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Abstract
MicroRNAs are involved in almost all biological processes and have emerged as regulators

of signaling pathways. We show that miRNA target genes and pathway genes are not uni-

formly expressed across human tissues. To capture tissue specific effects, we developed a

novel methodology for tissue specific pathway analysis of miRNAs. We incorporated the

most recent and highest quality miRNA targeting data (TargetScan and StarBase), RNA-

seq based gene expression data (EBI Expression Atlas) and multiple new pathway data

sources to increase the biological relevance of the predicted miRNA-pathway associations.

We identified new potential roles of miR-199a-3p, miR-199b-3p and the miR-200 family in

hepatocellular carcinoma, involving the regulation of metastasis through MAPK andWnt

signaling. Also, an association of miR-571 and Notch signaling in liver fibrosis was pro-

posed. To facilitate data update and future extensions of our tool, we developed a flexible

database backend using the graph database neo4j. The new backend as well as the novel

methodology were included in the updated miTALOS v2, a tool that provides insights into

tissue specific miRNA regulation of biological pathways. miTALOS v2 is available at http://

mips.helmholtz-muenchen.de/mitalos.

Introduction
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression post tran-
scriptionally through binding to a target mRNA. They are predicted to target hundreds of
genes in mammals and most genes are thought to be regulated by miRNAs [1]. Consequently,
most biological processes involve miRNAs and miRNA-mediated control of gene expression.

Functional analysis of miRNAs depends on accurate identification of gene targets in a given
biological context [2]. Since there is no comprehensive catalogue of tissue and cell type specific
miRNA-mRNA interactions, computational target prediction tools are still widely used.
Although these prediction tools have improved in accuracy, they still suffer from large numbers
of false-positive miRNA-mRNA interactions [2]. Recently, biochemical methods using sequenc-
ing of target RNA isolated after UV crosslinking and immunoprecipitation of Ago/miRNA
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complexes (CLIP-seq) were developed [3,4]. They produce a map of miRNA binding sites on
their target mRNAs. CLIP-seq data is collected in the StarBase database [5], providing a con-
stantly growing resource of experimentally supported interactions. While these experimental
methods increase the specificity of miRNA target data, their explanatory power is limited due to
differences in experimental procedures and lack of reproducibility [6]. Moreover, all human
data sets in StarBase were measured in immortalized cell lines (HEK293, HeLa) and not in pri-
mary tissue.

Next to limitations of in-silico and experimental gene target identification, miRNA-medi-
ated regulation suggested by in-vitro and cell culture experiments is often not supported by in-
vivo validation studies [7]. This can be partly explained by the fact that most miRNAs show
only limited effects on the level of individual target mRNAs under physiological conditions [8].
In addition, target prediction and CLIP-seq studies demonstrated that most mRNAs are regu-
lated by multiple miRNAs [9–11]. Thus, the down-regulation of a target gene depends on the
combined effect of multiple miRNAs. And analysis of individual miRNA-mRNA interactions
is not sufficient to explain the regulatory role of miRNAs in biological process.

Computational approaches often perform a pathway analysis to increase the explanatory
power of target gene sets and to circumvent the shortcomings in targeting data. They use the
complete set of miRNA target genes and pathway genes to associate miRNAs to biological
pathways as an indication of their biological function. In doing so they do not account for the
characteristic tissue expression signature of mammalian genes [12] and thus disregard tissue
specific effects of miRNAs. Indeed, miRNAs were shown to facilitate tissue specificity of gene
regulation [13]. Moreover, other pathway analysis tools such as DIANA mirPath rely on target
prediction only and do not use CLIP-seq based target data [14].

Tissue-specific gene expression data can be obtained using next-generation sequencing of
RNA (RNA-seq). The EBI Expression Atlas [15] collects highly curated gene expression data
sets and also includes baseline expression data for healthy tissue or untreated cell lines in vari-
ous organisms. Baseline expression describes the abundance of a gene and is extracted from
large-scale expression studies such as ENCODE cell lines.

We developed a novel pathway analysis methodology leveraging this high-quality tissue
expression data in order to predict miRNA function. We used our new methodology to first
analyze the role of miRNAs in hepatocellular carcinoma and identified the liver-specific effect
of miR-199a/b-3p on pathways associated with proliferation and cell migration, a novel func-
tion that a recent study proposed. We next dissected the individual functions of the two geno-
mic clusters of the miR-200 family and found hints to new signaling relationships, which were
studied in other tissues and cell culture but not yet in liver cancer. We finally extended our
analysis to liver fibrosis, which is in general less well studied than liver cancer. miR-571 is
known to play a role here and we identified Notch signaling as a putative function. Interest-
ingly, Notch signaling has already been proposed as a drug target for fibrosis in other tissues.
With the three case studies we demonstrated the necessity to use tissue-specific target gene
information for miRNA function prediction.

To make our novel pathway analysis methodology publicly available, we systematically inte-
grated 1) high-quality miRNA targeting data from TargetScan and CLIP-seq studies from Star-
Base v2 [5], 2) tissue specific gene expression from the latest version of EBI Expression Atlas
[15] with 3) three major pathway databases KEGG [16], WikiPathways [17] and Reactome
[18]. A graph database was used to store the data in a flexible manner and increase the query
performance compared to relational data stores. The data backend and the corresponding
pathway analysis methodology were integrated into miTALOS version 2 (v2), a user-friendly
web application to identify pathways regulated by miRNAs in a tissue specific manner. With
miTALOS v2 users can analyze multiple miRNAs together to account for combinatorial effects.

miTALOS v2: Analyzing Tissue Specific microRNA Function
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MiTALOS v2 is complementary to other functional miRNA analysis tools such as miRGator
[19] and ToppMir [20] and adds value with a tissue specific analysis of miRNA impact on sig-
naling pathways. The integration of multiple new state-of-the art data sources increases the
biological relevance of the results and a novel tissue filter allows every user to decipher complex
miRNA functions.

Results

Tissue specific pathway enrichment
MiRNA target prediction tools and CLIP-seq based methods for target identification yield the
full set of potential miRNA-mRNA interactions, i.e. all potential gene targets of a miRNA.
However, different tissues and cell types have a characteristic gene expression signature and
only a subset of genes are expressed in any cell under physiological conditions [12]. Thus, the
function of miRNAs, which is exerted through repression of target genes, is tissue specific.

To learn about the tissue-specificities of miRNAs, we first analyzed the expression of all tar-
get genes of hsa-let-7a (TargetScan, see methods) in 42 human tissues from EBI Expression
Atlas. The expression of target genes varied greatly between tissues (Fig 1A). To quantify the
extent of tissue specificity of a miRNA, we calculated for each of the 42 tissues the fraction of
target genes being expressed. The fraction is depicted in Fig 1B (color coded from green = 0 to
red = 1). Fig 1C shows the respective distributions for ten representative miRNAs. Thereof, the
median of target genes expressed in a tissue was 75%, with many tissues expressing only 60%
target genes (Fig 1C). This is in line with studies showing tissue specific functions of miRNAs
[13].

Next, we performed the same tissue-specificity analysis now only for genes of the same
pathway. The pathway genes in well-described human MAPK signaling (KEGG) showed
highly tissue specific expression (Fig 1D). Interestingly pathways showed a characteristic distri-
bution of the fraction of expressed target genes when compared to miRNAs. Ten representative
distributions across all 42 tissues are shown in Fig 1E. Some pathways (such as Cell adhesion
molecules, Fig 1E) were more tissue specific than others, indicating highly tissue specific
functions.

Having established that both miRNA and pathway associated genes have a characteristic
gene expression signature across tissues, we next outlined the approach of standard miRNA
pathway analysis methods. Typically the set of all miRNA targets are tested for over-represen-
tation in the set of all pathway genes (Fig 1F, left). This global analysis of all target and pathway
genes will overlook miRNA-pathway associations with a small gene-overlap, while this gene-
overlap may in turn be tissue-specific and, thus, functionally highly relevant. Pathway analysis
tools that use all target genes to identify miRNA-pathway associations cannot capture tissue
specific effects.

We thus propose a novel methodology for miRNA pathway analysis by using a tissue filter
in order to increase the relevance of the association. If the target genes or pathway genes out-
side of the overlap are not expressed in a tissue, the relation of miRNA and pathway is much
stronger (Fig 1F, right). Consequently, if the overlapping genes found in a miRNA-pathway
association are not expressed in a tissue, the relation is discarded. The novel methodology cal-
culates an enrichment of the target genes of a miRNA in all pathways of different pathway data
sources. Significance of the associations is calculated with Fisher's exact test (see methods).
Individually for each miRNA-pathway association test, we filtered for expression in a tissue by
removing all miRNA target genes and pathway genes that are not expressed in this tissue. We
thereby accounted for the highly tissue specific expression of many genes and seek to increase
biological relevance of the pathway enrichment.

miTALOS v2: Analyzing Tissue Specific microRNA Function
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Fig 1. miRNA target genes and pathway genes are tissue specific. (A) Heatmap of all target genes of hsa-let-7a and their expression in 42 human
tissues. Tissues are depicted in rows, genes in columns. (B) Fraction of target genes of hsa-let-7a expressed in each tissue, color coded in green (0) to red

miTALOS v2: Analyzing Tissue Specific microRNA Function
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Case study: microRNAs in liver disease
We analyzed miRNAs known to be involved in liver disease with our novel methodology to
evaluate the power of tissue specific pathway analysis. We focused on miRNAs in hepatocellu-
lar carcinoma (HCC) and liver fibrosis. Both diseases involve uncontrolled proliferation of
liver cells.

First, we analyzed miR-199a-3p and miR-199b-3p. Both miRNAs are up-regulated in some
tumor types, such as ovarian cancer and breast cancer [21]. In HCC, conversely, both miRNAs
have been shown to be down-regulated [22,23]. While the function of miR-199a-3p and miR-
199b-3p is not fully defined, they target members of Raf/MEK/ERK signaling [23]. In general,
inhibition of Raf/MEK/ERK signaling will limit proliferation of cells. Thus, downregulation of
miR-199a-3p and miR-199b-3p might be a part of the regulatory changes leading to increased
proliferation of HCC cells. These miRNAs have consequently been considered as therapeutic
targets for treatment of HCC [24].

When performing standard pathway analysis for miR-199a-3p and miR-199b-3p, no can-
cer-associated pathways were enriched (human, TargetScan). Using our methodology and the
Illumina Body Map tissue filter for liver additionally identified two significantly associated
pathways: Regulation of actin cytoskeleton (KEGG) and Regulation of Microtubule Cytoskele-
ton (WikiPathways) (Table 1). The miRNAs were previously not directly associated to regula-
tion of the cytoskeleton, yet both pathways are fundamental for the processes of cell migration,
EMT and metastasis. The regulation of actin cytoskeleton (KEGG) pathway overlaps with the
MAPK signaling pathway from KEGG and includes several key components of Raf/MEK/ERK
signaling (Fig 2A). The liver filter thus identified the known association of miR-199a-3p and
miR-199b-3p with Raf/MEK/ERK signaling through associated regulatory pathways. Interest-
ingly, the involvement of miR-199a/b-3p in cell migration and EMT has been described in
other tissues [25,26].

(1). (C) Fraction of target genes expressed in all tissues for 10 representative miRNAs. (D)-(F) Corresponding analysis for pathway genes. (G) Pathway
analysis with the global set of miRNA targets and pathway genes (left). The miRNA and pathway have only few common genes (gene B, gene C) compared
to the other pathway genes (gene A) and miRNA targets (gene D, gene E). When applying a tissue filter (right), genes not in the set of miRNA targets and not
in the pathway are discarded. The association derived from the overlap is much stronger, indicating a tissue specific regulation of the pathway by the miRNA.

doi:10.1371/journal.pone.0151771.g001

Table 1. Pathway enrichment used in the case studies with liver filter.

source Pathway E Corrected p-value MP, Mn, Pn, U

hsa-miR-199a, hsa-miR-199b-3p

wp Regulation of Microtubule Cytoskeleton 3,814 0,034 4, 232, 18, 3982

kegg Regulation of actin cytoskeleton 2,010 0,049 11, 225, 95, 3905

hsa-miR-200b, hsa-miR-200c, hsa-miR-429

kegg Focal adhesion 1,895 0,008 25, 593, 83, 3730

wp Focal Adhesion 1,791 0,024 22, 596, 77, 3736

wp Wnt Signaling Pathway 2,765 0,028 8, 610, 18, 3795

hsa-miR-200a, hsa-miR-141-3p

wp MAPK Cascade 3,194 0,047 5, 408, 15, 3910

reactome NR1D1 (REV-ERBA) represses gene expression 19,095 0,017 2, 411, 1, 3924

hsa-miR-571-3p

wp Notch Signaling Pathway 9,844 0,000 3, 62, 20, 4069

kegg Notch signaling pathway 8,945 0,001 3, 62, 22, 4067

doi:10.1371/journal.pone.0151771.t001

miTALOS v2: Analyzing Tissue Specific microRNA Function
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Our novel methodology with tissue filter suggested a role of miR-199a/b-3p in cell migra-
tion, EMT and ultimately metastasis through regulation of cytoskeleton. The decrease of miR-
199a/b-3p in HCC might increase metastatic potential in HCC. Indeed, a recent study indicates
a role for miR-199a/b-3p in HCC proliferation [27].

Second, we investigated the miR-200 family consisting of two genomic clusters
(miR-200b/c/miR-429 and miR-200a/miR-141) that was shown to be involved in EMT and
cell migration [28]. The family has been described as a potential cancer therapy target [29].
The miRNAs of the miR-200 family are often analyzed together. Here, we look at specific

Fig 2. tissue specific enrichment of miRNAs in liver disease. (A) Targets of miR-199a/b-3p in the human KEGG Actin Cytoskeleton pathway (red). Only a
section is shown, other parts are not targeted. Blue stars show genes also present in MAPK signaling. (B) Pathway analysis of miR-200 family using the liver
filter. MiR-200b/c and miR-429 target Focal adhesion andWnt signaling, pointing towards a regulatory interdependence in cancer formation. MiR-200a and
miR-141 have different associated pathways but also target cancer related signaling. (C) MiR-571 is elevated in fibrosis and associated with notch signaling
when using the liver filter. Notch inhibitors are in clinical studies for treatment of early stages of fibrosis.

doi:10.1371/journal.pone.0151771.g002
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functions of the two clusters to show the power of combined pathway analysis of multiple
miRNAs. When performing pathway analysis with liver filter for miR-200b/c/miR-429 (Illu-
mina Body Map, TargetScan, human) we identified significant associations with focal adhe-
sion pathways from both KEGG and WikiPathways (Table 1). This finding clearly points
towards an involvement in cell migration and EMT (Fig 2B). Interestingly, we also identified
Wnt pathway (KEGG) (Table 1). As of today, there was no direct evidence reported for
involvement of Wnt signaling in regulation of cell migration, EMT and metastatis in HCC.
There was, however, evidence for a connection in other diseases such as breast cancer [30],
vitreorenopathy [31] and prostate cancer [32].

Our novel methodology suggested new roles for miR-200b/c/miR-429 in HCC and a func-
tional connection of Wnt signaling with cell migration and EMT (Fig 2B). Pathway analysis
with liver filter (Illumina Body Map, TargetScan, human) for the other genomic cluster (miR-
200a/141) identifies MAPK signaling and MAPK associated NR1D1-(REV-ERBA) pathway
(WikiPathways) (Table 1). MAPK signaling was indeed elevated in HCC [33,34] and has been
suggested as target for HCC treatment with success in mouse model [35] (Fig 2B). In summary,
our novel methodology found specific HCC related functions for both genomic clusters of the
miR-200 family. Analyzing the entire miRNA-200 family did not identify focal adhesion, Wnt
or MAPK as significant results.

MiRNAs also play a role in liver fibrosis [36] but are in general less well studied in this dis-
ease context. There is only few functional evidence or mechanistic insight into the role of miR-
NAs in fibrosis. This represents an interesting example for the primary use case of our novel
methodology: To generate new hypotheses and filter candidate miRNAs to be tested in the wet
lab. The serum levels of miR-571 were found increased in cirrhosis (the final stage of fibrosis)
and miR-571 has been suggested as a biomarker [37]. With our pathway analysis, we identified
Notch signaling (KEGG) as target of miR-571 with liver filter (Illumina Body Map, human,
TargetScan) (Table 1). Interestingly, Notch signaling was shown to be over-active in fibrosis
[38] and Notch inhibitors have been discussed as potential drugs for treatment of fibrosis
[38,39]. As a result, our novel methodology suggests that miR-571 could potentially inhibit
Notch signaling in liver tissue. Thus, miR-571 might be a potential therapeutic target in the
context of fibrosis (Fig 2C). In summary, our updated novel methodology supported new func-
tional hypotheses through tissue filtered pathway analysis.

Data sources
In order to make the novel methodology publicly available, we first integrated several data
sources on miRNA targeting, biological pathways and gene expression for both mouse and
human. We downloaded and integrated computational target prediction data from TargetS-
can 6.2 [40] and miRanda [41]. We also added miRNA-target interaction data of CLIP-seq
studies from StarBase v2 [5]. TargetScan contained the majority of mammalian miRNAs
while miRanda and StarBase only represented a small subset (Table 1). Due to the limited
availability of CLIP-seq studies, we still rely on target prediction data for many miRNAs.
Pathway data was extracted from KEGG [16], Reactome [18] and WikiPathways [17]. Path-
ways in the Reactome database were structured in top-level pathways with smaller sub path-
ways. This lead to larger numbers of pathways overall compared to KEGG and WikiPathways
(Table 1). To allow for a tissue-specific pathway analysis, we used baseline gene expression
data for a total of 68 human and mouse tissues and cell lines from the latest EBI Expression
Atlas [15]. Baseline expression data was based on reliable RNA-seq experiments and repre-
sents abundance levels in healthy tissue or cell lines. We integrated tissue data sets from 6 dif-
ferent expression studies (Table 2).

miTALOS v2: Analyzing Tissue Specific microRNA Function
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Database backend
Any system that integrates heterogeneous research data has to deal with two major challenges:
I) Data has to be stored in a way that it can be queried efficiently and II) the data model must
allow for easy updates for new releases of the underlying data sources.

Traditionally, SQL based relational database systems such as MySQL or PostgreSQL were
the go-to solution for all data storage needs. In recent years however, new database technolo-
gies collectively termed noSQL (short for not-only SQL) were developed to cope with problems
arising from big data. Such noSQL technologies have been used successfully in solutions for
computational biology, especially in the field of NGS [42]. Among the diverse landscape of
new database technologies, graph databases are particularly promising for biological data sets.
They enable storing data natively as a property graph, i.e. nodes connected by edges with prop-
erties stored on both. Thus, they allow us to directly model biological systems as nodes repre-
senting molecular entities connected by edges representing their interaction. This leads to
simple queries over multi-step paths through the interaction network and increased perfor-
mance compared to JOIN operations in relational databases [43,44]. Since queries on biological
data are usually centered on relationships between molecular entities (such as genes and miR-
NAs), graph database have a huge potential to improve data storage solutions. The key advan-
tages are query performance and simple query syntax.

For our study, we used the graph database neo4j and developed a novel graph data model to
integrate the data sources described above (Fig 3A). MiRNAs, genes, pathways and tissues were
represented as nodes. MiRNAs were connected to genes with 'REGULATES' relationships,
genes to tissues with 'EXPRESSED`relationships and genes to pathways with 'MEMBER' rela-
tionships. This data structure allowed us to e.g. query the target genes of a miRNA expressed in
a tissue (Fig 3B, top) or the pathways in which the target genes are involved (Fig 3B, bottom).

Another challenge in studies based on integration of third party data sources is to keep up
with data updates and new releases. Small, specialized data sources publish new versions on
their own schedule and changes in one data source are not synchronized with others. Since
neo4j is schema-less, changes of parts of the underlying data (e.g. miRNA targeting data for a
single data source) and refactoring of the data structure (e.g. renaming of miRNAs) are easier

Table 2. Overview of data sets.

Human Mouse

# miRNAs

TargetScan v6 1529 1322

Miranda 249 238

StarBase v2 383 296

# Pathways

KEGG 295 291

Reactome 2224 1882

WikiPathways 293 160

# Tissues

Mammalian Tissues 8 6

Illumina Body Map 16 -

ENCODE Cell Lines 18 -

Vertebrate Tissues - 5

6 Mouse Tissues - 6

Nine Mouse Tissues - 9

doi:10.1371/journal.pone.0151771.t002

miTALOS v2: Analyzing Tissue Specific microRNA Function
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to implement. We thus seek to regularly update our pathway analysis with new data sets espe-
cially focusing on NGS based data for miRNA targets and gene expression.

miTALOS v2
In order to make our integrated, tissue specific pathway analysis available to the research com-
munity, we included the new analysis methodology and data backend in an update to our
miTALOS web application.

MiTALOS v2 is a user-friendly tool to perform tissue specific pathway analysis for a set of
miRNAs and tissues of interest (Fig 4). It is available at http://mips.helmholtz-muenchen.de/
mitalos. The user can analyze miRNAs from mouse and human. The user begins by selecting
the organism and miRNA prediction method (Fig 4A) and then selects one or multiple miR-
NAs (Fig 4B). The pathway analysis is carried out dynamically by calculating the pathway
enrichment (see Methods) on all pathway data sources. If more than one miRNA is selected,
the union of target genes will be used for the analysis. All target genes are counted once and no
additional ranking is applied. MiTALOS v2 thereby captures the biological impact of co-target-
ing by multiple miRNAs. If the user selects a tissue filter, all gene sets (miRNA target genes and
genes in pathways) are filtered for this tissue (Fig 4C). All results with a corrected p-
value> 0.05 and E> 1 are presented in a sortable table and can be accessed with a user specific
URL for one week. For KEGG pathways, the user can access a graphical representation of the
pathway with highlighted miRNA targets by clicking on a pathway name.

If a tissue filter is used, miTALOS v2 displays the expression score of the selected miRNAs
inaddition to the tissue specific pathway enrichment. The user can thereby assess the impact of
the selected miRNAs under physiological conditions. The absolute expression score is extended
by a rank of the selected miRNA among all miRNAs expressed in this tissue and the miRNA
with the overall highest expression value. This allows estimating the relative importance of the
selected miRNA in the analyzed tissue.

MiTALOS v2 is geared towards wet-lab researchers working with miRNAs. MiTALOS v2
was designed for scenarios where a set of miRNAs (e.g. from expression studies or literature
research) has to be filtered to identify the most promising miRNAs for testing in wet-lab exper-
iments. With the tissue filter, the user can analyze the supposed biological effect of miRNAs in
the particular tissue or cell line the user is working on.

Fig 3. Database structure of miTALOS v2. (A) The miTALOS v2 dataset is stored in a graph database. The network structure allows for easy extension of
the dataset. (B) The Cypher query language allows for simple queries on the network. With one query, the targets of a miRNA in a pathway can be accessed
and filtered for tissue expression.

doi:10.1371/journal.pone.0151771.g003
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Discussion
It has been established that miRNAs participate in almost all cellular processes but the func-
tional impact of individual miRNAs and the precise mode of target gene regulation remains
controversial. Consequently, the dynamic regulatory network of miRNAs and mRNAs under
physiological conditions is not fully understood. One of the key issues in miRNA resarch is the
identification and quantification of miRNA-mRNA interactions. While computational predic-
tion methods and CLIP-seq approaches yield global sets of gene targets for individual miRNAs,
they still suffer from lack of accuracy and fail to predict the regulatory landscape in-vivo.

One way to circumvent shortcomings in miRNA targeting data is to analyze the biological
pathways which are incluenced by miRNAs. They can be considered a proxy for the miRNAs
effect on biological processes and thus allow to classify miRNAs and generate new hypotheses.
While pathway analyses have proven useful, they do not consider that most genes which are
targeted by a miRNA or part of a pathway are not uniformly expressed across all cell types. The
tissue specifity of miRNAs, which has been demonstrated extensively, is thus not taken into
account.

Fig 4. User interface of miTALOS v2. (A) The user starts by selecting the organism and miRNA prediction tool. Next, multiple miRNAs can be selected by
filtering the list of available miRNAs (B). Lastly, a tissue filter can be applied by selecting an expression experiment and tissue or cell line (C).

doi:10.1371/journal.pone.0151771.g004

miTALOS v2: Analyzing Tissue Specific microRNA Function
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By integrating tissue specific gene expression into our pathway analysis methodology, we seek
to close this gap and improve the biological relevance of our miRNA-pathway associations. With
our case studies, we recapitulated a common approach to generate new miRNA hypotheses for
wet lab research: Based on prior knowledge, i.e. disregulation of several miRNAs in a disease con-
text, the best candidates for experimental testing have to be identified. Our methodology aims at
creating functional insight which is as specific as possible for the system studied by the user.

The distinctive feature of miTALOS v2 is the tissue specific pathway enrichment. Other
pathway analysis tools, such as DIANA mirPath [45], do not account for this effect. MiTALOS
v2 complements other methods for functional miRNA analysis. Tools analyzing the expression
of miRNAs, such as MiRGator [19], aid in selecting the best miRNA candidates for a specific
biological system. Ranking approaches, such as ToppMir [20], are used to limit the number of
miRNAs based on preference for user-defined gene sets. MiTALOS v2 can be used in conjunc-
tion with these methods and adds a tissue specific perspective.

MiTALOS v2 includes CLIP-seq based miRNA targeting data from the StarBase database.
CLIP-seq experiments generate the full set of target genes based on biochemically identified
miRNA-mRNA interactions and likely produce more reliable targeting data than computa-
tional prediction. Several public resources, such as miRTarBase [46] and miRecords [47], col-
lect miRNA targets validated in individual experiments. However, since these target sets
contain only a potentially small subset of miRNA-mRNA interactions they would introduce a
bias to the analysis and are thus not suitable for global pathway enrichment.

Next to TargetScan and miRanda, which were used in this study, there are several other
miRNA target prediction tools. However, it is difficult to compare their performance due to
the lack of a gold standard of known miRNA targets and systematic comparisons of target pre-
diction tools generated inconsistent results [48–51]. TargetScan and miRanda were chosen
based on their widespread use in the miRNA research community. If novel miRNA target data
sources arise, the miTALOS v2 data can easily be integrated in miTALOS v2.

In general, the effect of a miRNA on its target genes cannot be quantified cell wide. The
complexity of the miRNA-mRNA network was further increased when regulatory effects came
into focus [52]. It was demonstrated that the total number of potential binding sites for a
miRNA regulates its effect size. If the number of binding sites exceeds the number of miRNA
molecules, mRNAs compete for binding to the miRNA and the regulatory impact decreases
[53]. This has been subsumed under the concept of competing endogenous RNAs (ceRNAs).
Recently, combined computational and experimental studies quantified these effects on a sys-
tems level [54]. Including these indirect effects into a pathway analysis presents a future direc-
tion for miTALOS v2. Here, using the relative expression levels of miRNAs and their target
genes would allow to capture binding competition. However, more data on specific, quantita-
tive effects will be necessary to devise a computational approach that properly describes the
biological impact of competing RNAs.

When developing tools for the research community, the underlying data infrastructure is of
pivotal importance. The state of the art, especially in research of post-transcriptional regula-
tion, changes quickly and new methods for miRNA target identification might arise. We there-
fore developed a new database backend using neo4j, the leading graph database. It helps to
integrate the numerous datasets used in miTALOS v2 and to keep up with new developments.
The flexible backend also allows to integrate new aspects like lncRNAs as regulators of gene
expression or disease specific expression profiles to extend tissue specific gene expression. New
database technology is therefore instrumental in building tools which can adapt to the rapid
generation of new research results.

In summary, our pathway analysis methodology and miTALOS v2 have been developed to
generate testable hypotheses and to increase efficiency in experimental miRNA research.
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Methods

Datasets
We integrated several data sources on miRNA targeting, biological pathways and gene expres-
sion in order to analyse tissue specific miRNA functions. For mouse and human, we offer
computational target prediction data from the latest releases of TargetScan 6.2 [40] and
miRanda [41]. We added miRNA-target interaction data of CLIP-seq studies from StarBase v2
[5] to the miTALOS v2 pathway analysis. Pathway data was extracted from KEGG, Reactome
andWikiPathways. In order to analyze tissue specific pathway regulation, miTALOS v2 uses
baseline gene expression data for 68 tissues and cell lines from the latest EBI Expression Atlas
[15] for both mouse and human.

Pathway analysis
We calculate an enrichment of miRNA target genes in pathways. For a miRNAM and Pathway
PmiTALOS v2 calculates a 2x2 cross table, whereMP is the number of targets ofM in P, Pn is
the number of not targeted genes in P,Mn is the number of targets ofM not in P and U is the
union of all pathway genes and miRNA targets withoutMP, Pn andMn (Table 3):

An enrichment score E is calculated as the odds ratio ofM and P:

EðM; PÞ ¼ ðMP=PnÞ=ðMn=UÞ
E describes the dependence of variablesM and P. E> 1 indicates an over-representation of tar-
gets of miRNAM in the pathway P. A p-value is calculated using Fisher’s exact test and results
for multiple pathways are corrected using the Benjamini-Hochberg procedure [55].

To perform a tissue specific pathway enrichment, we remove all genes fromMP,Mn, Pn
and U that are not expressed in the analyzed tissue. We then calculate E as described above. A
gene is considered expressed if its baseline expression value is> 0.5 (as defined in the EBI
Expression Atlas).

When multiple miRNAs are selected, the union of target genes is used for the analysis.

Database and webinterface
The integrated database backend is uses a neo4j graph database (v2.3.1). The miTALOS v2
frontend was developed with AngularJS 1.4.
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