Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk

Supplementary Material

SUPPLEMENTARY NOTE: ENGAGE Consortium Telomere Group members and affiliations

European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium Telomere Group members and affiliations

Veryan Codd^{1,2}, Christopher P. Nelson^{1,2}, Eva Albrecht³, Massimo Mangino⁴, Joris Deelen^{5,6}, Jessica L. Buxton⁷, Jouke Jan Hottenga⁸, Krista Fischer⁹, Tõnu Esko⁹, Ida Surakka^{10,11}, Linda Broer^{6,12,13}, Dale R. Nyholt¹⁴,Irene Mateo Leach¹⁵, Perttu Salo¹¹, Sara Hägg¹⁶, Mary K. Matthews¹, Jutta Palmen¹⁷, Giuseppe D. Norata¹⁸⁻²⁰, Paul F. O'Reilly^{21,22}, Danish Saleheen^{23,24}, Najaf Amin¹², Anthony J. Balmforth²⁵, Marian Beekman^{5,6}, Rudolf A. de Boer¹⁵, Stefan Böhringer²⁶, Peter S. Braund¹, Paul R. Burton²⁷, Anton J. M. de Craen²⁸, Matthew Denniff¹, Yanbin Dong²⁹, Konstantinos Douroudis⁹, Elena Dubinina¹, Johan G. Eriksson^{11,30-32}, Katia Garlaschelli¹⁹, Dehuang Guo²⁹, Anna-Liisa Hartikainen³³, Anjali K. Henders¹⁴, Jeanine J. Houwing-Duistermaat^{6,26}, Laura Kananen^{34,35}, Lennart C. Karssen¹², Johannes Kettunen^{10,11}, Norman Klopp^{36,37}, Vasiliki Lagou³⁸, Elisabeth M. van Leeuwen¹², Pamela A. Madden³⁹, Reedik Mägi⁹, Patrik K.E. Magnusson¹⁶, Satu Männistö¹¹, Mark I. McCarthy^{38,40,41}, Sarah E. Medland¹⁴, Evelin Mihailov⁹, Grant W. Montgomery¹⁴, Ben A. Oostra¹², Aarno Palotie^{42,43}, Annette Peters^{36,44,45}, Helen Pollard¹, Anneli Pouta^{33,46}, Inga Prokopenko³⁸, Samuli Ripatti^{10,11,42}, Veikko Salomaa¹¹, H. Eka D. Suchiman⁵, Ana M. Valdes⁴, Niek Verweij¹⁵, Ana Viñuela⁴, Xiaoling Wang²⁹, H.-Erich Wichmann^{47,48,49}, Elisabeth Widen¹⁰, Gonneke Willemsen⁸, Margaret J. Wright¹⁴, Kai Xia⁵⁰, Xiangjun Xiao⁵¹, Dirk J. van Veldhuisen¹⁵, Alberico L. Catapano^{18,52}, Martin D. Tobin²⁷, Alistair S. Hall²⁵, Alexandra I.F. Blakemore⁷, Wiek H. van Gilst¹⁵, Haidong Zhu²⁹, Jeanette Erdmann⁵³, Muredach P. Reilly⁵⁴, Sekar Kathiresan⁵⁵⁻⁵⁷, Heribert Schunkert⁵³, Philippa J. Talmud¹⁷, Nancy L. Pedersen¹⁶, Markus Perola⁹⁻¹¹, Willem Ouwehand^{42,58,59}, Jaakko Kaprio^{10,60,61}, Nicholas G. Martin¹⁴, Cornelia M. van Duijn^{6,12,13}, Iiris Hovatta^{34,35,61}, Christian Gieger³, Andres Metspalu⁹, Dorret I. Boomsma⁸, Marjo-Riitta Jarvelin^{21,22,62-64}, P. Eline Slagboom^{5,6}, John R. Thompson²⁷, Tim D. Spector⁴, Pim van der Harst^{1,15,65}, Nilesh J. Samani^{1,2}.

¹Department of Cardiovascular Sciences, University of Leicester, Leicester, UK

²NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK

³Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany

⁴Department of Twin Research and Genetic Epidemiology, King's College London, London, UK

⁵Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands

⁶Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands

⁷Section of Investigative Medicine, Imperial College London, London, UK

⁸Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands

⁹Estonian Genome Center, University of Tartu, Tartu, Estonia

¹⁰Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland

¹¹Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland

¹²Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands

¹³Centre for Medical Systems Biology, Leiden, The Netherlands

¹⁴Queensland Institute of Medical Research, Brisbane, Australia

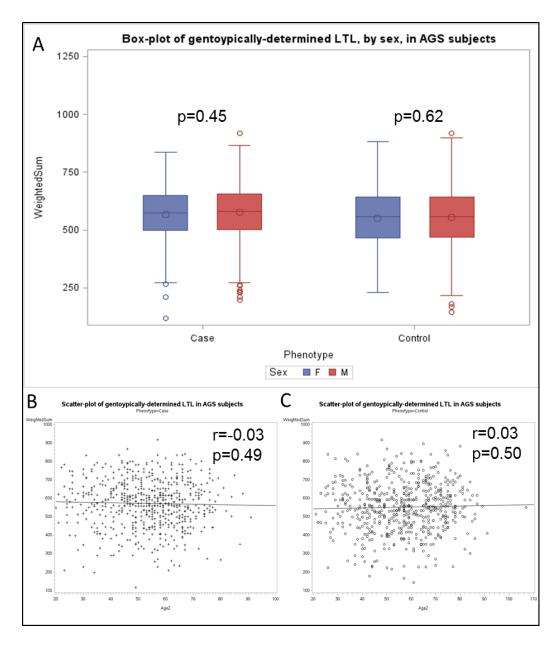
¹⁵Department of Cardiology, University of Groningen, University Medical Center, Groningen, The Netherlands

¹⁶Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

- ¹⁷Institute of Cardiovascular Science, University College London, London, UK
- ¹⁸Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- ¹⁹Centro SISA per lo Studio dell'Aterosclerosi, Bassini Hospital, Cinisello B, Italy
- ²⁰The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University, London, UK
- ²¹Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
- ²²MRC-HPA Centre for Environment and Health, Faculty of Medicine, Imperial College London, UK
- ²³Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- ²⁴Center for Non-Communicable Diseases, Karachi, Pakistan
- ²⁵Division of Epidemiology, LIGHT, School of Medicine, University of Leeds, Leeds, UK
- ²⁶Section of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
- ²⁷Department of Health Sciences, University of Leicester, Leicester, UK
- ²⁸Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- ²⁹Georgia Prevention Institute, Georgia Health Sciences University, Augusta, GA, USA
- ³⁰University of Helsinki, Department of General Practice and Primary Health Care, Helsinki, Finland
- ³¹Folkhälsan Research Center, Helsinki, Finland
- ³²Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
- ³³Institute of Clinical Medicine/Obstetrics and Gynecology, University of Oulu, Oulu, Finland
- ³⁴Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Finland
- ³⁵Department of Medical Genetics, Haartman Institute, University of Helsinki, Finland
- ³⁶Research Unit of Molecular Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- ³⁷Hanover Unified Biobank, Hanover Medical School, Hanover, Germany
- ³⁸Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- ³⁹Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- ⁴⁰Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- ⁴¹Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
- ⁴²Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- ⁴³Department of Medical Genetics, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
- ⁴⁴Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- ⁴⁵Munich Heart Alliance, Munich, Germany
- ⁴⁶National Institute for Health and Welfare, Oulu, Finland
- ⁴⁷Institute of Epidemiology I, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- ⁴⁸Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- ⁴⁹KlinikumGrosshadern, Munich, Germany
- ⁵⁰Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
- ⁵¹Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- ⁵²IRCCS Multimedica, Milan, Italy
- ⁵³UniversitätzuLübeck, Medizinische Klinik II, Lübeck, Germany
- ⁵⁴The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- ⁵⁵Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.
- «Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- ⁵⁸Department of Haematology, University of Cambridge, Cambridge, UK

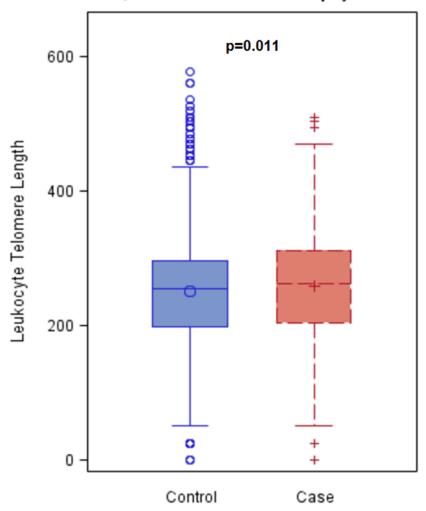
⁵⁹ National Health Service Blood and Transplant, Cambridge, UK

⁶⁰University of Helsinki, Hjelt Institute, Department of Public Health, Helsinki, Finland

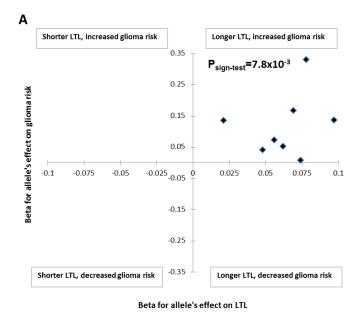

⁶¹ Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland

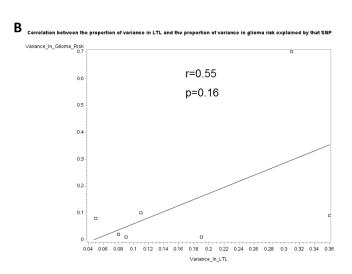
⁶²Institute of Health Sciences, University of Oulu, Oulu, Finland

⁶³ Biocenter Oulu, University of Oulu, Oulu, Finland


⁶⁴ Department of Lifecourse and Services, National Institute for Health and Welfare, Oulu, Finland

⁶⁵Department of Genetics, University of Groningen, University Medical Center, Groningen, The Netherland




Supplementary Figure 1: Genotypically-estimated leukocyte telomere length (LTL) is not associated with subject age or sex. (A) Boxplots comparing genotypically-estimated LTL in females (blue) and males (red), stratified by glioma case-control status, in AGS subjects. (B) Scatter-plot of genotypically-estimated LTL and subject age in AGS glioma patients. (C) Scatter-plot of genotypically-estimated LTL and subject age in AGS glioma controls.

Comparison of leukocyte telomere length by glioma case-control status (excluding TERC, TERT and RTEL1 snps)

Supplementary Figure 2: Boxplot comparing genotypically-estimated leukocyte telomere length (LTL) in 1130 glioma patients and 6294 controls from the UCSF AGS, TCGA, and WTCCC after excluding contributions from known glioma risk genes (TERC, TERT, and RTEL1) and retaining contributions from ACYP2, NAF1, OBFC1, CTC1 and ZNF208. P-values are adjusted for the first two ancestry-informative principal components and for genotyping platform.

Supplementary Figure 3. Associations between the effects of eight SNPs on leukocyte telomere length (LTL) in the ENGAGE Consortium and glioma risk in the UCSF AGS, TCGA, and WTCCC. (A) For all eight LTL-associated SNPs, the allele associated with longer LTL was associated with increased glioma risk ($P_{\text{sign-test}}$ =7.8x10⁻³). (B) The proportion of variance in LTL explained by each SNP was positively but non-significantly correlated with the proportion of variance in glioma risk explained by that SNP (r=0.55, P=0.16). The proportion of variance explained is expressed as a percentage.

Supplementary Table 1. Subject characteristics of glioma patients and controls, the University of California, San Francisco (UCSF) Bay Area Adult Glioma Study (AGS) 1997-2011, Illumina iControls, The Cancer Genome Atlas (TCGA) glioma patients and Wellcome Trust (WTCCC) controls.

	N				% Female	Median Age
Populations	(cases/controls)	Histopathology	Genotyping array	Ethnicity	(cases/controls)	(cases/controls)
Discovery						
UCSF Adult Glioma Study	620 / 602	Glioblastoma (85%) ^a	Illumina 370k	Caucasian	36% / 47%	56 / 57
TCGA glioblastoma cases	70 / 0	Glioblastoma	Illumina 550k	Caucasian	43% / -	55 / -
III umina i Controls	0/3390	-	IIIumina 370k/550k	Caucasian	- / 63%	-/31
<u>Validation</u>						
TCGA glioblastoma cases	323 / 0	Glioblastoma	Affymetrix 6.0	Caucasian	38% / -	60 / -
TCGA lower-grade glioma	176 / 0	GradeⅡ/Ⅲ Glioma ^b	Affymetrix 6.0	Caucasian	41%/-	43 / -
Well come Trust controls	0 / 2603	-	Affymetrix 6.0	Caucasian	- / 48%	- / - ^c

 $^{^{\}rm a}$ 15% of the high-grade glioma samples were Grade 3 anaplastic astrocytomas

 $^{^{\}mathrm{b}}$ 35% astrocytoma, 39% oligodendroglioma, 25% mixed oligoastrocytoma

^c Precise age data were unavailable, but >50% of the included samples were members of the 1958 UK Birth Cohort.