincare� -Dulac normal form. A straightforward application of these results
shows that if a vector field f of degree m admits an irreducible invariant
algebraic curve, and if all the stationary points of f at infinity are non-
degenerate and non-dicritical, then the degree of the curve cannot exceed
m+1. While this result is also a direct consequence of Carnicer's theorem
[5], the proof presented here is elementary and straightforward. Combin-
ing the results on stationary points with an investigation of the behavior of
integrating factors under Poincare� transforms, we then show that the same
conditions on f imply that an algebraic integrating factor is necessarily of
the form ,&1, where , is a polynomial of degree m+1 whose highest-
degree term is uniquely (up to a multiplicative constant) determined by f.

The hypotheses on f involve only the homogeneous term f (m) of highest
degree. We investigate the relation between properties of f (m) and proper-
ties of stationary points at infinity, and in particular we show that the
hypotheses are satisfied for almost all (in the Lebesgue sense) homog-
eneous polynomial vector fields of fixed degree. We also present a criterion
that works for vector fields with rational coefficients, which implies that the
hypotheses are also, in general, satisfied for such vector fields. Finally, we
discuss quadratic vector fields in some detail, and present some examples
to illustrate that there are also vector fields with dicritical stationary points
at infinity which are accessible by the strategies developed in this paper.

Let us introduce some notation and review a few known facts. (Refer-
ences to be consulted here are Lie [13], Olver [18, 19], Prelle and Singer
[21], and Schlomiuk [24, 25, 26], among others.) All functions and vector
fields under consideration will be analytic, unless specified otherwise.

To a given differential equation x* = f (x) on an open, nonempty subset
U of C2, one associates the derivation Lf , assigning to a function ,: U � C
its Lie derivative Lf (,), with Lf (,)(x) :=D,(x) f (x). A (nonconstant)
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function � is called a first integral, resp. a semi-invariant, of x* = f (x) (or,
briefly, of f ) if Lf (�)=0, resp. Lf (�)=+� for some + analytic on U. The
set of zeros of a semi-invariant, as well as any level set of a first integral,
is an invariant set for x* = f (x).

The commutator of two derivations Lf , Lg is again a derivation, and it
turns out to be equal to L[ f, g] , with the Lie bracket [ f, g] defined by
[ f, g](x)=Dg(x) f (x)&Df (x) g(x). In case [ g, f ]=*f for some analytic
*, the local one-parameter group of transformations generated by g consists
of orbital symmetries of x* = f (x). This was first noted by Lie [13], and it
may be seen as the starting point for the employment of (local) Lie trans-
formation groups in the investigation of differential equations.

We call the vector field f divergence-free if div( f ) :=tr Df =0. (This
notion depends on the choice of coordinates.) To a scalar-valued function
, one assigns its Hamiltonian vector field q, :=( &�,��x2

�,��x1
), which is obviously

divergence-free, and has first integral , by construction. Locally, a
divergence-free vector field is equal to the Hamiltonian vector field of some
function. In this sense, finding a first integral of a divergence-free vector
field is just an integration problem. It is elementary to verify that
div(�f )=Lf (�)+div( f ) } �, so �f will be divergence-free if and only if
Lf (�)+div( f ) } �=0. If � is nonzero and this equation is satisfied then we
call � an integrating factor of x* = f (x). Another function �� is an integrat-
ing factor if and only if �� �� is a first integral.

In dimension two, there is a close relation between integrating factors
and generators for local one-parameter symmetry groups, as was already
noted by Lie (see Olver [18], Thm. 2.48, Bluman and Cole [2], and
[30]): If g is a vector field such that [ g, f ]=*f for some scalar-valued *
then 1�det(g(x), f (x)) is an integrating factor for f (provided that the
denominator is not identically zero), and conversely one can construct a
nontrivial ``infinitesimal symmetry'' of f from an integrating factor. This is
one way to deduce the behavior of integrating factors under coordinate
transformations (cf. [30]): One has to multiply the transformed integrating
factor by the Jacobian of the transformation.

While it is known that an integrating factor for x* = f (x) exists near every
nonstationary point (this follows from the fact that the vector field can be
straightened near such a point), it is a nontrivial problem to determine
such a factor explicitly ``in closed form'' for a given equation. (There is also
the question of existence near a stationary point of the equation.) This is
reflected in the fact that finding Lie symmetries of first-order ordinary dif-
ferential equations is a matter of trial and error, while (for example) the same
problem for higher-order equations is amenable to a systematic approach.

We will consider some aspects of the following, more restricted problem:
Start with f belonging to a specified class of functions, and consider the
problem whether there is an integrating factor in another (possibly larger)
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class. For a large portion of this article, f will be a polynomial and the
search will be for integrating factors which are algebraic over the field
C(x1 , x2) of rational functions. For the record, we state the following well-
known result.

Theorem 1.1 (Prelle and Singer [21]). Let x* = f (x) be given, with f a
polynomial.

(a) If this equation has a first integral that is elementary (in the sense
of differential algebra) over C(x1 , x2) then it admits an algebraic integrating
factor.

(b) If the equation admits an algebraic integrating factor then it also
admits an integrating factor of the specific form

(.d1
1 } } } .dr

r )&1,

with the .i irreducible polynomials (and semi-invariants), and rational
numbers di . (We include the possibility r=0, with integrating factor 1.)

Actually, part (a) is a consequence of the main result in [21], which
states that an elementary first integral must have a quite special form. Since
the .i in part (b) are semi-invariant polynomials, one has Lf (.i)=+ i.i

with polynomials +i , and the integrating factor condition translates into

d1 +1+ } } } +dr+r=div( f ).

Since products and divisors of semi-invariants are again semi-invariant, it
is sufficient to consider irreducible ones. From a theorem of Darboux (see
Jouanolou [11], Schlomiuk [26]) it is known that every polynomial vec-
tor field f admits an upper bound for the possible degrees of irreducible
polynomial semi-invariants. If such a bound is known, then deciding the
question of existence of algebraic invariant curves and algebraic integrating
factors, and finding them in case of an affirmative answer, is a matter of
linear algebra. As will be shown, the investigation of stationary points at
infinity provides efficient tools to determine such bounds (and possible
invariant curves and integrating factors) for a large (generic) class of vector
fields, and is also useful in non-generic cases. We will first give an account
of local integrating factors of analytic and formal vector fields.

2. THE LOCAL PICTURE

In this section we will investigate invariant sets and integrating factors of
the analytic differential equation x* = f (x) in the neighborhood of a point
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in C2, which we may take to be 0. This is interesting in its own right, and
we will also be able to use the results obtained here for polynomial differen-
tial equations with algebraic integrating factors. The (germs of ) functions
analytic in 0 form an algebra that is isomorphic to the algebra
C[[x1 , x2]]c of power series with a nonempty (open) domain of con-
vergence. It is known that this algebra has a number of nice properties (see,
for instance, Ruiz [22]): It is a Noetherian unique factorization domain,
and one has a Nullstellensatz (due to Ru� ckert) analogous to Hilbert's
Nullstellensatz for polynomials. The invertible elements are those series
with a nonzero constant term. Every invertible series can be represented as
exp(+), for a suitable series +. We denote the quotient field of C[[x1 , x2]]c

by C((x1 , x2))c , and will occasionally refer to its elements as local
meromorphic functions. If there are convergence problems, or when con-
vergence issues are irrelevant, we will also deal with the formal counter-
parts C[[x1 , x2]] and C((x1 , x2)) of these objects, and formal power
series vector fields.

Let us introduce the notion of a semi-invariant in this context: A non-
invertible , # C[[x1 , x2]]c (thus ,(0)=0) is called a semi-invariant of f if
Lf (,)=*, for some * # C[[x1 , x2]]c ; and the same definition, mutatis
mutandis, applies to formal series. (Every invertible series obviously
satisfies the defining condition for a semi-invariant, but recall that the
interesting feature of an analytic semi-invariant is its set of zeros.) If , is
a semi-invariant, with Lf (,)=*,, then so is , exp(+) (+ arbitrary), and
Lf (, exp(+))=(*+Lf (+)) , exp(+).

The results of Prelle and Singer [21] (cf. (1.1)) remain valid in this situa-
tion, mutatis mutandis; in fact, they are presented in a general context in
[21].

Let us briefly consider the case that 0 is a nonstationary point of f. Then
there exists (up to multiplication with invertible series) one and only one
irreducible semi-invariant ,, and Lf is onto. Both assertions are obvious for
the special case f =( 1

0); the general case follows by using the straightening
theorem (Olver [18], Prop. 1.29, for instance). It follows that for any
rational number d there is an integrating factor ,&d exp(+), with + chosen
such that the integrating factor condition holds. Therefore, the local situa-
tion becomes interesting only at stationary points of f.

Thus we assume that f (0)=0, and define B :=Df (0). A crucial technical
tool will be a local change of coordinates to simplify the equation. The
behavior under coordinate transformations (cf. [30]) shows that an
integrating factor ,d1

1 } } } ,dr
r exp(+) will be changed to the integrating factor

(,1 b 9 )d1 } } } (,r b 9 )dr exp(&) by an invertible solution-preserving map 9,
with exp(&) also incorporating the functional determinant of 9. Let
B=Bs+Bn be the decomposition into semisimple and nilpotent part, and
:1 , :2 the eigenvalues of B. Let us call the stationary point 0 of the differential
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equation nondegenerate if Bs {0 (equivalently, not both :i are zero), and
degenerate otherwise. For nondegenerate stationary points we have the
Poincare� -Dulac normal form at our disposition (see Bibikov [1], Bruno
[3], and [28]): There is an invertible formal power series 9=id+ } } }
that is solution-preserving from x* = f (x) to x* = f� (x), with f� =B+ } } } a
formal power series vector field in normal form, thus satisfying [Bs , f� ]=0.
We list the possible cases in dimension 2; see Bruno [3], for instance.

Lemma 2.1. Let Bs=diag(:1 , :2), with :1 {0. Let f� be in normal form.
Then f� is as follows.

(a) If :2 �:1 is not a rational number then f� =B=Bs .

(b) If :2 �:1=q, with q a positive integer, then f� =Bs+;( 0
x1

q) for some
; # C.

(c) If :2 �:1=q�p, with p and q relatively prime positive integers,
1<p<q, then B=Bs and f� =Bs .

(d) If :2 �:1=&q�p, with p and q relatively prime positive integers,
p�q, then B=Bs and f� =B+� j�1 # j (_ j id+{ jB), where _j , {j # C, and
#(x) :=xq

1x p
2 .

(e) If :2=0 then B=Bs and f� =B+�j�1 # j (_j id+{jB), where
_j , {j # C, and #(x) :=x2 .

In cases (d) and (e), # is a first integral of B, and every first integral of
B in C[[x1 , x2]] is a series in powers of #.

As noted before, there is always a formal power series transformation
from x* = f (x) to x* = f� (x). For analytic f, there may be convergence
problems in case (a) (due to small denominators), and in cases (d) and (e).
In the latter cases, existence of a convergent transformation is guaranteed
when all _j=0 (this is Bruno's ``Condition A''; cf. [3]). Bibikov [1]
investigated the existence of smooth analytic invariant manifolds tangent to
the eigenspaces of Bs . His results imply that there exist such manifolds in
cases (a), (c), (d) and (e). In case (b), with ;{0, there will only be one
such manifold (tangent to x1=0), while there are infinitely many when
;=0. It should also be mentioned that Martinet and Ramis [15, 16] gave
a classification up to analytical equivalence of cases (d) and (e).

Differential equations in normal form admit integrating factors which
can be obtained directly from Lie's result mentioned in the Introduction:
Take det(Bs , f� )&1, unless the determinant is identically zero; otherwise
(x1x2)&1 will work.

We will give a detailed enumeration of irreducible semi-invariants,
algebraic first integrals, and algebraic integrating factors for all of the cases
(a) through (e) above. These results are essentially known; note, for
instance, that some of them are mentioned in Mattei�Moussu [17], and

56 SEBASTIAN WALCHER



Martinet�Ramis [16]. It seems, though, that a short, complete account
including the formal case is not easy to find. We start with a result on semi-
invariants (thus, on invariant sets of codimension one) of differential equa-
tions in normal form. Since this is of interest in arbitrary dimension, and
the proof in the general case is not much more difficult, we state this for
formal vector fields on Cd, with arbitrary d. (The result generalizes Prop.
1.8 of [28], and the proof follows similar lines.)

Lemma 2.2. Let B be linear on Cd, with decomposition B=Bs+Bn into
semisimple and nilpotent part. Let f ( j) be a polynomial vector field on Cd that
is homogeneous of degree j ( j�2), and suppose that the ( formal ) vector field
f :=B+� f ( j) is in normal form, thus [Bs , f ]=0.

If ,=�j�r , j (with ,r {0) and *=�i�0 *i satisfy Lf (,)=*, (thus , is
a formal semi-invariant of f ), then there is an invertible formal series ;
such that ,* :=;,=�j�r ,r* satisfies Lf (,*)=**,*, with LBs

(**)=0.
Moreover, LBs

(,*)=*0,*.

Proof. Semi-invariance of , is equivalent to

LB(,r+ j)+Lf (2)(,r+ j&1)+ } } } Lf ( j+1)(,r)=*0,r+ j+*1,r+ j&1+ } } } *j,r

for all r�0.
Note that LBs

(*0)=0. Now assume that LBs
(* j)=0 for all j<k, and let

,� :=(1+;k) ,, with ;k some form of degree k. Then ,� =,r+ } } } +
,r+k&1+(,r+k+;k ,r)+ } } } , and Lf (,� )=(1+;k) Lf (,)+,Lf (;k)=*� ,� ,
with *� =*0+ } } } *k&1+(*k+LB(;k)+ } } } . Now LBs

acts semisimple on
the space Sk of all forms of degree k, which is therefore the direct sum of
kernel and image of this map. Since the restriction of LB to the image is
invertible, it is possible to choose ;k in such a way that LBs

(*k+
LB(;k))=0. The first assertion now follows by induction. (Note that a
product (1+_1)(1+_2) } } } , with the _i homogeneous of degree i, is con-
vergent in the setting of formal power series!)

As to the second assertion, assume that LBs
(,*r+ j)=*0,*r+ j for all j<k.

Since LB and all the Lf (i) commute with LBs
, one has

LB(,*r+k)&*0 ,*r+k

=&(Lf (2)(,*r+k&1)+ } } } +Lf (k+1)(,r*))+*1*,*r+k&1+ } } } *k*,r*=: �,

with LBs
(�)=*0�. From semisimplicity of LBs

it follows that LBs
(,*r+k)=

*0 ,*r+k . K

We use this in dimension 2:
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Theorem 2.3. Let Bs=diag(:1 , :2), with :1 {0. Let f be a formal power
series vector field in normal form.

(a) If :2 �:1 is not a rational number then x1 and x2 are (up to multi-
plication with invertible series) the only irreducible semi-invariants of f in
C[[x1 , x2]]. There is no first integral that is algebraic over C((x1 , x2)), and
the only integrating factor algebraic over C((x1 , x2)), up to multiplication by
scalars, is (x1x2)&1.

(b) Let :2 �:1=q, with q a positive integer, and f =Bs+;( 0
xq

1
), with

; # C.
If ;{0 then x1 is (up to multiplication with invertible series) the only

irreducible semi-invariant of f in C[[x1 , x2]]. There is no first integral
algebraic over C((x1 , x2)), and the only integrating factor algebraic over
C((x1 , x2)), up to multiplication by scalars, is x&(q+1)

1 .
If ;=0 then the irreducible semi-invariants (up to multiplication with

invertible series) are x1 and all x2+$xq
1 , with $ # C. Every product

(xe
1 > (x2+$ixq

1)di)&1 (with rational exponents) is a first integral if and only
if e+q � di=0, and an integrating factor if and only if e+q � di=1+q.
Moreover, up to multiplication by constants, these are the only algebraic first
integrals resp. integrating factors that are products of powers of semi-
invariants and invertible series.

(c) Let :2 �:1=q�p as in (2.1c).
Then the irreducible semi-invariants (up to multiplication with invertible

series) are x1 , x2 and all x p
2 +$xq

1 , with 0{$ # C. Every product
(xe1

1 xe2
2 > (x p

2 +$ixq
1)di)&1 (with rational exponents) is a first integral if and

only if pe1+qe2+ pq � di=0, and an integrating factor if and only if pe1+
qe2+ pq � di= p+q. Moreover, up to multiplication by constants, these are
the only algebraic first integrals resp. integrating factors that are products of
powers of semi-invariants and invertible series.

(d) Let :2 �:1=&q�p, with p and q relatively prime positive integers,
p�q, and f =B+�j�1 # j (_j id+{j B), where _j , {j # C, and #(x) :=xq

1x p
2 .

Then x1 and x2 are, up to multiplication with invertible series, the only
irreducible semi-invariants of f in C[[x1 , x2]].

If not all the _j are equal to zero then there exists no first integral that is
algebraic over C((x1 , x2)). Up to multiplication by constants, the only
integrating factor that is algebraic over C((x1 , x2)) is (x1+lq

1 x1+lp
2 \(x))&1=

(x1x2 #(x) l \(x))&1, with l the smallest index such that _ l {0, and x1x2\(x)
=det(B(x), _lx+� #(x) i _ l+i (x)).

If all _j=0 then #(x)d } \(#(x)) is a first integral algebraic over
C((x1 , x2)) for any rational d and any invertible formal power series \ in one
variable, and (x1x2#(x)d } \(#(x))&1 is an integrating factor. Moreover, every
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first integral that is a product of powers of semi-invariants, multiplied by
some invertible series, is of this type.

(e) Let :2=0, and f =B+�j�1 # j (_ j id+{jB), where _ j , {j # C, and
#(x) :=x2 . Then x1 and x2 are, up to multiplication with invertible series, the
only irreducible semi-invariants of f in C[[x1 , x2]].

If not all the _j are equal to zero then there exists no first integral that is
algebraic over C((x1 , x2)). Up to multiplication by constants, the only
integrating factor that is algebraic over C((x1 , x2)) is (x1x1+l

2 \(x))&1=
(x1x2 #(x) l \(x))&1, with l the smallest index such that _l{0, and \ is
defined similarly to (d).

If all _j=0 then #(x)d } \(#(x)) is a first integral algebraic over
C((x1 , x2)) for any rational d and any invertible formal power series \ in one
variable, and (x1x2#(x)d } \(#(x))&1 is an integrating factor. Moreover, every
first integral that is a product of powers of semi-invariants, multiplied by
some invertible series, is of this type.

Proof. (i) Let , be a semi-invariant of f. It was shown in Lemma 2.2
that we may assume LBs

(,)=*0,, with some *0 # C. From LBs
(x i1

1 x i2
2 )=

(i1:1+i2:2)(x i1
1 x i2

2 ) it follows that *0=(k1:1+k2:2) for certain non-
negative k1 , k2 . If ( j1 , j2){(k1 , k2) and k1:1+k2:2= j1 :1+ j2 :2 then
:2 �:1 is rational. Therefore, in case (a) the only semi-invariants are the
xi1

1 x i2
2 , and only x1 and x2 are irreducible.

In cases (b) and (c) (with p :=1 in case (b)) we may assume that :1= p
and :2=q. Let *0=k1 p+k2 q. Then LBs

(x i1
1 x i2

2 )=*0x i1
1 x i2

2 if and only if
p(k1&i1)=q(i2&k2), thus p divides i2&k2 , and q divides k1&i1 . It
follows that LBs

(,)=*0, if and only if ,(x)=xe1
1 xe2

2 } �(xq
1 , x p

2 ) for suitable
e1 , e2 , and a homogeneous polynomial � in two variables. Since � is a
product of linear polynomials, the assertion on semi-invariants follows in
case (c), and in (b) for ;=0. If ;{0 in case (b), the assertion follows
immediately from (2.2).

In case (d) we may assume that :1= p and :2=&q. Let *0=k1 p&k2q.
Then LBs

(x i1
1 x i2

2 )=*0 x i1
1 x i2

2 if and only if p(k1&i1)=q(k2&i2), thus p
divides k2&i2 , and q divides k1&i1 . It follows that LBs

(,)=*0, if and
only if ,=x i1

1 x i2
2 } \(xq

1 x p
2 ), with \ an invertible series in one variable. The

assertion about semi-invariants follows. In case (e) similar arguments
apply.

(ii) It is elementary to verify that (x1x2)&1 is an integrating factor
whenever f =Bs . In the other cases, use Lie's theorem to obtain the
integrating factor det(B(x), f (x))&1. This works (and yields the integrating
factors as asserted) unless all _j=0 in cases (d) or (e). But then f (x)=
(1+� {j #(x) j) B(x), and ((1+� {j#(x) j) x1x2)&1 is obviously an integrat-
ing factor. In each case, other integrating factors (should they exist) differ
from the ones determined here by multiplication with a first integral.
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(iii) It can be directly verified that the functions given in parts (b)
through (d) (if applicable) are first integrals resp. integrating factors, and
it only remains to be seen that there are no others. Now, the existence of
a (nonconstant) first integral that is algebraic over C((x1 , x2)) implies the
existence of a first integral in C((x1 , x2)) itself. (All the coefficients in the
minimum polynomial of such a first integral are annihilated by Lf , and not
all of them are constant; see also Prelle and Singer [21].) Thus we may
assume that �=�m1

1 } } } �mr
r exp(+) is a first integral, with r�0, semi-

invariants �j , and integers mj . We note that Lf (exp(+))=Lf (+) exp(+),
and Lf (+)(0)=0.

In case (a), we have �=xm1
1 xm2

2 exp(+), and LB(�)=0 if and only if
m1 :1+m2 :2+LB(+)=0. Since :2�:1 is not rational, and LB(+)(0)=0,
this implies m1=m2=0, and LB(+)=0. As was seen in (i), + is then con-
stant.

In cases (b), when ;=0, and (c), we have �=xm1
1 xm2

2 > (xq
1+$ix p

2 )ni

exp(+), and analogous reasoning shows that pm1+qm2+ pq � ni=0, and
that + is constant. In case (b), with ;=% 0, the same argument works with
�=xm1

1 exp(+).
In cases (d) and (e), according to (i) and Lemma 2.2, we may assume

that �= �1

�2
exp(+), with LB(�j)=*0� j , and *0 # C, hence �j=xk1

1 xk2
2 }

&j (#(x)), with series &j in one variable. We may assume that the order of &2

is less than or equal to that of &1 , which then shows that � # C[[x1 , x2]].
Now Lemma 2.2 shows that � is a series in #, and # is a first integral of
f. From Lf (#)=div(B) � _j# j+1 the assertions follow. K

It is remarkable that one gets very precise information in every case
except when :2 �:1 is rational and positive. We will refer to the corre-
sponding stationary points as ``rational nodes'' (adopting terminology from
the classification of real linear systems). These points, with the exception of
the first case in (2.3b) are precisely the dicritical ones among the non-
degenerate stationary points, i.e., they admit infinitely many (pairwise
relatively prime) semi-invariants. For nondegenerate stationary points
which are not dicritical the theorem yields strong consequences.

Corollary 2.4. Let x* = f (x) be a plane polynomial differential equa-
tion, and z a nondegenerate stationary point which is not dicritical. Let
,1 , ..., ,r be irreducible and pairwise relatively prime polynomials.

(a) If the ,i are semi-invariant then ,i (z)=0 for at most two indices.

(b) Let d1 , ..., dr be rational numbers such that (,d1
1 } } } ,dr

r )&1 is an
integrating factor for f.

(b1) If ,i (z){0 for all i then the eigenvalue ratio is as in (2.1d, e),
and Bruno's Condition A is satisfied.
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(b2) Assume that there is an s>0 such that ,1(z)= } } } =,s(z)=0
and ,i (z){0 for all i>s. Then s�2. Moreover:

�� In the situation of (2.1a), one has either s=1 and d1=1 or
s=2 and d1=d2=1.

�� In the situation of (2.1b), with ;{0, one has s=1 and
d1=q+1.

�� In the situation of (2.1d), with p{q, one has s=1 only if
Bruno's Condition A is satisfied, and then necessarily d1=1. If s=2 then (up
to a permutation) d1=1+lq, d2=1+lp for some rational number l. If
Bruno's Condition A is not satisfied then l is an integer and l>0.

�� In the situation of (2.1d), with p=q=1, one has either s=1
and d1=1+l or s=2 and d1=d2=1+l for some rational number l. If
Bruno's Condition A is not satisfied then l is an integer and l>0.

�� In the situation of (2.1e) one has s=1 only if the stationary
point z is not isolated, and then necessarily d1=1. If s=2 then d1=1,
d2=1+l for some rational number l. If z is an isolated stationary point then
l is an integer and l>0.

Proof. Whenever ,i (z)=0, there is a prime factorization of ,i in the
formal power series ring corresponding to z. Now use the results of (2.3).
Note that in the last case Bruno's Condition A is satisfied if and only if the
stationary point z is not isolated. K

There is another consequence of (2.3) that deserves particular attention.

Remark 2.5. Let f be a real analytic vector field in a neighborhood of
the stationary point z # R2. If Df (z) has nonzero purely imaginary eigen-
values, and (,d1

1 } } } ,dr
r )&1 is an integrating factor of f, with all , i analytic

in z, then z is a center unless ,i (z)=0 for some i and di=1+l with some
integer l>0.

In particular, if f is a polynomial vector field with integrating factor
(,1 } } } ,r)

&1, with polynomials ,i , then every stationary point z whose
linearization yields a center is already a center.

Proof. From (2.3) one sees that Bruno's Condition A must be satisfied
if no ,i vanishes at z or ,j (z)=0 with di {1+k for all positive integers k,
and this in turn guarantees convergence of a normalizing transformation
and existence of a nonconstant analytic first integral in z. K

The special situation described in the second part of (2.5) is encountered
quite frequently, provided that some algebraic integrating factor exists; see
Kooij and Christopher [12], and Section 3 of this article.
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As should be expected, the results of (2.3) also yield criteria for non-
existence of algebraic integrating factors. This will not be discussed here in
detail, but one example should be presented.

Example 2.6. The equation

x* =\ x1+3x2+x2
1

3x1+x2+ 9
2x2

1+ 3
2 x1x2+

does not admit an algebraic integrating factor.

Proof. By construction, ,1(x)=x2
1+x3

1&x2
2 is a semi-invariant of this

equation. Furthermore, the linearization of the equation at the stationary
point 0 is given by ( 1 3

3 1), with eigenvalues 4 and &2.
Locally, ,1=(x2+x1 - 1+x1 )(x2&x1 - 1+x1 )=x~ 1 x~ 2 is a product of

two irreducible factors. Now (2.4) shows that, if there exists an integrating
factor #=(,d1

1 } } } ,dr
r )&1 that is algebraic over C(x1 , x2), then all the ,i with

i>1 are invertible at 0, and locally one must have #=(x~ d1
1 x~ d1

2 exp(+))&1,
with equal exponents for x~ 1 and x~ 2 . On the other hand, computing the
normal form up to degree 4 (with :2 �:1=&1�2 in the terminology of
(2.1)ff.) yields _1{0, and then, according to (2.3) and (2.4), a unique
integrating factor (x~ 2

1 x~ 3
2 exp(&))&1, and this is a contradiction.

3. APPLICATIONS TO POLYNOMIAL SYSTEMS

From now on, we consider an equation x* = f (x) in C2, with f a polyno-
mial. The local theory developed in the previous section yields conditions
on the possible singular points of semi-invariants, and the possible
exponents occurring in integrating factors. Note that the common points of
two different invariant (algebraic) curves are stationary, and that the
number of such points is determined by the degrees of the defining
poynomials. For a proper discussion of this one has to pass to the projec-
tive plane. Recall Bezout's theorem in the projective plane P2 over C (see,
for instance, Shafarevich [27]):

Two homogeneous, relatively prime polynomials \~ (x1 , x2 , x3) and
_~ (x1 , x2 , x3), of respective degrees r>0 and s>0, have exactly r } s com-
mon zeros in P2, with multiplicities counted properly. For relatively prime
polynomials \(x1 , x2)=�r

i=0 \ i (x1 , x2), and _(x1 , x2)=�s
i=0 _i (x1 , x2) in

C[x1 , x2] (with r>0, s>0, the \i and _i homogeneous of degree i, and
\r {0, _s {0), Bezout's theorem is applicable to the homogenizations
\~ :=�r

i=0 \i (x1 , x2) x r&i
3 , resp. _~ :=�s

i=0 _i (x1 , x2) xs&i
3 .
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Common zeros of \ and _ are in 1�1-correspondence with those com-
mon zeros ( y1 : y2 : y3) of \~ and _~ that satisfy y3 {0. Thus the polynomials
\ and _ have at most r } s common zeros in C2. (If \ and _ have a common
zero, say, at 0, then its multiplicity is the (finite) dimension of the vector
space C[[x1 , x2]]�(\, _). In particular, this multiplicity is equal to 1 if
and only if the derivatives D\(0) and D_(0) are linearly independent.)
The common zeros ( y1 : y2 : y3) of \~ and _~ with y3=0 are in 1�1-
correspondence with the common factors of \r and _s (with multiplicities
corresponding).

Given x* = f (x), with the entries of f of degree m (or smaller), and
relatively prime, it follows that there are at most m2 stationary points.
Assume that

# :=(,m1�q
1 } } } ,mr �q

r )&1 (-)

is an integrating factor, with the ,i irreducible (and pairwise relatively
prime) polynomials of degree ni , respectively, and relatively prime integers
m1 , ..., mr , q.

Since every common zero of ,i and ,j (with i{ j) is a stationary point
of x* = f (x), and, counting multiplicities, the homogenized polynomials
have ni } nj common zeros in the projective plane, this raises some hope for
degree bounds. To effectively find such bounds, one still needs to take
stationary points at infinity into account. The geometric background of this
procedure (going back to Poincare� ) is a correspondence between plane
polynomial vector fields and certain polynomial vector fields on a sphere
(covering P2), such that an equator of the sphere can be identified with
points at infinity of the plane. (See Perko [20], Section 3.10, for the proce-
dure, and also Schlomiuk [24]. The algebraic version was investigated in
[23]; in particular it works equally well in the complex case.) For our pur-
pose, the geometric interpretation is of little importance, and the necessary
ingredients will be presented directly.

We introduce some notation. For a polynomial ,(x1 , x2)=�r
i=0 ,i (x1 , x2)

# C[x1 , x2], of degree r, let ,� (x1 , x2 , x3)=�r
i=0 , i (x1 , x2) xr&i

3 be its
homogenization, and call ,*(x2 , x3) :=,� (1, x2 , x3) the Poincare� transform
of , with respect to x1 . (The points ( y1 : y2 : 0) of the projective plane are
also called points at infinity. The name ``Poincare� transform'' is not in com-
mon use for this situation; it will be used here to have uniform notation for
polynomials and vector fields.)

For a polynomial vector field f (x1 , x2)=�m
k=0 f (k)(x1 , x2), with f (k)

homogeneous of degree k, and f (m){0, let

g1

g(x1 , x2 , x3) :=\ :
m

k=0

f (k)(x1 , x2) xm&k
3

0 +=\g2+0
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be its homogenization, and furthermore

0

g~ (x1 , x2 , x3) :=& g1 } x+x1 } g=\&x2 g1+x1 g2+&x3 g1

its projection with respect to x1 (as it is called in [23]). The Poincare�
transform of f with respect to the vector ( 1

0) is then

f *(x2 , x3) :=\&x2 g1(1, x2 , x3)+ g2(1, x2 , x3)
&x3 g1(1, x2 , x3) + .

(This is the Poincare� transform as it can be found in Perko [20], for
instance. The intermediate versions have also been recorded because
they will be needed later on. Note that f * has the built-in semi-invariant
x3 .)

For a nonzero v=( ;1
;2

) # C2, let T be an invertible linear map satisfying
Tv=( 1

0) and define a Poincare� transform ,v* of , with respect to v as
(, b T&1)*, and a Poincare� transform f v* of f with respect to v as
(T b f b T&1)*. (There are more canonical ways to define these, and there
are some arbitrary choices in the definitions, but this is sufficient for our
purposes.)

We now collect a few properties of Poincare� transforms, keeping the
notation from above.

Lemma 3.1. (a) If , is irreducible then ,v* is irreducible. One has
,v*(0)=0 if and only if &;2x1+;1 x2 divides the highest degree term ,(r).
In that case, the zero sets of ,v* and x3 meet transversally at 0 if and only
if (&;2x1+;1x2)2 does not divide ,(r).

(b) One has f v*(0)=0 if and only if the vector v satisfies f (m)(v)=*v
for some * # C. In that case, if the eigenvalues of Df (m)(v) are m* (with
eigenvector v, due to homogeneity), and &, then the eigenvalues of Df v*(0) are
&&* (with eigenspace x3=0), and &*.

Proof. It is harmless to assume v=( 1
0).

(a) The assertion about irreducibility follows from a standard result
on homogenization and dehomogenization. Let ,(r)=� r

i=0 _ixr&i
1 x i

2 .
Then ,*(0)=_0 , and D,*(0)=(_1 , V ). This shows the remaining asser-
tions.
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(b) Let

f (m)=\
:
m

i=0

\ ixm&i
1 x i

2

:
m

i=0

_ixm&i
1 x i

2+ .

Then f *(0)=0 if and only if g2(1, 0, 0)=0, hence _0=0, and the first
assertion follows (with *=\0). Note that

Df (m)(1, 0)=\m\0

0
V
_1+ ,

hence &=_1 . Now the second assertion follows from

f *=\&x2(\0+t.h.o.)+(_1 x2+t.h.o.)
&x3(\0+t.h.o.) + . K

Let 0{v # C2 such that f (m)(v) # Cv. Then we call Cv a stationary point
at infinity of f. (This is justified because Cv is a stationary point at infinity
if and only if 0 is a stationary point of the Poincare� transform f v*.) Since
f (m)(w) # Cw if and only if w is a zero of the homogeneous polynomial
\(x) :=det(x, f (m)(x)), there are at most m+1 stationary points at infinity
unless \=0. Note that \=0 if and only if f (m)(x)='(x) } x with some
(m&1)-form '. If f (m)(v)=*v, with *{0, then we will call the number *&&

*

the eigenvalue ratio of the linearization at the given stationary point at
infinity.

The eigenvalue ratios of the stationary points at infinity are not inde-
pendent, as the next result shows.

Proposition 3.2. Let f be such that there are exactly m+1 stationary
points at infinity, and that all of them are nondegenerate, with nonzero eigen-
value ratios +1 , ..., +m+1 . Then

:
m+1

i=1

+&1
i =1.

Proof. This is a consequence of a theorem by Camacho and Sad,
cf. [4], Appendix, as was shown in Lins Neto [14], Section 1.2, Remarks.
(See also the Introduction of Cerveau and Lins Neto [6].) K

Let us now investigate the behavior of semi-invariants and integrating
factors under Poincare� transforms.
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Proposition 3.3. Let x* = f (x) be given, with m the degree of f.

(a) If , is a semi-invariant of f, of degree n, with Lf (,)=*,, then ,*
is a semi-invariant of f *, with Lf *(,*)(x2 , x3)=(&ng1(1, x2 , x3)+
**(x2 , x3)) ,*(x2 , x3).

(b) If f admits an integrating factor as in (-) then

(x (m+2&(m1n1+ } } } +mrnr)�q)
3 ,1*

(m1 �q) } } } ,r*
(mr�q))&1

is an integrating factor of f *.

Proof. We use the notation introduced above.

(a) From Lf (,)=*, it follows that Lg(,� )=*� ,� , and then that
Lg~ (,� )=(&ng1+x1*� ) ,� , and the assertion follows upon setting x1=1.

(b) One computes

div(g~ )=&
�g1

�x2

} x2& g1+
�g2

�x2

} x1&
�g1

�x3

} x3& g1

=&2g1&\�g1

�x1

} x1+
�g1

�x2

} x2+
�g1

�x3

} x3++x1 div(g)

=&(m+2) g1+x1 div( f )
t

,

since g1 is homogeneous of degree m, and div(g) is, in this special case, the
homogenization of div( f ). This yields

div( f *)=&(m+2) g1(1, x2 , x3)+(div( f ))*.

With Lf *(xd
3)=&d g1(1, x2 , x3) } xd

3 the assertion follows. K

Note that these results remain valid for Poincare� transforms with respect
to an arbitrary nonzero vector, since linear transformations (with constant
Jacobian) change an integrating factor only by a multiplicative constant.

The following result, the first one addressing the Poincare� problem, is
not new. It is, for instance, a consequence of a theorem of Carnicer [5],
and may also be deduced from Cerveau and Lins Neto [6]. It is included
here because we can supply a straightforward and elementary proof.

Theorem 3.4. Assume that all the stationary points at infinity of
x* = f (x) are nondegenerate, and that none of them is a rational node. Let
�1 , ..., �s , with s�m+1, be the ( pairwise relatively prime) linear forms
dividing det(x, f (m)(x)).

If , is an irreducible semi-invariant of f then the highest-degree term of ,
is a product �l1

} } } �ld
(up to a scalar factor), with pairwise different lj . None
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of the �lj
divides the highest-degree term of any other irreducible semi-

invariant.
In particular, the sum of the degrees of all the irreducible semi-invariants

of f is at most m+1.

Proof. Every �i determines a straight line C } vi , which, in turn, deter-
mines a stationary point at infinity, and all stationary points at infinity are
determined like this. Now let , be a semi-invariant of f. Then the highest-
degree term of , is a semi-invariant of f (m), and thus a product �k1

l1
} } } �kd

ld
,

with pairwise different lj , and positive integers kj . Consider the Poincare�
transform ,� with respect to �lj

. Since the (invariant) zero sets of ,� and x3

meet at (0, 0), this point is stationary for the corresponding Poincare� trans-
form of f. According to hypothesis, this stationary point at infinity is non-
degenerate and not a rational node, and hence the (local) zero sets of the
Poincare� transform of , and of x3 must meet transversally at 0. Now
Lemma (3.1) shows that kj=1.

If there were a different irreducible semi-invariant \ whose highest-degree
term is a multiple of, say, ,l1

, then the corresponding stationary point at
infinity would admit the (local) semi-invariants x3 , ,*, and \*. The zero
sets of ,* and \* have (locally) only the point 0 in common, otherwise ,
and \ would have infinitely many common zeros, and hence be equal by
Hilbert's Nullstellensatz. But then there must be at least three different
irreducible local semi-invariants, a contradiction to (2.3). K

The basic argument in the proof works (and yields an upper bound for
the degrees) whenever each stationary point at infinity admits only finitely
many irreducible formal semi-invariants. See also Carnicer [5]. It should
be remarked that the hypothesis of (3.4) involves only the highest degree
term f (m), and homogeneous polynomial vector fields are easier to handle
than general ones. We will discuss this later on. Theorem (3.4) also shows
that the problem of existence (and construction, if applicable) of an
algebraic integrating factor can be resolved whenever the hypothesis is
satisfied. But more can be said about this:

Theorem 3.5. Assume that all the stationary points at infinity of
x* = f (x) are nondegenerate, that none of them is a rational node, and that
the eigenvalue ratio for at least one of them is not rational.

If x* = f (x) admits an integrating factor (,m1 �q
1 } } } ,mr�q

r )&1, then necessarily
m1= } } } =mr=q=1, and n1+ } } } +nr=m+1. Also, s=m+1 in the ter-
minology of (3.4), and every �i divides the highest-degree term of exactly one
,k , with multiplicity one.

Proof. Consider the Poincare� transform with respect to ( 1
0). Since linear

transformations do not change the number of irreducible polynomials, and

67ON THE POINCARE� PROBLEM



the exponents, occurring in an integrating factor, we may assume that x2

divides the highest-degree term of ,1 , and that the eigenvalue ratio at the
corresponding stationary point at infinity is not a rational number. Accord-
ing to (3.3), (x (m+2&(m1n1+ } } } +mrnr)�q)

3 ,1*
(m1 �q) } } } ,r*

(mr �q))&1 is then an
integrating factor for f *, and (2.4) shows that ,2*(0){0, ..., ,r*(0){0, and
that m1 �q=1, and m+2&(m1 n1+ } } } +mr nr)�q=1.

A similar argument applies to the factors of the highest-degree terms of
the ,i , for i>1: The Poincare� transforms of the remaining ,j at the corre-
sponding point at infinity are locally invertible, and the possible exponents
are restricted by (2.4), resp. (2.3). But since x3 is already known to have
exponent &1, a case-by-case analysis of (2.4) shows that the Poincare�
transform of ,i must also have exponent &1. This shows mi �q=1 for
i=1, ..., r, and therefore m1= } } } =mr=q=1. Considering the x3 -expo-
nent again now shows � ni=m+1.

Finally, no stationary point at infinity can have an integrating factor
x&1

3 exp(+), as follows again from (2.4), and therefore every �i must occur
as highest-degree term of some ,k . K

Thus, whenever f has no degenerate stationary point and no rational
node at infinity then irreducible semi-invariants of f have degree m+1 or
less, and every prime divisor of det(x, f (m)(x)) occurs at most once in a
highest-degree term. It follows that finding irreducible semi-invariants for
such a vector field is a problem of linear algebra: The coefficients of a semi-
invariant satisfy a system of (finitely many) linear equations with
parameters. (The fact that there are only finitely many possibilities for the
highest-degree term helps to reduce work.) If the additional condition in
(3.5) is satisfied (and this is always the case when none of the eigenvalue
ratios equals zero; see (3.2)) then the search for an algebraic integrating
factor (or deciding that no such factor exists) is even easier: There is, up
to a scalar factor, at most one nonzero solution of Lf (,)=div( f ) ,, and its
highest-degree term is ,m+1(x)=det(x, f (m)(x)). Now finding ,m , ,m&1 , ...
is a matter of solving a system of linear equations (without parameters). If
this system has no solution then there is no algebraic integrating factor. In
this context one should also mention the result of Kooij and Christopher
[12], which complements (3.5) by describing the vector fields explicitly
whenever a few more genericity conditions are satisfied.

Regarding the center problem (Schlomiuk [24, 25], Christopher [7]),
we see that real equations with an integrating factor as above have the
property that every stationary point with nonzero, purely imaginary eigen-
values of the linearization is a center; cf. (2.5).

It remains to discuss the conditions in (3.4) to see how restrictive they
are. Since they involve only the highest-degree term, we have to discuss
homogeneous polynomial vector fields of degree m. These form a finite
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dimensional vector (or affine) space Pm . The vector fields p with the
property that the entries p1 , p2 are relatively prime form a Zariski-open
and dense subset (by a resultant argument), and so do those vector fields
for which det(x, p(x)) has only prime factors of multiplicity 1. We will
always assume in the following that the vector fields under consideration are
contained in the intersection Qm of these two sets. Thus for a given p, there
are m+1 pairwise linearly independent vectors v1 , ..., vm+1 such that
p(vi)=:ivi , with :i {0. Since p(_vi)=_m&1:i (_v i), we may assume after
scaling that p(vi)=vi . (Any nonzero v such that p(v)=v will be called an
idempotent of p.)

Lemma 3.6. Let q # Qm , and * an (m&1)-form such that p, defined by
p(x)=q(x)+*(x) } x, also lies in Qm . Let v{0 such that q(v)=v, and let m
and ; be the eigenvalues of Dq(v).

Then 1+*(v){0, and with _ :=(1+*(v))&1�(m&1) one has p(_v)=_v,
and the eigenvalues of Dp(_v) are m and ;+*(v)

1+*(v) .
The eigenvalue ratios of the linearizations at the stationary point at infinity

corresponding to Cv are 1&; for q, and 1&;
1+*(v) for p.

Proof. The second assertion is an immediate consequence of the first,
together with (3.1). As to the first, one has p(v)=(1+*(v)) v, hence
1+*(v){0 due to p # Qm , and p(_v)=_v follows. Furthermore, Dp(x) y=
Dq(x) y+*(x) y+(D*(x) y) x, whence Dq(v) w=;w+#v (with v and w
linearly independent) forces Dp(v) w=(;+*(v)) w+#~ v. The assertion
follows with Dp(_v)=(1+*(v))&1 Dp(v). K

We will use this lemma as follows. Given p # Qm , and \(x) :=
det(x, p(x)), one has a decomposition

p(x)= :
m+1

j=0

: j \ jxm+1& j
1 x j&1

2

( j&1&m) xm& j
1 x j

2++\ :
m&1

i=0

; ixm&i
1 x i

2+ } x.

(This is easily verified.) Denote the first term by q, and the (m&1)-form in
the second term by *. Then div(q)=0, and det(x, q(x))=\(x), and q is
uniquely determined by these two properties. (We may assume that q is
also contained in Qm , by choosing p out of a smaller, but still open-dense,
subset of Pm .) Note that * has no influence on \.

Now let v1 , ..., vm+1 be pairwise linearly independent idempotents of q.
Due to tr(Dq(x))=0 for all x, the eigenvalues of each Dq(vi) are m and
&m. The eigenvalue ratio of the linearization at the corresponding station-
ary point at infinity is therefore 1+m. For p, Lemma (3.6) yields the eigen-
value ratio 1+m

1+*(vi)
.
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Proposition 3.7. There is a subset Z of Pm of Lebesgue measure zero so
that every p # Pm"Z, and every polynomial vector field with highest-degree
term p, satisfies the hypotheses of (3.4) and (3.5).

Proof. Assume that, in the decomposition above, both p and q are in
Qm . This only excludes a set of measure zero. Now let Z be the union of
this measure zero set and the set containing those p for which :0 , ..., :m+1 ,
;0 , ..., ;m&1 are algebraically dependent over the rationals. (To see that the
latter set has measure zero, recall that the set of nonzero polynomials in
2m+2 variables with integer coefficients is countable, and that the set of
zeros of any such polynomial has measure zero.)

The eigenvalue ratio for the linearization at the stationary point at
infinity corresponding to Cvi is then 1+m

1+*(vi)
. If p � Z then the *(v i) are not

rational, since the components of vi are algebraic over C(:0 , ..., :m+1),
while none of the ;k is. K

This result is far from satisfactory, since the exceptional set contains,
among others, all vector fields with rational coefficients. We therefore add
a few more observations.

(3.8) Proposition. If p has rational coefficients, \ is irreducible over the
rational number field, and tr(Dp(v)){0 for every idempotent of p, then p,
and every polynomial vector field with highest-degree term p, satisfies the
hypotheses of (3.4) and (3.5).

Proof. Let \̂(s) :=\(1, s). Then \̂ is an irreducible polynomial in one
variable, of degree m+1. If \̂(�)=0 then p( 1

�)=:( 1
�), with := p1(�) a

polynomial of degree m in �. (Note that every idempotent is a multiple of
( 1

�), for a suitable �, since x2 does not divide \.)
Let ; be the second eigenvalue of Dp( 1

�). It will be shown that the eigen-
value ratio :&;

: at the corresponding stationary point at infinity is not
rational. Otherwise, ; would be a rational multiple of :, and the same
would hold for the trace of Dp( 1

�), which is nonzero according to
hypothesis. This trace is a polynomial in � of degree smaller than m, and
thus rationality of ;�: implies that a certain (nonzero) polynomial of
degree m annihilates �. This is a contradiction, since \̂ is the minimum
polynomial of �. K

As is well-known, the set of polynomial vector fields of given degree
m�2 that admit no algebraic integrating factor (actually, no algebraic
semi-invariant) contains an open and dense subset of the space of all vector
fields of degree m. See Zoladek [31] for a proof. The results above can be
employed to construct such vector fields explicitly.

It may be useful to consider some examples of vector fields that admit
an integrating factor as in (3.5). Let , be a polynomial of degree m+1,
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such that its highest-degree term is a product of pairwise relatively prime
linear forms, and ,=,1 } } } ,s its prime factorization. Let qi :=( &�,i ��x2

�,i��x1
).

(Note that the entries of qi have no common factor, as the highest degree
term of ,i has no multiple prime factors.) Then for every choice of complex
numbers &1 , ..., &s , the vector field

f = :
s

i=1

&i ,1 } } } ,� i } } } ,sq i

(with the hat indicating a missing term) admits the integrating factor ,&1.
As follows from Kooij and Christopher [12], under certain genericity con-
ditions every vector field of degree �m admitting the integrating factor ,&1

is of this type. It can also be shown that, unless all &i=0, the degree of f
is exactly m.

To an integrating factor , of this type, there exists a rational vector field
g such that ,(x)=det(g(x), f (x)), and g then generates a local one-
parameter group of symmetries of f; see [30]. Let us briefly disgress to see
under what circumstances there exists a polynomial vector field with this
property.

Proposition 3.9. Let f =�m
k=0 f (k) be a vector field of degree m>1

that satisfies the hypotheses of (3.5), and, in addition, assume that the entries
of f (m) are relatively prime. If there is a polynomial vector field g=� s

j=0 g( j)

with det(g, f ){0 and [ g, f ]=*f for some rational *, then there is a c # C2

so that f (x)= f (m)(x+c) for all x, and one may choose g(x)=x+c.

Proof. The hypothesis implies that the entries of f are relatively prime.
Therefore [ g, f ]=*f, with g a polynomial, forces * to be a polynomial.
Moreover, the inverse of �(x) :=det(g(x), f (x)) is an integrating factor for
f. It follows from (3.5) that � has degree m+1. Therefore the highest
degree term det(g(s), f (m)) must be zero whenever s>1. This condition,
together with the relative primeness of the entries of f (m), forces g(s)=_f (m)

with a suitable polynomial _. But then g&_f has degree smaller than s,
and [ g&_f, f ]=*� f , with some polynomial *� .

Therefore we may assume that g has degree �1. Since g cannot be con-
stant (otherwise the entries of f (m) would be polynomials in one variable,
contadicting the hypothesis), we have g(1)=% 0, and det(g(1)(x), f (m)(x)) is
the highest-degree term of �. But this highest-degree term is, up to a scalar
factor, also equal to det(x, f (m)(x)), as it is an integrating factor of f (m).
Therefore det(g(1)(x)&:x, f (m)(x))=0, and g(1)(x)&:x=0, since it must
be a polynomial multiple of f (m), and m>1. Thus we may take g(x)=
x+c.
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Applying the polynomial automorphism T: x [ x&c to the equation
[x+c, f (x)]=*(x) f (x) yields [x, f (x&c)]=*(x&c) f (x&c), and this
forces f (x&c) to be homogeneous. Since the highest degree term of
f (x&c) is f (m)(x), it follows that these two are equal, and thus f (x)=
f (m)(x+c). K

In the terminology introduced before (3.9), this means that there is such
a polynomial g if and only if , is a product of factors of degree 1, and that
their zero sets meet in one point. This indicates that nontrivial polynomial
``infinitesimal symmetries'' are rare even for those vector fields that admit
an integrating factor with polynomial inverse, and that limiting the search
to such vector fields would exclude many interesting ones.

As a class of examples, let us investigate quadratic vector fields more
closely. There is a precise description of the exceptional set Z in this case.

Proposition 3.10. Let p be a homogeneous quadratic vector field. If
p # Q2 , and v1 , v2 and v3 are pairwise linearly independent idempotents of p,
then there is a point (:1 : :2 : :3) in the projective plane such that all :i {0,
:1+:2+:3 {0, and :1v1+:2 v2+:3 v3=0. This point (:1 : :2 : :3) deter-
mines p up to a linear isomorphism, and conversely every point in the projec-
tive plane which satisfies the restrictions above determines a homogeneous
quadratic vector field in Q2 .

For any quadratic vector field with highest-degree term p, the eigenvalue
ratio of the linearization at the stationary point at infinity corresponding to
Cvi is equal to (:1+:2+:3)�:i . In particular, if the normalization
:1+:2+:3=1 is chosen then the vector field satisfies the hypotheses of
(3.4) and (3.5) if and only if none of the :i is rational and positive.

Proof. Some of the arguments are taken from [29]. For given p, defin-
ing p̂(x, y) := 1

2 ( p(x+ y)& p(x)& p( y)) yields a symmetric, bilinear map
from C2_C2 to C2, with p̂(x, x)= p(x) for all x. If c1 , c2 is any basis of C2

then p is uniquely determined by p(c1), p(c2) and p̂(c1 , c2), and conversely
every set of prescribed values for these defines a homogeneous quadratic
vector field. Now we have p(v1)=v1 , p(v2)=v2 , and the relation

&
:1

:3

v1&
:2

:3

v2=v3

= p̂(v3 , v3)

=\:1

:3 +
2

p̂(v1 , v1)+2
:1 :2

:2
3

p̂(v1 , v2)+\:2

:3+
2

p̂(v2 , v2)

leads to

2p̂(v1 , v2)=&
:1+:3

:2

v1&
:2+:3

:1

v2 .
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(Since the idempotents are pairwise linearly independent, it is clear that all
:i {0. The condition :1+:2+:3=0 yields p(x)='(x) } x for some linear
', a contradiction to p # Q2 .)

Since Dp(v1) y=2p̂(v1 , y) for all y, this relation shows that the second
eigenvalue of Dp(v1) (in addition to 2) is equal to &

(:2+:3)
:1

, and the asser-
tion about the stationary point at infinity follows from (3.1). The rest is
clear. K

Note that the inverse eigenvalue ratios at the stationary points at infinity
add up to 1, as stated in (3.2). If one chooses :1 and :2 with nonzero
imaginary parts and real parts >1�2, and :3=1&:1&:2 then (:1 : :2 : :3)
corresponds to a point of P2"Z. This argument shows that P2"Z contains
a nonempty open subset of P2 . Now it easily follows with (3.4) that there
is a nonempty open subset in the space of all quadratic vector fields whose
members admit no invariant algebraic curves. (A similar result can be
deduced, with a little more work, for all degrees, and thus one has an
elementary constructive proof of the corresponding result by Lins Neto
[14], Theorem B.) In the quadratic case the idempotents are unique, while
nontrivial scalar multiples (the scalars being roots of unity) of idempotents
are again idempotents whenever m>2. Let us look at one quadratic vector
field where the hypothesis of (3.5) is not satisfied, to see that the method
also may yield quite satisfactory results in such a case.

Example 3.11. Let p be the homogeneous quadratic vector field deter-
mined by the idempotents v1 , v2 , v3 , and :1 := &(1+i), :2 :=&(1&i),
:3 :=3. Let f be a quadratic vector field with highest-degree term p, and
assume that f admits an integrating factor (,m1 �q

1 } } } ,mr �q
r )&1, with pairwise

relatively prime polynomials ,i of respective degree ni , and m1 , ..., mr , q
relatively prime. Denote the zero set of the homogenization ,� i in the pro-
jective plane by Yi , and the zero set of x3 by Z. Furthermore, denote by
wi the stationary point at infinity corresponding to Cvi . Then r�3.

In case r=1, one has n1=3 and m1=q=1.
In case r=2, one has (up to labeling) n1=2, m1 �q=1, n2=q and

m2=1. Moreover, if Y1 and Z intersect at w3 then n2=q=1.
In case r=3, one has (up to labeling) n1=n2=1, and m1=m2=n3=q,

and m3=1. (Here, Y3 and Z intersect in w3 .)

Proof. (i) It follows from (3.3) that the integrating factor at a station-
ary point at infinity equals (xs

3(,1*)m1 �q } } } (,r*)mr �q)&1, where `` .* '' denotes
the appropriate Poincare� transform, and s=4&� mini �q.

With the eigenvalue ratios from (3.10), and the results from (2.4) and
(2.3), one gets a unique integrating factor (x~ 2x3 } (inv.))&1 (with a suitable
definition of x~ 2 , and ``(inv.)'' standing for an invertible factor) for the
Poincare� transform corresponding to w1 , and in particular this implies
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s=1, thus � mini �q=3(V). Moreover, exactly one of the Yi intersects Z at
w1 , with multiplicity one. The same, mutatis mutandis, holds for w2 . Con-
cerning the Poincare� transform corresponding to w3 , the integrating factor
is (x3 >i # I (x~ 2+;ix3

3)di } (inv.))&1 (with suitable x~ 2 , and using that s=1).
(The integrating factor condition here requires � d i=1.)

(ii) Suppose that Yj and Z intersect at w3 , with multiplicity ej�0.
Then locally , j*=> i # Ij

(x~ 2+;i x3
3) } (inv.), where Ij is a subset of I, of car-

dinality ej . (Note that the intersection multiplicity of (x~ 2+; ix3
3) and x3 at

(0, 0) is equal to 1!) Since (x~ 2+;ix3
3) and (x~ 2+; lx3

3), for i{l, intersect
with multiplicity 3 at (0, 0), it follows that Yj and Yk , for j{k, intersect
with multiplicity 3 } ej } ek , and it follows from Bezout's theorem that
3 } ej } ek�nj } nk . Bezout's theorem also implies that Yj and Z intersect at
a total of nj points (multiplicities counted), and the only possible intersec-
tion points are the wi (since they must be stationary for the corresponding
Poincare� transform of f ). In particular, if Yk intersects Z only at w3 then
3 } ej } nk�nj } nk , or 3 } ej�nj . It follows that there cannot be two different
Yj that intersect Z only at w3 .

(iii) We may assume that Y1 intersects Z at w1 , hence m1 �q=1. If Y1

and Z also intersect at w2 , we have n1�2. If n1=2 then (V) implies r�2,
while r�2 follows from (ii). Thus r=2, and n2m2 �q=1 with (V). If n1>2
then Y1 and Z intersect at w3 with multiplicity n1&2. Again, (ii) shows
that r�2, and also that 3(n1&2) n2�n1n2 in case r=2, which forces
n1=3. But then (V) forces m2n2 �q=0, a contradiction. Thus r=1, and
n1=3 by virtue of (V).

If Y1 and Z do not intersect at w2 then we may assume that Y2 and Z
do. (Hence m2 �q=1.) Again, (ii) shows that r�3, and Yj and Z intersect
at w3 with multiplicity nj&1, respectively, for j=1, 2. From (ii) one finds
3(n1&1)(n2&1)�n1n2 , or 3(1& 1

n1
)(1& 1

n2
)�1, which is impossible for

n1�2 and n2�2. Thus we may assume that n2=1. The case n1=1 yields
r=3, and m3n3 �q=1, while the case n1=2, together with (V), forces r=2.
The assumption n1>2 leads to r=2 (with (ii)), and then n1+n2>3 yields
a contradiction to (V). This finishes the proof. K

Concerning quadratic equations with algebraic particular integrals, one
also has to mention the extensive investigations by Evdokimenko [8, 9,
10] on those equations which admit a cubic semi-invariant. In particular,
Evdokimenko analyzed the global qualitative behavior of these equations
in detail. The set of quadratic equations admitting a cubic integrating
factor is contained in this class.

As an other illustration that the tools developed here work also for
certain dicritical stationary points, we discuss ``generic'' second-order
equations in one variable.
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Example 3.12. Let # be a polynomial in two variables, of degree m>1,
such that the highest degree term #(m) satisfies #(m)(1, 0){0, #(m)(0, 1){0,
and #(m) has only simple prime factors. Then the equation

x� =#(x* , x),

resp. the equivalent two-dimensional system, has no algebraic integrating
factor whenever m>2. If m=2 and there is an algebraic integrating factor
then there also is an integrating factor of the form �&1, with � a quadratic
polynomial satisfying �(2)=#(2).

Proof. The equivalent system may be written as x* = f (x), with

f (x)=\#(x)
x1 + .

Therefore det(x, f (m)(x))=x2 } #(x), and the stationary points at infinity
correspond to ( 1

0) and to the homogeneous zeros of #. Now assume that f
admits an algebraic integrating factor of the form (-), with ,i of degree ni .

(i) Consider the Poincare� transform with respect to ( 1
0), and let

#(1, 0)=:. Then the hypothesis implies :{0, and a routine computation
similar to the one in the proof of (3.1) shows

f *(x2 , x3)=\&:x2+x2x3( } } } )+xm&1
3

&:x3+x2
3( } } } ) + .

Thus for m>2 this stationary point at infinity is dicritical with eigenvalue
ratio 1, while for m=2 there is only one irreducible semi-invariant, viz. x3 .

Now assume m>2. If , i*(0)=0 then , i* is a product of vi irreducible
formal semi-invariants, where 1�vi�ni . (Note that no local component of
the zero set of ,� i is tangent to x3=0, as can be seen from (2.3). Then vi�n i

follows from the definition of the intersection multiplicity and Bezout's
theorem.) Let s�0 such that ,i*(0)=0 if and only if i�s (after a suitable
permutation, if necessary), and define vi :=0 for i>s. Since

(x (m+2&(m1n1+ } } } +mrnr)�q)
3 ,1*

(m1 �q) } } } ,r*
(mr�q))&1

is an integrating factor of f *, (2.3b) yields

m+2& :
r

i=1

mi ni �q+ :
r

i=1

mivi�q=2, resp.

m= :
r

i=1

mi (ni&vi)�q. (V)
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(ii) For the remaining stationary points at infinity we use the com-
putations carried out in [23], Lemma 4.2. As was shown there, the first
relevant terms of the normal form (in suitable coordinates) are given by

}

\x2

x3+=\;x2+ } } }
$xm

3 + } } } + , with Bs(x)=\;x2

0 + ,

and nonzero ;, $. Therefore one has a unique local integrating factor
(x2xm

3 )&1. Thus, if Cv{C( 1
0) is a stationary point at infinity, and

,*i, v(0)=0, then ,*j, v(0){0 for all other indices j, and m i �q=1. Moreover,
the x3 -exponent yields m=m+2&� mini �q, thus

:
r

i=1

mi ni �q=2. (VV)

Combining this with (i), we see that vi<ni implies mi �q=1, and this leads
to an improved version of (V):

:
r

i=1

(ni&vi)=m. (VVV)

(iii) If every ,i satisfies ,*i, v(0)=0 for some v � C( 1
0) then mi �q=1 for

all i, and comparing (VV) and (VVV) yields m=� (ni&vi)�� ni=2, hence
m=2 and all vi=0. Therefore, if m>2 there is a semi-invariant � such
that the homogenized polynomial �� intersects x3=0 only at (1 : 0 : 0).
With s :=deg(�) we may assume that �(s)=xs

2 .

(iv) We will now show that such a semi-invariant cannot exist. Com-
pare terms of highest degree in Lf (�)=*� (with * some polynomial) to
find Lf (m)(�(s))=*(m&1)�(s). Now f (i)=( V

0) for all i>1 shows that Lf (i)

sends every polynomial that does not depend on x1 to zero. Therefore
Lf (m)(�(s))=0, and *(m&1)=0. A simple induction, comparing terms of
descending degree, and using that x2 does not divide #(s), shows that for
all d such that m&d>1 one has *(m&d )=0 and ��(s&d+1)��x1=0. Com-
paring the terms for m&d=1 one obtains

sx1xs&1
2 +0+#(m) ��(s&d )

�x1

=*(m&d&1)x s
2 .

From this follows that either x2 divides #(m) or that sx1 xs&1
2 =*(m&d&1)xs

2 ,
and there is a contradiction in both cases.

(v) If m=2 then vi=0 and m i �q=1 for all i is known from (iii).
Then (VVV) shows r�2, and one obtains an integrating factor �&1, with �
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either an irreducible quadratic polynomial or a product of two polynomials
of degree one. The last assertion follows from (ii) and (iii), since the
homogenized polynomial �� must intersect the line x3=0 in the same
points as #~ . K

There are nontrivial quadratic equations with an integrating factor as
stated in (3.12): If { is a polynomial in one variable of degree at most two,
and :, ; are nonzero constants, then the equation

}

\x1

x2+=\:{$(x2)+;(&(1�2:) x2
1+{(x2))

x1 +
admits the integrating factor ,&1, with ,(x)=(&1�2:) x2

1+{(x2). Using
[30], Prop. 3.2, one can show that , and the vector field necessarily have
this form whenever , is irreducible. If , is reducible then it is also possible
to determine the equations with integrating factor ,&1, using results of
Kooij and Christopher [12].

As these examples show, the existence of dicritical stationary points at
infinity does not automatically imply that the corresponding vector fields
and possible integrating factors are beyond reach. It requires additional
work (and additional tools) to discuss them, but this can be done success-
fully in several instances. One may hope that future developments will yield
a complete picture.
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