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Abstract

Background

In radiation protection, biokinetic models for zirconium processing are of crucial importance
in dose estimation and further risk analysis for humans exposed to this radioactive substance.
They provide limiting values of detrimental effects and build the basis for applications in
internal dosimetry, the prediction for radioactive zirconium retention in various organs as well
as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating
the processing of zirconium. Although easily interpretable, determining the exact
compartment structure and interaction mechanisms is generally daunting. In the context of
observing the dynamics of multiple compartments, Bayesian methods provide efficient tools
for model inference and selection.



Results

We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for
the evaluation of two competing models for zirconium processing in the human body after
ingestion. Based on in vivo measurements of human plasma and urine levels we were able to
show that a recently published model is superior to the standard model of the International
Commission on Radiological Protection. The Bayes factors were estimated by means of the
numerically stable thermodynamic integration in combination with a recently developed
copula-based Metropolis-Hastings sampler.

Conclusions

In contrast to the standard model the novel model predicts lower accretion of zirconium in
bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the
Bayesian approach allows for retrospective dose assessment, including credible intervals for
the initially ingested zirconium, in a significantly more reliable fashion than previously
possible. All methods presented here are readily applicable to many modeling tasks in
systems biology.

Keywords

Bayesian inference, Model selection, MCMC sampling, Compartmental model, Internal
dosimetry, Systems biology

Background

Radioactive zirconium (Zr) isotopes are produced in large quantities in nuclear fission reactors;
one of the most common fragments in uranium fission is the radioactive 95Zr. For example, the
estimated released 95Zr activity of the Fukushima and Chernobyl accidents is considered to have
detrimental health effects not only via irradiation, but also via the intake of edibles [1, 2]. The
estimation of radiation doses is indispensable for risk analysis. This is true for occupational
exposure [3] and patients undergoing diagnostic and therapeutic nuclear medicine [4] as well as
for the public in general [5]. To calculate the radiation dose a mathematical model is required for
quantifying the deposition of radioactivity from the incorporated radionuclide inside the human
body. In internal dosimetry, this model is called biokinetic model as defined by the International
Commission on Radiological Protection (ICRP) in [5]. Also, the ICRP put forward the current
standard model, which we will simply denote the ICRP model. The parameters of this model
were mostly derived from animal data. In order to obtain more reliable dose estimates for
humans, the Helmholtz Zentrum München (HMGU) developed a new, physiologically more
plausible biokinetic model [6]. It is based on the processing of non-radioactive Zr isotopes in 16
investigations with 12 healthy human subjects. The measurements were taken in vivo in plasma
and urine up to 100 days after administration by application of the double tracer technique.
Moreover, a global statistical analysis method has been developed and the uncertainty and
sensitivity of the HMGU model parameters were analyzed [7, 8].

The biokinetic models mentioned above incorporate basic processes in the human physiological
system [3, 5, 9, 10]. Mathematically, this is characterized as follows: All major human organs
and tissues are simplified in the model structure as separate compartments that represent



kinetically homogeneous amounts of radionuclides; the connections between organs and tissues
are described via transfer rates, i.e. model parameters that represent the exchange rates between
the individual mutually exclusive compartments. These multi-compartmental systems along
with their transfer parameters describing the kinetic behavior of radionuclides in the human
body are called compartmental models [5, 11]. Throughout this paper we use the terms
biokinetic model and compartmental model interchangeably. The transfer of substances into and
out of compartments is governed by the law of mass balance. Transfer parameters are frequently
evaluated on the basis of experimental data obtained from laboratory animals and, to a lesser
extent, human beings [10]. Although animal data is not directly comparable to human data, the
former can nevertheless be very helpful as prior information.

In this publication, we address the problem of model inference and model selection. A Bayesian
approach enables us to cover model and measurement uncertainties for a compartmental model
based on human data, while simultaneously taking into account the prior information. The
Bayesian framework provides a fully probabilistic approach [12]. It is grounded on the
probability distribution of a problem specific parameter space conditioned on the given data.
This specifies a measure of belief for all possible parameter values. Similarly – albeit not
identical – to confidence intervals, Bayesian analyses provide credible sets for the parameters at
stake, holding regions and limits of high parameter probability [13]. However, as they are
intrinsically driven by prior informations, some care has to be taken in their interpretation [14].

For an overall assessment of the two competing biokinetic models for Zr, the previous model
parameter uncertainty analysis [7, 8] is not sufficient, because uncertainties arising from the
model structure were not taken into account. This shortcoming was addressed by our Bayesian
approach. Considering the models themselves as a random variable allows to compute the
probability for each of the models conditioned on given data. The ratio of the marginal
likelihoods of two models, i.e. the ratio of the probability for the data to be produced by the
specific model, is known as the Bayes factor, a quantity introduced by Jeffreys [15]. Performing
model selection using Bayes factors is particularly useful when dealing with a few models only.
While classical model selection approaches using statistics such as the AIC or likelihood ratio
tests are based on single best parameter estimates [16], the Bayes factor takes into account all
possible parameters values and thus deals with model uncertainty and avoids overfitting
issues [17, 18]. Moreover, in contrast to classical tests, the Bayes factor provides evidence for
either one of the (possibly non-nested) models by definition. With the introduction of Markov
chain Monte Carlo (MCMC) methods [19–21] as tools for sampling from probability
distributions, a remarkable increase in Bayesian analyses was noticed. However, due to very
complex probability surfaces these approaches often struggle with sampling efficiency [22]. In
order to avoid resulting convergence issues of the MCMC approach, we combined a technique
called thermodynamic integration with a novel copula-based Metropolis-Hastings sampler [23].
This provides numerically stable results for the inference process.

The HMGU and ICRP models were compared based on in vivo plasma and urine data of 16
investigations of 12 human subjects [6] using Bayes factors. More precisely, the models were
evaluated for each investigation individually and for the concatenated data of all investigations.
The latter allows to infer transfer rates (including credible intervals) for an average individual.
We furthermore provide an analysis based on the (i) plasma data and (ii) urine data individually.
Throughout the analysis, the HMGU model turned out to be superior compared to the ICRP
model with respect to covering the specific data. This means the HMGU model more precisely



explains the given observations and therefore the processing of zirconium in the human body.
We then used the HMGU model to analyze the accretion of zirconium in bones: not only did we
observe a delayed aggregation but also to lesser extents than predicted by the ICRP model.
Lastly, the Bayesian framework yielded credible bounds for retrospective dose assessment of an
average individual, this is, based on the concatenated data of all 16 investigations. We provide a
user-friendly estimation table for the prediction of initially ingested zirconium concentrations
for ex post measurements. This impacts the estimation of intake and radiation dose, especially
the bone dose, when aiming for personalized occupational monitoring data.

Methods

Biokinetic models for zirconium processing

We infer the biokinetics of zirconium as it is processed in the human body. The currently used
compartmental model was recommended by the ICRP in [5, 10, 24] (Figure 1A). It consists of
eleven compartments and 15 transfer rates. Zirconium enters the body via the stomach
compartment y9 and is processed until it reaches any of the two final compartments urine, y7, or
feces, y8. Some of the transfer rates and compartments of the ICRP model are however
physiologically questionable: The direct mass transport from the two bone compartments to the
urinary bladder contents and upper large intestine compartments or the distinction between
trabecular bone surface and cortical bone surface as such. In order to address these
shortcomings, we have recently proposed the alternative HMGU model [6] combining the two
bone compartments into one single compartment and replacing these mass flows by
physiologically more plausible transfer rates (Figure 1B). Altogether both models share eight
transfer rates, which we denoted by x1, . . . , x8. Transfers present in just one of the models have
a unique index to facilitate distinction.

Figure 1 Models for the biokinetics of zirconium. A: ICRP model. The model consists of
eleven compartments y1,. . . ,y11 and 15 time independent transfer rates x1,. . . ,x8,x13,. . . ,x19. B:
HMGU model. The model consists of ten compartments y1,. . . ,y10 and twelve transfer rates
x1,. . . ,x12. In both models zirconium enters the body in the stomach compartment y9 and
diffuses through the system until it reaches either one of the two final compartments urine, y7, or
feces, y8. The gray compartments y1 and y7 are directly related to the datasets measured

The dynamics of both models are described by a system of coupled linear first-order ordinary
differential equations (ODEs): For each compartment yj with time-dependent concentration
yj(t), the rate of change of yj is given by

d
dt

yj(t) =
∑

α∈A+
yj

xαy[xα](t) −
∑

β∈A−
yj

xβyj(t) (1)

where A+
yj

is the set of indices of all transfer rates xα flowing into compartment yj, A−
yj

the set of
indices of all transfer rates flowing out of compartment yj and y[xα] is the compartment which is
connected to yj by the transfer rate xα. For instance A+

y5
= {8, 10}, y[x8] = y10 and y[x10] = y1 in

the HMGU model. We have y9(0) = 100% and therefore yj ̸=9(0) = 0%, this is, the complete
amount of zirconium is initially contained in the stomach compartment. The explicit model
specific ODE systems can be found in the Additional file 1 sections 1.1 and 1.2.



Experimental data

The human biokinetic data was measured in a stable tracer study executed at the Helmholtz
Zentrum München (HMGU) [6, 25]. It includes 16 investigations of 12 healthy humans with
ingestion of a investigation-specific amount of isotopically enriched stable zirconium. The
administered amount was based on the individuals weight, aiming at a dose of 0.09mg stable
tracer per kg body weight. Tracer concentrations were determined in blood plasma and urine.
For the plasma data, samples were taken several times during the first day in increasing
intervals, and more scarcely later on. Urine was collected completely in 12-24h periods on
several days. The last samples were taken at 100d after tracer administration. Tracer
concentrations were normalized to the respective tracer amount ingested in each investigation,
such that the total ingested amount corresponds to 100% at t = 0 in the stomach compartment
y9. For model development, the transfer compartment was taken to be identical with blood
plasma, and concentrations therein were expressed as % per kg plasma. The plasma
concentration was scaled by the total amount of plasma in the body to get absolute
concentrations [26]. Urine data was expressed as excretion rate in % per day.

Model likelihood

Technical limitations, such as missing in vivo measurement techniques for all involved
compartments as well as noisy data introduce model uncertainties to biological systems [27].
Comparing different kinds of models based on single parameter estimates as done in
maximum-likelihood approaches is thus very critical. For statistical model evaluation we here
applied a Bayesian approach, taking into account the full parameter distribution: For each
investigation i we assume that the data

Di = (yi,1
1 , yi,2

1 , . . . , y
i,nb

i
1 , ẏi,1

7 , ẏi,2
7 , . . . , ẏ

i,nu
i

7 )

follows the solution cxk(t) of the differential equation given in (1) for any of the two models Mk

and some corresponding parameter vector xk, where the model index k ∈ {H, I}. Here, MI is the
ICRP model and MH the HMGU model. Corresponding to the notation in Figure 1A and 1B,
xI = (x1, . . . , x8, x13, . . . , x19) and xH = (x1, . . . , x12). While yi,·

1 indicates measurements in
plasma, i.e. in the transfer compartment y1, ẏi,·

7 designates measurements of the excretion rate in
the urine compartment y7. There are nb

i measurements in plasma and nu
i measurements in urine

for investigation i. Assuming furthermore that all data points contain normally distributed
measurement errors, the investigation i and model k specific likelihood function has the form

Li(xk, k|Di) =
nb

i∏
α=1

8

(
yi,α

1 |cb
xk(tα), σ b

i

)
︸ ︷︷ ︸

Lb
i (xk,k|Di)

nu
i∏

β=1

8

(
ẏi,β

7 | d
dt

cu
xk(tβ), σ u

i

)
︸ ︷︷ ︸

Lu
i (xk,k|Di)

,

where cb
xk(tα) denotes the solution to Equation (1) for the transfer compartment y1 at time point

tα, corresponding to the measurement at yi,α
1 , for the parameter vector xk. Furthermore, d

dt c
u
xk(tβ)

is the derivative of the solution for the urine compartment y7 at time point tβ , corresponding to
the measurement ẏi,β

7 , while 8(·|µ, σ) is the univariate probability density function of the
normal distribution with mean µ and standard deviation σ .



The standard deviations for plasma, σ b
i , and for urine, σ u

i , are fitted investigation-specifically by
simulated annealing [28] before starting the MCMC sampling process. They correspond to the
combined strength of all deviations from the ODE, e.g. to the size of the measurement error as
well as to the magnitude of the difference between the ODE solution and the data points that is
due to natural internal fluctuations not considered by an ODE approach. The biological
variability between the individual investigations is accounted for by the fact that we fit different
σ b

i and σ u
i for each investigation i and thus get investigation-specific likelihoods. This leads to

individual credible intervals for each parameter in each investigation in the MCMC sampling
procedure later on.

The complete data (i.e. concatenated data) likelihood is given by
LALL(xk, k|D) = ∏16

i=1 Li(xk, k|Di) for the complete data D = {D1, . . . ,D16} where in all
Li(xk, k|Di) the same fitted investigation independent σ b

i = σ b and σ u
i = σ u are used.

For the calculation of Li(xk, k|Di) Equation (1) has to be solved based on xk. Since (1) is of first
order, it can be written as

dyxk(t)
dt

= A(xk) · yxk(t), (2)

where yxk(t) is the vector of all the compartments of model k and the time independent matrix
A(xk) represents all the interactions between these compartments, depending on the transfer rate
values xk. The analytical solution is then given by

yxk(t) = eA(xk)t · yxk(t = 0). (3)

The matrix exponential eA(xk)t was computed by eigenvalue decomposition using MATLAB’s
eig function (see Additional file 1 section 1.3).

Bayes factors

Specifying model specific, investigation independent prior distributions p(xk|k) based on
combined human/animal data yields the posterior distributions of the parameters for model k
according to Bayes’ theorem:

p(xk|Di, k) = Li(xk, k|Di)p(xk|k)
p(Di|k) , (4)

where p(Di|k) denotes the marginal density obtained by integrating over the according
parameter space Xk, i.e.

p(Di|k) =
∫

Xk
Li(xk, k|Di)p(xk|k) dxk. (5)

The quantity p(Di|k) is called data evidence and is the basis for the model selection process. For
comparing two models k and k′, we can view the model index as a random variable, apply
Bayes’ theorem again and take ratios to cancel the denominator, yielding

p(k|Di)

p(k′|Di)
= p(Di|k)

p(Di|k′)
· p(k)

p(k′)
. (6)



The ratio of the two likelihoods in Equation (6) is known as the Bayes factor

Bi
k,k′ = p(Di|k)

p(Di|k′)
. (7)

We had no initial preference for any of the models and thus chose a uniform model prior. The
Bayes factor in Equation (7) then coincides with the posterior odds ratio between the models k
and k′ conditioned on the data Di [18, 29].

The Bayes factor compares the posterior probability p(k|Di) that the data Di have arisen
according to model k versus the probability p(k′|Di) = 1 − p(k|Di) that Di have arisen
according to model k′, in contrast to single parameter measures such as the AIC or the
likelihood ratio test [16]. The models may be non-nested. Due to the evaluation of each model
on its whole parameter space Xk (cf. Equation (5)), the Bayes factor naturally penalizes model
complexity and thus prevents overfitting issues [30–32]. An interpretation of the likelihood ratio
in the Bayes factor was given by Jeffreys [15], which can also be found in the Additional file 1
section 3. Most importantly, a Bayes factor Bi

k,k′ > 3 substantially favors model k, while
Bi

k,k′ > 100 decisively favors model k. Clearly, for Bi
k,k′ < 1, model k′ is favored with evidence

Bi
k′,k = 1/Bi

k,k′ .

Prior information

Since the problem of radiation protection has been extensively researched, quite a large number
of animal studies have been conducted. These yielded excessive prior knowledge for the
Bayesian modeling approach. As the ICRP model is the recommended model used for dose
estimation, there naturally exists information on the distribution types of the parameters
involved in the model together with confidence intervals [7]. Four parameters have a lognormal
distribution, five a triangular distribution and six have a normal distribution (see Additional file
1 section 2.3 for details). From the confidence intervals, the parameters of the normal and
lognormal distributions were calculated. For the HMGU model detailed prior information is
also available from previous studies [7, 8]. Here, eight parameters have a lognormal distribution
and four a triangular one (see Additional file 1 section 2.3 for details). It is noteworthy that of
the eight parameters shared in both models, x8 is the only one having different distributions in
the ICRP and HMGU model. Due to a lack of prior knowledge of the dependency structure
between the parameters, the multivariate prior distribution p(xk|k) of model k was taken to be
the product of the univariate prior distributions p(xk

r |k) for each parameter xk
r , i.e.

p(xk|k) = ∏
r p(xk

r |k). Each univariate prior distribution was truncated at zero. While Bayes
factors were computed inter alia for each investigation separately (see Results & Discussion),
the same prior information was applied throughout all investigations. This is reasonable since
the priors contain information from a huge variety of preceding experiments.

Thermodynamic integration

Computing the marginal of Equation (5) by numerical integration generally turns out to be a
daunting task. There exist a variety of approaches to tackle this problem. Popular choices
include Chib’s method, which is based on a Gibbs sampling scheme and therefore not always
easily applicable [33] or the Reversible Jump MCMC algorithm proposed by Green [34], based
on an across model search. Since the latter involves sampling of an additional model parameter,



the sampling generally takes longer than sampling within the different models only. We
therefore applied a within model sampling technique called thermodynamic integration (TI). It
was proposed by Lartillot and Philippe [35] and Friel and Pettitt [36] and successfully applied
e.g. in Xu et al. [37]. The method splits apart the computation into several intermediate steps by
introducing an auxiliary “temperature” parameter τ ∈[ 0, 1] that governs the influence of the
parameter likelihood. The basis of this approach is the power posterior, which is the usual
posterior modified such that the likelihood is exponentiated by the temperature parameter and
then normalized accordingly to obtain a probability density:

pτ (Di|k) = Li(xk, k|Di)
τ p(xk|k)

z(Di|k, τ)
. (8)

More precisely, the quantity of interest is the normalization constant

z(Di|k, τ) =
∫

Xk
Li(xk, k|Di)

τ p(xk|k) dxk (9)

since it yields a way to compute the terms of the Bayes factor (cf. Equation (7)) by
differentiating its logarithm

d
dτ

log z(Di|k, τ) =
∫

Xk
logLi(xk, k|Di)

Li(xk, k|Di)
τ p(xk|k)

z(Di|k, τ)
dxk

= Epτ

[
logLi(xk, k|Di)

]
(10)

and then integrating both sides with respect to τ

log(p(Di|k)) =
∫ 1

0
Epτ

[
logLi(xk, k|Di)

]
dτ , (11)

according to Calderhead and Girolami [38]. This means that the natural logarithm of the
marginal likelihood can be computed as the integral over the expectation of the logarithmized
data likelihood within the model with respect to the power posterior. The parameter τ governs
the flatness of the power posterior surface and, much as in the concept of path sampling [39],
stabilizes the computation of Equation (5) [36]: choosing a discretization
0 = τ1 < τ2 < . . . < τN−1 < τN = 1, we can compute the natural logarithm of the marginal
likelihood p(Di|k) by numerically approximating the integral in Equation (11) by

log(p(Di|k)) ≈
N−1∑
n=1

1
2(τn+1 − τn)

{
Epτn+1

[
logLi(xk, k|Di)

]
+Epτn

[
logLi(xk, k|Di)

] }
.

(12)

Also, the expectation with respect to the power posterior in Equation (12) is approximated in the
usual way by substituting it with the Monte Carlo estimate

Epτn

[
logLi(xk, k|Di)

]
≈ 1

M

M∑
m=1

logLi

(
xk

(m), k|Di

)
, (13)



where xk
(m) denotes a sample drawn from pτn(Di|k). For all our applications we chose a

temperature schedule with N = 30 steps according to τn =
(

n−1
N−1

)5
, n = 1, . . . , N to estimate

log(p(Di|k)) for each k and i as suggested by Calderhead and Girolami [38].

Copula-based Monte Carlo sampling

The model, investigation, and temperature specific underlying Markov chain Monte Carlo
(MCMC) samples were drawn using the recently introduced copula-based Metropolis-Hastings
(MH) algorithm [23]. Copulas are constructs from probability theory for assessing and sampling
from multivariate distributions. They are widely used in finance and ecology [40, 41]. For any
absolutely continuous multivariate cumulative distribution function (cdf) F(x1, . . . , xd) with
marginal cdf’s Fi(xi), i = 1, . . . , d, joint density function f (x1, . . . , xd) and marginal density
functions fi(xi), i = 1, . . . , d, we decompose

f (x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) · f1(x1) · . . . · fd(xd), (14)

where c (u1, . . . , ud) is a unique copula density function defined on [ 0, 1]d with uniformly
distributed marginals on [ 0, 1]. This copula function covers the full dependency structure of the
variables. In other words, every joint distribution function can be decomposed into the marginal
behavior of its individual variables and a function covering its dependency structure [42]. The
MH proposal function then generates problem specific proposals with an according dependence
structure drawn from a pair copula distribution. Fitting the copula distribution was done in
preruns containing 1,000,000 unthinned samples each. They were generated for each
investigation and model separately. For back-and-forth conversion of the prerun samples and
proposals [23], we naturally applied the according prior distributions of the models at hand.
Choosing different conversion functions is possible, but affects the sampling performance.
Before starting the final MCMC sampling procedure, the maximum a posteriori parameter
estimates were computed by simulated annealing and used as initial MCMC sampling values.
This makes a burn-in period dispensable. For thinning the Markov chains, i.e. for drawing
approximately independent samples in the MCMC procedure, we applied the
autocorrelation-based Effective Sample Size (ESS) proposed by Kass [43]. The ESS holds the
number of samples left when the Markov chain is thinned such that two consecutive samples can
be considered approximately independent. The copula-based MH approach is able to deal with
the dependence structure in the high dimensional sampling space and allows for high proposal
acceptance rates at simultaneously high ESS’s. Finally, all Bayes factors were computed based
on 30,000 proposals of the copula-based MH algorithm at each τn throughout all applications.

Results & discussion

In this section, we present the results of our analysis. We address the question which model is
superiorly fitting the data. First, several general results, such as investigation dependency of the
Bayes factor and effects of parameter correlations are shown, before turning to the results of the
model selection, and their consequences for the HMGU and ICRP models.



Investigation specificity of transfer rates

In radiation protection the transfer rates for the biokinetics of radionuclides in the human body
are derived from data collected in various independent experiments [5]. We measured plasma
and urine levels in 16 different investigations. This poses the question whether the models
should be compared based on the complete dataset, or whether statistical evaluation should be
done for each investigation individually. While the former approach results in one overall Bayes
factor, the latter yields 16 investigation specific, not directly comparable Bayes factors. All
investigations follow the same pulse-like time courses in the transfer compartment y1 while the
excretion rates in the urine compartment y7 exhibit an exponential decay behavior (Figure 2).
However, zirconium tracer concentrations showed up to a 50-fold difference between maximal
plasma concentrations, i.e. for investigation 10 (1.616%) and 6 (0.033%).

Figure 2 The experimental data. Plasma and urine data for investigations 1-16 on
log-log-timescale

To test the hypothesis whether the diversity in concentration also effects transfer rates and
therefore the estimated Bayes factors, we pairwise compared the posterior sample marginals of
the MCMC run (corresponding to the samples of τ = 1) for parameter x7 of the ICRP model
between all investigations by means of a Kolmogorov-Smirnov test. Here x7 was chosen as it
directly affects the observed plasma levels [8]. Except for one pair, all p-values were < 6 · 10−8,
meaning that the chance of falsely rejecting the hypothesis of comparable marginals is
negligible. Therefore, as the posterior marginal distributions are quite different, it can be
deduced that the basis for the Bayes factor, the joint posterior distribution, can differ quite
strongly w.r.t. the individuals. This indicated that each investigation should be treated
separately. Nevertheless, in order to infer the transfer rates of an average subject, as currently
used by the ICRP, the concatenated data had to be used. We therefore compared the HMGU and
ICRP model based on both the concatenated data D = {D1, . . . ,D16} and, in order to account
for the biological diversity, the individual investigation specific datasets Di (i = 1, . . . , 16). This
could also be the basis for further analysis of influence factors such as weight or gender.

MCMC-based parameter estimation

Throughout, the analysis was based on 30,000 proposals for each of the 30 temperature levels in
all 17 cases (one for each investigation and one for D). For the HMGU model the average ESS
including one standard error, i.e. taken over all temperature levels and investigations, is
5832 ± 405. In case of the ICRP model we obtained in average 5808 ± 252 (approximately
independent) samples from the Markov chains. This naturally implied high acceptance rates for
both models. The sampling procedure thus captured the power posteriors very well.

From the posterior samples, we could derive new credible intervals for the parameters at hand as
well as a new MAP estimate for an average subject which can be used if single parameter values
are required (see Additional file 1 section 4.1). As can be seen in Figure 3, the fit of the time
courses covered the data, indicating that both models are in principle able to fit the data. This
justifies our ODE approach with additive noise. However, from the fits alone it is not obvious
which model is superior. Note that the credible intervals in Figure 3 represent only the
uncertainty based on the parameters, in contrast to measurement uncertainties accounted for by



the σ b
i s and σ u

i s, which are not shown. Clearly, this uncertainty in the parameters is specific to
the individual investigations or the complete data, respectively.

Figure 3 Posterior time courses. Sample median (solid line) and 90% credible interval (CI,
shaded area) for the numerical solution of the time courses based on the τ = 1 HMGU (blue)
and ICRP (red) MCMC samples for the complete plasma data (A), urinary excretion rate over
time of the complete data (B), plasma data of exemplary investigation 15 (C), and urinary
excretion rate over time of exemplary investigation 15 (D) on a log-log scale. The median and
CI represent the uncertainty in the parameters, in contrast to measurement uncertainty (not
shown). Colored markers are the data points. The median and the 90% credible interval were
computed pointwisely at each time point over all MCMC-based solutions. For readability we
truncated plasma plots at 1 · 10−5[ %] and urine plots at 1 · 10−6[ %/d]

Parameter correlations and model identifiability

The posterior probabilities of both the HMGU and ICRP model showed strong correlation
between the parameters x7 and x8 throughout all investigations. The estimated Kendall’s τ ’s
based on the preruns were τ̂HMGU = 0.8027 ± 0.01 and τ̂ICRP = 0.3452 ± 0.02. This can be
explained as follows: At time point t = 0 the stomach compartment y9 is the only compartment
with non-zero Zr concentration. It is exclusively connected to the small intestines y10 in all
models. Therefore, all Zr compounds have to pass through y10, which further on distributes
them to the observed transfer compartment y1 via x7 or to the upper large intestines y5 via x8.
Aberrations in one of the parameters x7 or x8 thus have a direct effect on the amount of
zirconium predicted for y1. This affects the according posterior distributions. The same effect is
found for the complete data D (compare pairwise scatterplots in Additional file 1 section 4.2).
Despite the parameter dependencies, the posterior distributions of the ICRP and HMGU model
are identifiable for all 16 investigations, this is, the investigation specific maximum a posteriori
estimates are well defined and inferable (cf. Additional file 1 section 4.3).

Bayesian model comparison

Using the concept of thermodynamic integration we compared the HMGU and the ICRP model
based on (i) the concatenated data D = {D1, . . . ,D16} and (ii) the individual investigation
specific datasets Di (i = 1, . . . , 16). This results in a total of 17 Bayes factors. We found that all
Bayes factors favored the HMGU model; in 14 out of the 17 cases even decisively (cf. Table 1,
second column, of this section and section 4 of Additional file 1).

In order to take a closer look at the contribution of the plasma and urine data to the above
results, we computed additional Bayes factors based on the likelihoods Lb

i (x
k, k|Di) and

Lu
i (x

k, k|Di) individually. Here, i = 1, . . . , 16, ALL and k ∈ {I, H}, where I represents the ICRP
and H the HMGU model. The time courses already suggested better coverage of plasma data by
the HMGU model (Figure 3 above and section 4.4 of Additional file 1); for urine the situation is
not that clear. This was confirmed by the Bayes factors (see Additional file 1 section 4 for
sampling details): all 17 Bayes factors based on plasma data favored the HMGU model; in ten
cases even decisively (Table 1, third column). For the urine data, three investigations slightly



favored the ICRP model (Table 1, fourth column). In summary, all decisive Bayes factors are in
favor of the HMGU model. While the HMGU model was never decisively rejected, the ICRP
model was decisively rejected in the majority of cases. Hence, in depth analysis showed that the
HMGU model is superior to the ICRP model with respect to zirconium processing in the human
body. This not only holds investigation-specifically, but also based on the complete data. We
additionally considered an extension of the HMGU model (see Additional file 1 section 1.2 and
4) which, however, did not show any significant improvements.

Table 1 Bayes factors
Inv. BA

H,I Bp
H,I Bu

H,I
1 7.17 · 101 7.12 · 101 1.05
2 1.15 · 102 2.93 · 102 3.94 · 103

3 5.95 · 104 5.23 · 104 1.34
4 1.07 · 103 2.64 · 103 3.47 · 101

5 2.19 · 102 4.73 · 102 1.34 · 102

6 4.64 · 103 3.93 · 103 2.38 · 103

7 2.18 · 102 2.30 · 102 1.34 · 103

8 3.75 · 101 1.28 · 102 0.22
9 4.62 · 102 2.32 · 102 0.18

10 8.62 · 102 1.16 · 102 0.20
11 1.17 · 105 1.81 · 101 2.94 · 103

12 1.78 · 102 5.48 1.14 · 101

13 7.19 · 102 1.41 · 101 4.41
14 3.58 · 101 7.43 9.77
15 6.29 · 103 2.17 · 101 1.60 · 102

16 6.22 · 102 1.34 · 101 1.20 · 104

ALL 1.20 · 1011 3.43 · 104 4.73 · 107

Bayes factors for the HMGU versus the ICRP model (BA
H,I) for investigation 1, . . . , 16 and the

complete data model (ALL) as well as the according Bayes factors for the plasma (Bp
H,I) and

urine (Bu
H,I) data. Green color indicates a Bayes factor in favor of the HMGU model and red

color a Bayes factor in favor of the ICRP model. The HMGU model is favored substantially,
when B·

H,I > 3 and decisively, when B·
H,I > 100. Also, 1/B·

H,I = B·
I,H .

Differences in radioactive 95Zr retention in bone predicted by the HMGU and ICRP
models

In internal exposure monitoring, biokinetic models were used to predict the organ retention or
daily excretion of incorporated radionuclides [44]. With an interval of 120 days the radioactivity
of 95Zr possibly incorporated by occupational workers was routinely monitored by whole body
counters. Depending on the intake route, the radiation dose of bone surfaces or colon was taken
as regulatory limit for a decision if an individual is requested for person-specific
monitoring [45]. In this monitoring procedure, the biokinetic model structure and parameters
are used implicitly in the background. The organ retention function is the solution of the model
in each compartment; the organ doses are directly related to the integral of radioactivity of 95Zr
in source organs over 50 years.



In order to compare the retention of 95Zr as predicted by the ICRP and HMGU models, the 90%
credible intervals for the time courses in the bone compartments were calculated based on the
posterior samples. It is found that there is a significant difference between the two models
(Figure 4), where for the ICRP model we added the concentrations in the two bone
compartments. The time courses were derived for stable isotopes of Zr and thus had to take the
radioactive decay of 95Zr with half-life of 64.032 d [46] into account. The decrease of retention
in bone using the HMGU model consequently reduces the radiation dose estimate in bone in
comparison to the ICRP bone dose which is currently used in monitoring.

Figure 4 Zirconium retention in bones. Median (solid lines) as well as 90% credible intervals
(shaded areas) for the retention of 95Zr in the bone compartment(s) as predicted by the HMGU
and ICRP models, taking into account radioactive decay

Retrospective dose assessment

Internal doses due to incorporated radionuclides have to be estimated with the help of biokinetic
models based on indirect measurements, using for example bioassays for blood or urinary
excretion. Normally, bioassay or in vivo data (e.g. radioactivity accumulated in skull or knee
detected by a partial body counter) are measured after an accidental intake of radionuclides.
Uncertainties of estimated doses are significant and have a large impact on the remediation and
thus action costs. In contrast to conventional uncertainty analysis as performed in [7], our
Bayesian approach naturally integrates the uncertainties of measured data and parameters
simultaneously. This trait of the Bayesian approach is useful as it provides an estimate for the
intake and its credible intervals.

For example, if the urinary excretion after accidental exposure is measured, we can compute
credible intervals for the initial intake of radionuclide 95Zr by exploiting the posterior
distribution together with the linearity of the HMGU model. In order to be as general as possible
we used the posterior samples based on the complete data. Given a posterior sample xH , a
measurement ẏt

7 in [µg/d] for the urinary excretion rate of zirconium at time point t corresponds
to a unique solution cxH(t) of the HMGU ODE system. Due to the linearity of the ODE’s, the
initial concentration cxH(0) is by definition zero for all except the stomach compartment y9. The
latter reads y9(0) = ẏt

7 · 100%/c9
xH(t) where c9

xH(t) denotes the value of cxH(t) in the stomach
compartment at time point t. Now, assuming that for arbitrary posterior samples xH the
measurement ẏt

7 is contained in the 90% credible interval of the solution cxH(t) with initial
condition y9(0) as given above, lower and upper bounds for credible regions of the initial
amount of zirconium taken in at t0 = 0 emerge. These are based on the posterior samples. The
estimated extrapolation factors for multiplication with a urine measurement (in [µg/d]) after
time t (in [h]) are contained in Table 2 and yield the initial amount of zirconium contained in the
stomach at t0 = 0. For example, if an amount of ẏ2d

7 = 50µg/d was measured after two days, we
find from Table 2 that the 90% credible interval for the ingested amount lies between 0.029g and
0.059g. Since the above calculations are based on non-radioactive Zr isotopes, the results have
to be corrected for dose assessment with respect to radioactive decay of the radionuclide in
question, i.e. in many cases 95Zr.



Table 2 Urine predictions for the HMGU model
Time t 6h 12h 18h 24h 30h

lbf for IC 1233.91 1820.44 2614.48 3369.70 4100.16
mf for IC 1763.73 2225.90 3153.70 4228.19 5340.23
ubf for IC 2512.54 2832.49 3978.27 5650.86 7516.00

Time t 36h 42h 48h 54h 60h
lbf for IC 4778.27 5352.64 5800.77 6153.80 6450.74
mf for IC 6364.76 7250.67 7977.31 8557.87 9006.97
ubf for IC 9122.11 10655.01 11878.81 12960.61 13903.07
Shown are the lower bound factor (lbf), median factor (mf), and upper bound factor (ubf) for
multiplication with a urine measurement (in [µg/d]) after time t (in [h]) on a 60h grid yielding
the initial intake concentration (IC) at t0 = 0.

Conclusions

We were the first to evaluate two competing biokinetic ODE models for zirconium processing in
the human body after ingestion. These models were the current model recommended by the
International Commission on Radiological Protection (ICRP) and a model developed by the
Helmholtz Zentrum München (HMGU). The analysis was based on a Bayesian approach, i.e.
individual Bayes factors for 16 investigations as well as a Bayes factor based on the
concatenated dataset. In order to obtain reliable Monte Carlo sampling results, we combined the
numerically stable thermodynamic integration with an efficient copula-based
Metropolis-Hastings algorithm. In summary, the HMGU model was unequivocally superior
with 14 of 17 Bayes factors being even decisive when compared to the well-established ICRP
model. Also, when restricting the data on plasma and urine measurements only, we found that
the HMGU model was clearly favored. The HMGU model thus best covers human data.

In contrast to the ICRP model, the HMGU model predicted a delayed accumulation of
zirconium in bones which might be experimentally tested in animals in the future. Furthermore,
we showed that the HMGU model can be applied for retrospective dose assessment, where the
initially ingested amount of zirconium can be reconstructed including credible intervals from ex
post urine measurements. This provides a simple hands-on tool that facilitates the decision if
measures have to be taken in case of accidental exposure. In future applications the superior
HMGU model together with its posterior samples can readily be used as the basis for dose
estimation in internal dosimetry. The Bayesian framework for the compartmental model
analysis developed in the present work is directly applicable to a personalized dose assessment
and the uncertainty quantification if a person-specific monitoring is requested. More generally,
the presented methodology is suitable for any ODE-based model selection task, such as the
modeling of protein signaling, gene regulation, or drug processing [47], nowadays frequently
put forward in systems biology [48, 49] or pharmacogenetics [50].
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Additional file 1: Supplementary information. Supplementary information, including the detailed
ODE systems for both models, the prior information used for the inference and more detailed
evaluation of the sampling results, among them additional time course plots for the single
investigations and scatterplots for the evaluation of parameter dependencies. Furthermore, we
provide an identifiability analysis for all models and a model variant of the HMGU model
including its evaluation via Bayes factors.
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