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 Several different cataract mutations have been charac-
terized in man and mouse over the last ten years. They dem-
onstrate a broad spectrum of genetic and phenotypical vari-
ety; however, the analysis of congenital (mainly dominant)
cataracts revealed a high number of mutations in genes cod-
ing for γ-crystallins and to a slightly less extent in genes cod-
ing for β-crystallins (for a recent review see [1]). Furthermore,
structural proteins in the lens represent also membrane pro-
teins. The most prominent membrane proteins are the main
intrinsic protein (MIP; which belongs to the family of
aquaporins) and gap-junction proteins (which belong to the
connexin family). Mutations in the corresponding genes, MIP/
Mip, GJA3/Gja3, and GJA8/Gja8 (encoding the gap junction
membrane channel protein alpha 3 and alpha 8, respectively),
have been shown to underlie some congenital, dominant cata-
racts in mouse and man (for a review see [1]). Additional causes
for congenital, hereditary cataracts are mutations affecting
enzymes of sugar metabolism (e.g. GALK1 [2]) or other meta-
bolic disorders like hyperferritinemia [3].

Among the crystallins, the βB2-crystallin was, for a long
time, also referred to as the “basic principle” crystallin be-
cause of its high expression level in the lens. Therefore, it is

not surprising that mutations in that gene correspond frequently
to hereditary cataracts. Because of its expression pattern it is
also consistent with the observation that it is mainly involved
in congenital cataracts. Crystallins, the βB2-crystallin in par-
ticular, are considered to act mainly as structural proteins of
the lens; however, some of them have also been detected in
other ocular tissues and other organs [4-6]. Recently, it was
shown that the mouse Crybb2 is also involved in elongation
of axons during regeneration of retinal ganglion cells [7].
Moreover, mice harboring a mutation in the Crybb2 gene ex-
hibit subfertility in the Swiss Webster genetic background (but
not in C57BL/6 background) based upon its expression in the
sperm [8].

The present paper demonstrates clinical data for a domi-
nant congenital lens opacity in three affected patients of a
German family. Since the family size did not permit linkage
analysis, a functional candidate gene approach was attempted
towards the identification of the underlying molecular lesion.
This resulted in the identification of a new cataract-causing
allele of the CRYBB2 gene (encoding βB2-crystallin); it is the
first one outside exon 6 of CRYBB2.

METHODS
 Congenital cataract was observed in three members of a Ger-
man three-generation family, a mother and her two children
(the grandparents were not affected). Informed consent was
obtained from the family.
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Blood samples (5-10 ml) were collected from all avail-
able family members (affected and unaffected). Genomic DNA
was isolated according to standard procedures [9] and ampli-
fied by polymerase chain reaction (PCR) for the exons (and
their flanking regions) of the CRYGC, CRYGD [10], and
CRYBB2 genes [11]. PCR products were checked in 1.5%
agarose gels and purified through Nucleospin columns
(Macherey and Nagel, Düren, Germany). Sequencing was done
either commercially (SequiServe, Vaterstetten, Germany) or
at the Genome Analysis Center of the GSF (ABI3730; Ap-
plied Biosystems, Darmstadt, Germany) according to standard
procedures.

The mutation was confirmed by the presence of the cleav-
age site for the restriction enzyme TaiI. For control, we ana-
lyzed 96 randomly chosen ophthalmologically normal indi-
viduals of the KORA Survey 4 (Cooperative Health Research
in the Augsburg Region), which studied a population-based
sample of 4,261 subjects aged 25-74 years old during the years
1999-2001 [12].

Biophysical predictions of the altered protein were ana-
lyzed using the Bioinformatics tool of the Expasy Proteomics
server. To predict the secondary structure we used the GOR4
prediction method [13]. For tertiary structure predictions, we
used EsyPred3D [14] and DEEP VIEW/SWISS-Pdb viewer
[15] for automated homology protein modeling and visual-
ization of resulting protein database files.

RESULTS
Case history:  The index patient (II.2) was operated on at the
age of two years because of bilateral cataract. Her two chil-
dren, a girl (III.2) and a boy (III.1), suffered also from con-
genital, bilateral cataract and have been operated within the
first few weeks of birth. Figure 1A shows the eyes of the boy
before operation and Figure 1B after operation in the right
eye (the left eye is still cataractous). The figures demonstrate
a central nuclear cataract with a surrounding cortical opacity.
The pedigree of the family (Figure 2) suggests an autosomal

dominant mode of inheritance. The parents of the index pa-
tient are not affected.

Molecular genetics:  Because of the small family size,
we performed a functional candidate gene analysis instead of
linkage analysis. Since most hereditary cataracts are caused
by mutations in genes of the CRYG-cluster, these four genes
(CRYGA-CRYGD) have been checked first. In the index pa-
tient, no alteration was observed in the CRYGA-CRYGC genes
as compared to the database. However, in CRYGD, two
changes have been found (in intron 2: IVS2+30; 517 T>C and
in exon 3: 303/304 AG>GA, V101M). Both sites have been
identified previously as being polymorphic and occurred in
nine out of nine tested samples, which suggests either a se-
quencing error or a rare single nucleotice polymorphism (SNP)
in the database [11].

In contrast, a causative change has been found in the
CRYBB2 gene encoding the βB2-crystallin, which was exam-
ined next because of its frequent involvement in hereditary
cataracts. In exon 5 of the CRYBB2 gene, a heterozygous
mutation was found in the index patient (383 A>T; Figure
3A,B). The mutation was confirmed by a TaiI digest of the
PCR amplified exon 5 of the CRYBB2 gene. The same alter-
ation has been found in the two other family members who
were also affected (both children). This was confirmed by se-
quencing with the reverse primer. In contrast, the mutation
was not seen in healthy family members (Figure 3C). This is
particularly true for the parents of the index patient. There-
fore, the mutation most likely occurred spontaneously in one
of the germ lines of the parents. Finally, this TaiI restriction
site could not be found in 96 healthy persons collected in the
Augsburg region (Germany; data not shown). DNA transla-
tion programs predict an exchange of the highly conserved
Asp at amino acid position 128 to Val (D128V). The Asp at
position 128 lies within a stretch of 12 amino acids, which are
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Figure 1. Clinical features of the cataract.  A: The photograph of the
affected boy demonstrates a nuclear cataract in both eyes surrounded
by a ring-shaped opacity in both eyes. B: After operation in the right
eye, the lens is clear and the “red dot” effect can be observed after
flash-light photography. The left eye remains opaque. An observa-
tion of the increased dense nuclear opacity indicates slight progres-
sion of the cataractous process. The photographs are private, with
permission from the parents.

Figure 2. Pedigree of the affected family.  The family history demon-
strated that the cataract was present in two generations. The dark
symbols represent the affected members of the family, while the clear
symbols indicate the healthy ones. Circles are for female and squares
for male family members.
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identical in rat, mouse, cow, dog, human, chimpanzee, chick,
and zebrafish (both isoforms).

In-silico protein analysis:  An initial attempt to under-
stand the underlying molecular mechanisms was derived from
the computer-assisted analysis of the structure of the mutated

D128V βB2-crystallin. Using the proteomics program of the
Expasy Proteomics server, we compared several features be-
tween the wild-type and the mutant protein. The isoelectric
point is shifted from pH 6.50 in the wild-type protein up to pH
6.75 in the mutant βB2-crystallin due to the exchange of the
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Figure 3. CRYBB2 mutation cosegregates with the disease in the family.  A: A partial fragment of the fifth exon of the CRYBB2 gene is given:
at sequence position 178 (equal to position 383 in CRYBB2 exon 5, counting the A of the ATG start codon as number 1), the heterozygous
situation of the index patient is obvious (red arrow). B: A partial fragment of the corresponding genomic sequence of exon 5 of the CRYBB2
gene is given. The mutated sequence is shown below. The underlined bases (ACGT) define a TaiI restriction site, which is created by the
mutation. The amino acid sequence is given below the DNA sequence. The wild-type base and amino acid are given in green and the mutated
forms in red. C: A schematic overview of the PCR fragment (706 bp) including exon 5 of the CRYBB2 gene is given. The positions of the TaiI
restriction sites are indicated for the wild type and the mutant allele. In the wild-type form there are two major fragments of 275 and 417 bp.
In the disease form, the 275 bp fragment is cut again resulting in two smaller fragments of 207 and 68 bp. These smaller fragments (indicated
by asterisks) can only be observed in the three affected family members (C, unaffected control; “+”, digested fragment; “-”, undigested
fragment).
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acidic and hydrophilic Asp to the neutral, nonpolar and hy-
drophobic Val. It is very likely that the impact of this alter-
ation in the immediate neighborhood of the exchanged amino
acid might be much stronger. Thus, it is not surprising that
changes in the secondary structure are predicted as follows:
the Arg-Val exchange presumably has an effect on H-bond
building and causes a loss of an H-bond from Val to Arg at
position 191; and depending on the orientation of the side chain
of Val, a new H-bond can be formed between Val and Tyr at
position 159. This might explain the predicted interruption of
the random coil structure by a shortly extended strand struc-
ture in this area.

Finally, an even more striking consequence is the modifi-
cation of the electrostatic potential in this area. The negative
electrostatic potential surrounding the Asp disappears and is
replaced by a remarkably enlarged positive potential in this

region (Figure 4). This might be the electrostatic explanation
for the predicted change of the hydrophobic nature from neu-
tral to +1 in this region.

DISCUSSION
 We describe a mother and her two children suffering from a
dominant, congenital cataract. Her parents and sister are
healthy with normal vision. The affected family members had
no other ocular defects. Because of the small size of the fam-
ily, linkage analysis could not be attempted. Therefore, we
molecularly analyzed functional candidate genes and identi-
fied a mutation in the fifth exon of the CRYBB2 gene (D128V).
Since this mutation segregates perfectly within this family and
could not be found in 96 healthy subjects from the region of
Augsburg/Germany, we consider this new allele as probable
causative molecular lesion for the observed clinical findings.
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Figure 4. Three-dimensional protein struc-
ture.  Schematic view of predicted three-
dimensional protein structures for
CRYBB2WT (A) and CRYBB2D128V (B),
without side chains. The electrostatic po-
tential is displayed in red (negative poten-
tial) and blue (positive potential) clouds.
The alteration from a negative to a positive
potential is indicated by white arrows. Ex-
changed amino acids, Asp and Val, at posi-
tion 128 are marked in pink. Amino acids
involved into H-bond building are shown
in white (Arg, 191) and yellow (Tyr, 159).
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Several other cataract mutations have been reported both
in mouse and human to affect the CRYBB2 gene, which is
considered to be one of the most important genes for lens trans-
parency. The CRYBB2 gene product was earlier referred to as
the “basic principle β-crystallin” because of its abundance in
water soluble lens extracts [16]. Presently, this protein is re-
ferred to as βB2-crystallin.

The first mutation identified in the CRYBB2 gene was
shown to be causative for a cerulean cataract (CCA2: con-
genital cataract of cerulean type 2) featuring peripheral bluish
and white opacities in concentric layers with occasional cen-
tral lesions arranged radially. Litt et al. [17] mapped this par-
ticular type of cataract to a region of the human chromosome
22 containing the cluster encoding four CRYB genes. Sequence
analysis revealed that a chain-termination mutation at the be-
ginning of exon 6 of the CRYBB2 gene (C475T; Gln155X) is
associated with this particular type of cataract. Surprisingly,
the same mutation was also found in a family suffering from a
Coppock-like cataract [18] and in a five-generation Indian
family with suture cataract and cerulean opacities [19]. The
authors explain the identity of the three mutations by a gene-
conversion mechanism between the CRYBB2 gene and its
flanking pseudogene. The diversity of the phenotypes might
be caused by variations in the promoter region, possibly in-
fluencing the expression of CRYBB2 in the lens or other crys-
tallin genes as modifiers from surrounding loci. Two addi-
tional cases of this mutation were identified recently in a Chi-
nese and a Chilean family. The phenotype in these families is
highly variable [20,21].

The first human mutation in CRYBB2, which did not fit
within the gene conversion mechanism, was identified by
Santhiya et al. [11] who described a W151C mutation affect-
ing the sixth exon of the CRYBB2 gene. The clinical findings
of both mutations are similar in that the cataracts were present
at birth, the children needed an operation within a few weeks
of birth, and the morphology was described as a central nuclear
cataract. However, the actual mutation reported here is the
first that does not affect exon 6 of the CRYBB2 gene. Since
the PCR primers used for amplification of this particular exon
are located fairly far in the flanking introns, no contamination
with the corresponding pseudogene is observed. This
pseudogene is different from the active CRYBB2 gene in this
particular exon only in three bases and these distinct bases are
located in the 3'-end of the exon.

So far, in mice, two mutant lines have been reported to
involve the Crybb2 gene, the Philly mouse [22] and the Aey2
mutant line [23]. Both cataracts are progressive and recogniz-
able from the second week of birth as an anterior suture and as
a subcapsular opacity. In the Philly mouse, the ultimate phe-
notype is characterized as a strong opacity of the lens nucleus
and of the anterior suture six to seven weeks after birth [24].
In Aey2 mutants, gradual opacification of the whole lens was
completed at the age of 11 weeks. Therefore, the mouse mu-
tants represent a less severe phenotype than most of the hu-
man cases.

Nevertheless, all mutants described in mouse and in man
affect the COOH-terminal part of the βB2-crystallin. Recently,

in a systematic analysis, Liu and Liang [25] investigated the
influence of several mutations along the βB2-crystallin gene
with respect to the possibility of the protein forming dimers.
They found that mutations, which affect the formation of β-
strands in the COOH-terminal part of the protein, have re-
duced protein interactions. The β-strand 11, which belongs to
the third Greek key motif, is affected in the new allele re-
ported here and is the most anterior mutation reported so far
for the CRYBB2 gene. Since the negative electrostatic poten-
tial surrounding the Asp disappears and is replaced by a re-
markably enlarged positive potential in this region, protein-
protein interactions are most likely changed. Nevertheless,
further physico-chemical experiments are necessary to dem-
onstrate the reduced ability to form dimers in this novel
CRYBB2 allele.
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