Supplementary Material

Applied Microbiology and Biotechnology

Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen *Fusarium fujikuroi*

Sarah M. Rösler^{1,2}

Christian M. K. Sieber^{3,4}

Hans-Ulrich Humpf¹

Bettina Tudzynski^{2*}

¹Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany

²Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany

³Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany

⁴Present address: DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA

*Corresponding author: Prof. Dr. B. Tudzynski, phone: +49 251 83-24801, fax: +49 251 83-21601, email: bettina.tudzynski@uni-muenster.de

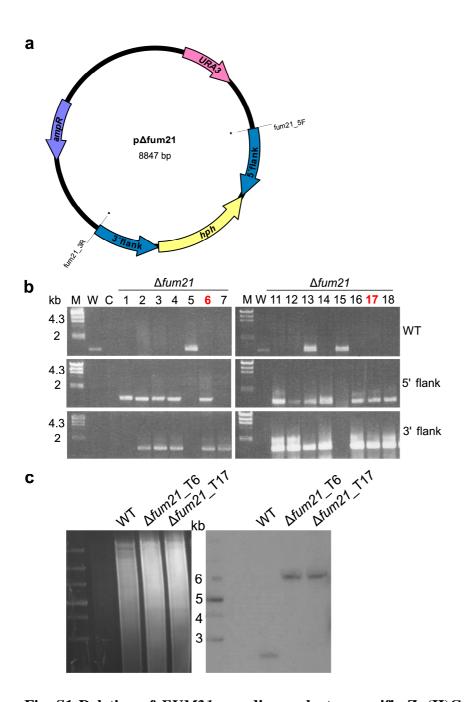
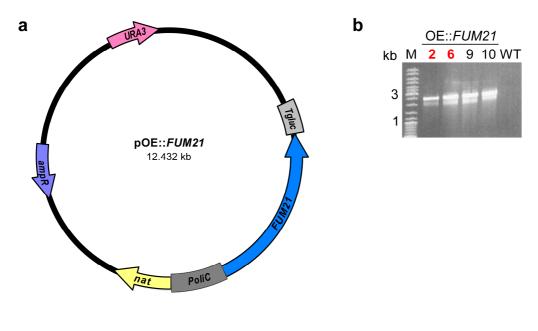



Fig. S1 Deletion of FUM21 encoding a cluster-specific Zn(II)Cys6 transcription factor.

The vector map of p $\Delta fum21$ containing the deletion construct is shown including primers for amplification (a). URA3 and ampR serve for selection in Saccharomyces cerevisiae and Escherichia coli, respectively. Correct mutants were verified by diagnostic PCR checking for homologous integration at both flanks (3'and 5') as well as for the wild-type gene (WT) using the WT gDNA (W) and no DNA (C) as controls (b). A $\lambda HindIII$ marker (M) and GeneRuler DNA Ladder Mix were used for sizing. Mutants $\Delta fum21$ _T6 and T17, highlighted in red, were chosen for further experiments. These two mutants were additionally tested in a Southern Blot analysis using HindIII for digestion and the 5' flank of FUM21 as probe (c)

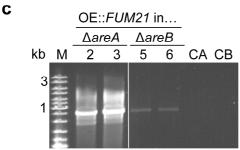
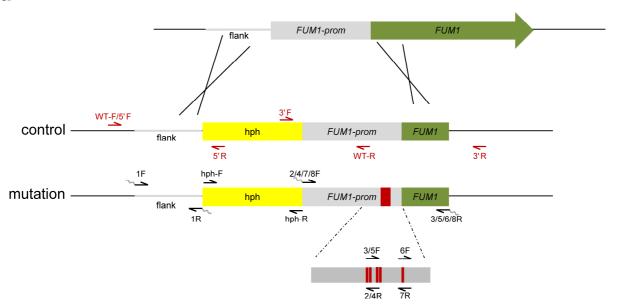
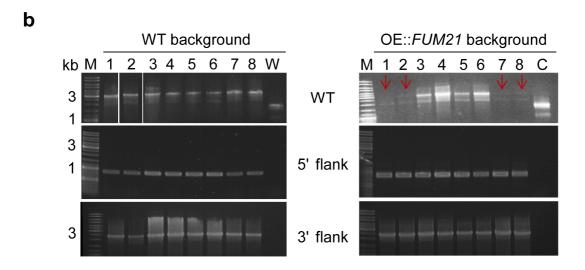




Fig. S2 Over-expression of FUM21 encoding a cluster specific Zn(II)Cys6 transcription factor. FUM21 was over-expressed under control of the constitutive oliC promoter (PoliC) and the Tgluc terminator. The vector map of pOE::FUM21 is shown (a). URA3 and ampR serve for selection in Saccharomyces cerevisiae and Escherichia coli, respectively. For selection the nourseothricin resistance cassette (nat) was used. Transformants with wild-type (WT) background (b) as well as transformants with $\Delta areA$ and $\Delta areB$ background (c), respectively, were verified by diagnostic PCR using the WT, $\Delta areA$ (CA) and $\Delta areB$ (CB) gDNA as control. GeneRuler DNA Ladder Mix (M) was used for sizing. Transformants OE::FUM21_T2 and T6 (highlighted in red), OE::FUM21/ $\Delta areA$ _T2 and T3 as well as OE::FUM21/ $\Delta areB$ _T5 and T6 were chosen for further experiments

a

Fig. S3 Directed mutations of *FUM1* **promoter motifs.** Directed point mutations were inserted by homologous recombination replacing the wild-type (WT) promoter region. The hygromycin resistance cassette was inserted for selection (hph). In case of the control, a non-mutated construct was introduced (a). Primers used for amplification are shown as black arrows while overlaps are implied in grey. Numbers refer to fragments further explained in materials and methods section. Primers for diagnostic PCR of 5′ flank, 3′ flank and WT are depicted in red. Transformants were verified by diagnostic PCR checking for homologous 5′ flank and 3′ flank integration and WT situation (b). For emphasis red arrows are used. Transformants with WT background: 1=mut0_T1, 2=mut0_T2, 3=mut3_T1-3.1, 4=mut3_T3-5, 5=mut2/3_T1, 6=mut2/3_T8, 7=mut_denovo_T3, 8=mut_denovo_T6. Transformants with OE::*FUM21* background: 1=mut0_T1, 2=mut0_T11, 3=mut3_T6-2, 4=mut3_T11-3, 5=mut2/3_T8-2, 6=mut2/3_T7-1, 7=mut_denovo_T6-2, 8=mut_denovo_T15-1

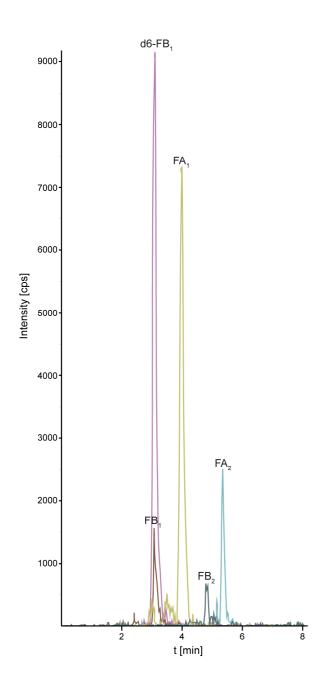
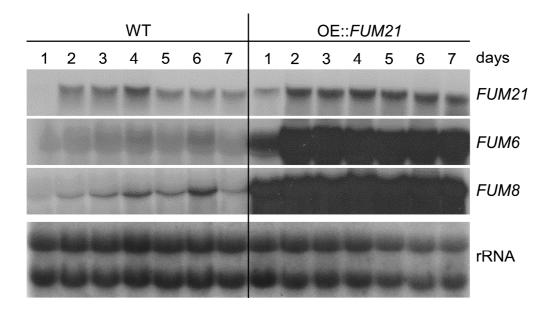
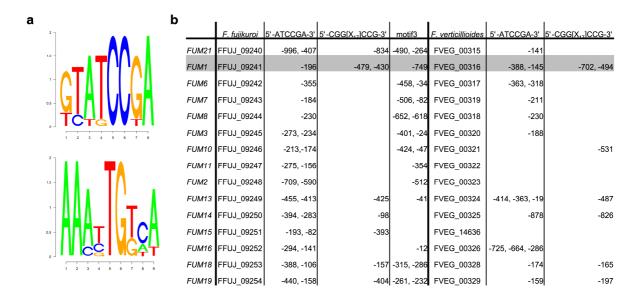
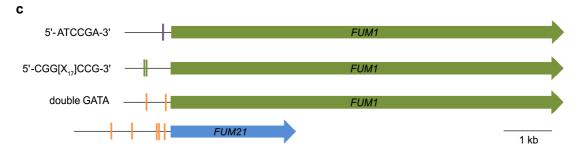





Fig. S4 Exemplary HPLC-MS/MS chromatogram for the analysis of fumonisins in fungal cultures. The F. fujikuroi wild type was cultivated for 6 days in liquid ICI with 6 mM glutamine. Fumonisin levels were analyzed by HPLC-MS/MS from the culture supernatant using d_6 -FB₁ as internal standard: FB₁ (1.2e4), FB₂ (5.3e3), FA₁ (6.9e4), FA₂ (1.7e4), and d6-FB₁ (9e4), giving the peak areas in brackets. External calibration was used to calculate produced FB₁ amounts of 6.5 ng/mL (400 ng/g fungal dry weight)

Fig. S5 Time-course expression of *FUM* **genes**. The *F. fujikuroi* wild type (WT) and OE::*FUM21* were cultivated for 1 to 7 days in liquid ICI medium (6 mM Gln). The expression of *FUM21* itself and the essential cluster genes *FUM6* (P450 monooxygenase) and *FUM8* (aminotransferase) was detected in a Northern blot analysis

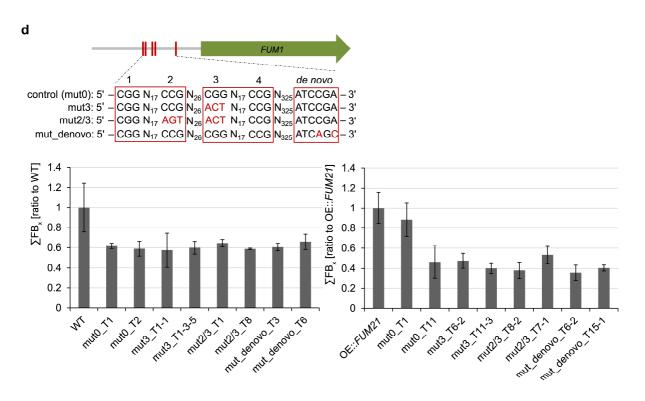


Fig. S6 Promoter motifs of FUM genes. Promoter analysis revealed the over-represented consensus sequence 5'-ATCCGA-3' and a motif with the consensus 5'-AAATTGTCA-3' in F. $fujikuroi\ FUM$ genes (a). Additionally the palindromic 5'-CGG[X₁₇]CCG-3' motif was identified in 7 promoters, including the FUM1 promoter. Both motifs are present in F. fujikuroi, as well as in F. verticillioides (b). Binding sites are listed with distance from ATG. Furthermore, the promoter regions of FUM1 and FUM21 contain several double GATA motifs that might enable AreA and/or AreB binding (c). The motifs 5'-ATCCGA-3' and 5'-CGG[X₁₇]CCG-3' were mutated in wild-type and OE::FUM21 background (d). Loci in the promoter of FUM1 and directed nucleotide exchanges are highlighted in red. Two independent mutants carrying each mutation construct and the corresponding parental strain were cultivated for 7 days in fumonisin-inducing liquid medium (ICI, 6 mM Gln) and fumonisin levels ($FB_1+FB_2=\Sigma FB_x$) were analyzed in triplicate via HPLC-MS/MS from the culture supernatant using d_6 - FB_1 as internal standard

Table S1 Oligonucleotides used in this study. Overlapping regions for cloning are printed in lowercase letters. Changes to original sequence, creating directed mutations, are highlighted in red

Primer identifier	Primer sequence	
Generation of plasmid for targeted gene deletion and verification of knock-out mutants		
fum21_5F	gtaacgccagggttttcccagtcacgacgTTAGCTATCATGTCACTGG	
fum21_5R	atccacttaacgttactgaaatctccaacAACTGTAGGGAGGTGATACTG	
fum21_3F	ctccttcaatatcatcttctgtctGCTTATCATAAGATACTAC	
fum21_3R	geggataacaattteacacaggaaacagcAACGAGTATAAGGTTACGG	
hph_F	GTCGGAGACAGAAGATGATATTGAAGGAGC	
hph_R	GTTGGAGATTTCAGTAACGTTAAGTGGAT	
fum21_5F_dia	AGTCATAGCTCCTTTCAGG	
fum21_3R_dia	AAGGTCATCACAGGTATGG	
pCSN44_trpC_P2	GTGATCCGCCTGGACGACTAAACC	
pCSN44_trpC_T	GGAATAGAGTAGATGCCGACCGG	
fum21_seq1	AGTATGATCAAGCTACAG	
fum21_seq2	AGCTCTATACATGAGACAG	
Generation of plasmids for FUM21 overexpression and verification of transformants		
OEfum21_F	ccatcacatcacatcgatccaaccATGACGGAACCTATAGTGTTC	
OEfum21_R	taatcatacatcttatctacatacgTTACTGACATTTCATTATCT	
PoliC_seqF2	GGGAGACGTATTTAGGTGCTAGGG	
Tgluc_seqR2	CCGCCCTCTTTTGTCTTCCGC	
fum21_seq3	TGGAAACAGCGAGACAATAC	
fum21_seq4	AACTGTTACGCTACCAAGCC	
Generation of promotor point-mutation constructs and verification of transformants		
MutPFum1_5´F	gtaacgccagggttttcccagtcacgacgTGACACTCCCTCATAGCAGC	
MutPFum1_5´R_hph	atccacttaacgttactgaaatctccaacTTACTGACATTTCATTATC	
MutPFum1_PromF_hph	teetteaatateatettetgteteegaeTGCTTATCATAAGATACTACC	
Mut2u3_F	GACAAAGTTCTCCGTGCAGGTCAAAATACGGCTTACTCATCTA	
Mut2u3_R	TAGATGAGTAAGCCGTATTTTGACCTGCACGGAGAACTTTGTC	
MutPFum1_3´R	geggataacaatttcacacaggaaacagcAGCTTGGCATCGACATACC	
Mut3_F	GACAACCGTCTCCGTGCAGGTCAAAATACGGCTT <mark>ACT</mark> CATCTA	
Mut3_R	TAGATGAGTAAGCCGTATTTTGACCTGCACGGAGACGGTTGTC	
Mut_F1	ATTGTGCATCAGCGTGCGGCGTGTTC	
Mut_R1	ACGCCGCACGCTGATGCACAATAATC	

fum1_probe_R	ATTCGGCGTGAAGAA
fum21_probe_F	CTCTGGTTCTTGAACTCACTTGAGAAGC
PromFum1_seq1	TATCCATTGCTCTTCTGC
PFum1_Mut_seqF1	TCACCTCAGTGTTCCGCTAAG
PFum1_Mut_seqR1	TACGGTGTATGAGCTACG
PFum1_Mut_seqF2	TGTAGTGCATATACCCGTGG
PFum1_Mut_seqR2	ACTGAACTGCAACCACCATC
Mut_seq1	AATCGGACATCCGAAGCCTG
Primers used for amplification of probe templates	
fum1_F	TGATAGCTCTTCATGAAGC
fum1_R	TGAAGCACCCTCGCTATGTC
fum6_F	ACTGCATTATTTACGAGACG
fum6_R	TGTCGACGGGATTCTGTCG
fum8_F	AGTGGTGGCAAGATTGTGG
fum8_R	ATCGTCGAGGTATTGCTTCG
fum21_F2	ACTGGTTTGCCATCAACGC
fum21_R2	ACCTCATCTACAGGAACG