SUPPLEMENTARY MATERIALS

Identification of Small Molecule Frequent Hitters of GST-Glutathione interaction

Jara K. Brenke^{1,#}, Elena S. Salmina^{2,#,‡}, Larissa Ringelstetter¹, Scarlett Dornauer¹, Maria Kuzikov³, Ina Rothenaigner¹, Kenji Schorpp¹, Fabian Giehler^{4,5}, Jay Gopalakrishnan⁶, Arnd Kieser^{4,5}, Sheraz Gul³, Igor V. Tetko^{7,8,‡} and Kamyar Hadian^{1,§}

¹Helmholtz Zentrum München für Gesundheit und Umwelt (HMGU), Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

²Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, Freiberg, D-09596, Germany

³Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort (Fraunhofer-IME SP), Schnackenburgallee 114, D-22525 Hamburg, Germany

⁴Helmholtz Zentrum München für Gesundheit und Umwelt, Research Unit Gene Vectors, Marchioninistr. 25, 81377 Munich, Germany

⁵German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany

⁶Laboratory for Centrosome and Cytoskeleton Biology, CMMC, Robert-Koch-Str. 21, 50931 Cologne, Germany

⁷Helmholtz Zentrum München für Gesundheit und Umwelt (HMGU), Institute of Structural Biology, Ingolstädter Landstrasse 1, G. 60w, 85764 Neuherberg, Germany

⁸BigChem GmbH, Ingolstädter Landstrasse 1, G. 60w, 85764 Neuherberg, Germany

Address correspondence to:

Kamyar Hadian, Ph. D.
Helmholtz Zentrum München GmbH,
Assay Development and Screening Platform,
Institute of Molecular Toxicology and Pharmacology,
Ingolstädter Landstr. 1,
85764 Neuherberg, Germany
Phone: +49 89 3187 2664

E-mail: kamyar.hadian@helmholtz-muenchen.de

[#] Equal contribution

[‡]Chemoinformatic analysis

[§] Corresponding author

CONTENTS

Table S1 Table S2 Table S3 Table S4 Table S5 Table S6 Table S7	PubChem primary screen assay PubChem confirmatory screen assays GST-FHs recognized by PAINS filters GST-FHs recognized by Promiscuity filters Substructural filters developed for identification of AlphaScreen TM - GST-FHs Aromatic sulfonylamides in "PC-Artifacts" dataset GST-FHs recognized by Potential Electrophilic Agents (PEA) filters	p. 3 p. 4 p. 6 p. 8 p. 10
Table S8	Assay counts for PAINS-, Promiscuous- and PEA-filters recognized the studied GST-FHs	
Table S9 Table S10	Assay counts for GST-FH-filter "Cyanothioazinones" and its oxo-analogue Examples of compounds recognized by GST-FH-filter "Cyanothioazinones" and their "clean" oxo-analogues found in HMGU collection	
Table S11	Example of compounds for which substituents significantly modulate sensitivity to GST/GSH-system (based on HMGU collection screening results)	
Fig. S1	GST-FHs containing azafluorenone moieties: a) recognized by PAINS-filter "Keto_phenone_A"; b) and c) do not recognized by PAINS-filters	p. 9
	Explanation of the developed filters	
GST-FH	containing quinone moiety	p. 27
Fig. S2	Examples of studied compounds containing a quinone moiety: a) GST-FH; b) and c) "clean" compounds that are structurally similar to the GST-FH.	p. 27
Table S12	Assay counts for filters identifying a dialkoxyethane fragment	p. 27
GST-FHs Fig. S3 Fig. S4	containing catechol moiety Compounds containing benzophenanthrene-like molecular scaffold a) GST-FH; b) benzophenanthrene-like molecular scaffold. Examples of "clean" compounds containing the benzophenanthrene-like molecular scaffold.	p. 29
GST-FHs Fig. S5	containing sulfonylamide moiety GST-FHs containing aromatic sulfonylamide moiety: a) secondary heterylsulfonylamide; b) tertiary sulfonylpiperazine. Dashed lines show applied structural fragmentation.	
Table S13	Assay counts for halogen substituted aromatic sulfonylamides	
GST-FHs	containing azaspironone moiety	
Fig. S6	Compounds containing azaspironone-like molecular scaffold: a) GST-FH; b) azaspironone-like molecular scaffold.	
Fig. S7	"Clean" compounds from HMGU-collection that contains azaspironone-like molecular scaffold.	
Fig. S8	Examples of "clean" compounds from "PC-Primary screen" collection that contain azaspironone-like molecular scaffold.	

PUBCHEM PRIMARY SCREEN ASSAY

(Query line: <alphascreen gst AND (pcassay_protein_target[filt]) AND (Screening[filt])AND 1000:10000000[Total Sid Count]>)

AID	Donor	Acceptor	Tested	Tested	Comment
	beads	beads	compounds	substances	
	Glutathione Donor	Ni ²⁺ acceptor	All (391,165)	All (392,905)	A dataset name: "PC-Primary
	Beads/GST- TACC3	beads/His- ARNT	Active (2,589)	Active(2,595)	screen"
	E629A dimer	PAS-B	Inactive (388,573)	Inactive(390,301)	Individual tested compounds:
	diffici			Inconclusive(9)*	Active: 2,580
			Inconclusive (9)*		Inactive: 388,520
					Description: AlphaScreen TM
623870					primary screen
					assay
					Interpretation:
					Active compounds can
					be either true or
					false positive

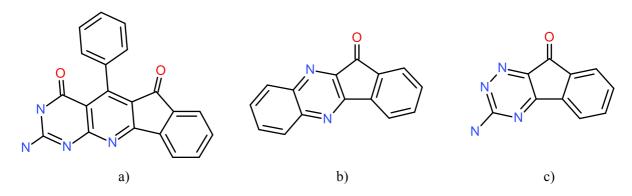
^{*} inconclusive compounds were skipped

PUBCHEM CONFIRMATORY SCREEN ASSAYS

(Query: <alphascreen gst AND (pcassay_protein_target[filt]) AND (Confirmatory[filt])>)

4.40	Donor	Acceptor	Tested	Tested	
AID	beads	beads	compounds	substances	Comment
	Glutathione Donor	Ni ²⁺ acceptor	All (42)	All (43)	A dataset name: "PC-Artifacts"
720564	Beads/ dual tagged His-	beads/ dual tagged His-	Active (28)	Active (29)	Individual tested
	ARNT PASB-GST	ARNT PASB-GST	Inactive (14)	Inactive (14)	compounds: Active: 629 Inactive: 637
	Glutathione Donor	Ni ²⁺ acceptor	All (1,242)	All (1,246)	
	Beads/dual tagged His-	beads/ dual tagged His-	Active (617)	Active (621)	Description: Assays to detect
651705	ARNT PASB-GST	ARNT PASB-GST	Inactive (625)	Inactive (625)	artifacts of AlphaScreen TM technology
					Interpretation: Active compounds are false positive
	Glutathione Donor	Ni ²⁺ acceptor	All (42)	All (43)	A dataset name: "PC-
	Beads/ GST- TACC3	beads/ His- ARNT	Active (37)	Active (38)	Confirmatory"
720563	E629A dimer	PAS-B	Inactive (4)	Inactive (4)	Individual tested
			Inconclusive (1)*	Inconclusive (1)*	compounds: Active: 995 Inactive: 288
	Glutathione Donor Beads	Ni ²⁺ acceptor	All (1,242)	All (1,246)	
651703	/ GST- tagged	beads/ His- ARNT	Active (967)	Active (971)	Description: AlphaScreen TM
	fragment of the TACC3 coactivator	PAS-B	Inactive (275)	Inactive (275)	confirmatory screen assay
	core106 protein	core106 protein	All (14)	All (14)	Interpretation: Inactive
651557	tagged with Glutathione-	tagged with	Probe (1)*	Probe (1)*	compounds are false positive
	S-transferase	peptide	Active (8)	Active (8)	

	(GST)/	tag/Anti-			
	Glutathione	Flag	Inactive (6)	Inactive (6)	
	Donor Beads	acceptor			
		beads			
	core106	core106	All (3)	All (3)	
	protein	protein			
	tagged with	tagged with	Active (1)	Active (1)	
	Glutathione-	Flag			
463085	S-transferase	peptide	Inactive (2)	Inactive (2)	
	(GST)/	tag/Anti-			
	Glutathione	Flag			
	Donor Beads	acceptor			
		beads			
1054073					These assays were
592913					skipped since
755356					description of the
657291					protocol was not
1077871					sufficient on
1077870					PubChem
684154					
684153					
665206					
707987					
425673					
755336					
1075143					


^{*} inconclusive compounds and probe were skipped

GST-FHs recognized by PAINS filters¹

OCHEM ID	Structure	Filter name
M416273		Cyano_pyridone_A
M2679239		Catechol_A
M1040098	N N S	Ene_five_het_H
M1108836	N S N N O O O O O O O O O O O O O O O O	Dhp_bis_amino_CN
M1108832	N S N N Br	Dhp_bis_amino_CN
M1109524		Quinone_A

M1027192		Keto_phenone_A
M1110421	O N S N O N O N O N O N O N O N O N O N	Het_65_E

GS1-1115 recognized by 110miseury meets										
OCHEM ID	Structure	Filter name								
M1024320	-0 S S S	thiopyrylium								
M1024891	N S N	four_nitriles								
M771355	N N N N N N N N N N N N N N N N N N N	linear_polycyclic_aromatic_I								

Fig. S1. GST-FHs containing azafluorenone moieties: a) recognized by PAINS-filter "Keto_phenone_A"; b) and c) not recognized by PAINS-filters.

$Substructural\ filters\ developed\ for\ identification\ of\ Alpha Screen^{TM}-GST-FHs$

N	Name	Depiction /Comment	EV (HMGU)	PC-A	rtifacts	PC-Conf	ïrmatory		rimary reen	SMARTS
				active	inactive	active*	inactive	active	inactive	
1	Cyanothiopyrans	A copy of PAINS-filter "Dhp_bis_amino_CN"	233	-	-	-	-	-	15	[NH2]C1=C(C#[NX1])[C!H0](-cc)C(C#[NX1])=C([NH2])S1
2	Cyanodithiine	N S N N A singleton	NA	-	-	-	-	-	-	[#16X2]1- ,;[#6X3]([CX2]#[NX1])=,;[#6X3]([CX2]#[NX1])-,;[#16X2]- ,;[#6X3]([CX2]#[NX1])=,;[#6X3]1([CX2]#[NX1])
3	Azafluorenones	A = aromatic C or N/ Expanded PAINS-filter "Keto_phenone_A"	57	-	-	-	-	-	23	[OX1,SX1]=[#6X3]1c2c([nX2][c X3,nX2,nX3][cX3,nX2,nX3][cX 3,nX2,nX3]2)[c,n]2c1[cX3!\$([#6 X3]=[A])][cX3!\$([#6X3]=[A])][c X3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])]2

4	Cyanothioazinone s	H A A A A A = aromatic C or N/ A copy of PAINS-filter "Cyano_pyridone_A"	50	-	-	-	-	-	44	[SX1]=[#6X3]1-,:[#7X3H1]-,:[#7X2,#6X3!\$([#6X3]=[A])]=,:[#7X2,#6X3!\$([#6X3]=[A])]-,:[#7X2,#6X3!\$([#6X3]=[A])]-,:[#6X3]1([CX2]#[NX1])
5	Cyanopyridinones	O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	20	-	-	-	-	-	-	[OX1]=[#6X3]1- ,;[#6X3]=,;[#6X3]- ,;[#6X3]([CX2]#[NX1])=,;[#6X3]2- ,;[#7X3]([CX4][CX4]([OX2H1])[CX4][NX3H1]e5ecce5)- ,;[#6]3ecce3-,;[#7X3]12
6	Thienopyridinone s	A copy of PAINS-filter "Het_65_E"	NA	1	-	-	-	-	-	[SX2]1C(=C(C4=C1[NX3!H0]C(C(=[C!H0]4)C(=[OX1])[OX2H1])=[OX1])[NX3H2])C(=[OX1])[N X3!H0]

7	Pyranopyridinone s	HN NH ₂ A dashed line indicates double or aromatic bond	50	-	-	-	-	-	10	[OX2]1[CX3]([NX3H2])=[CX3]([CX2]#[NX1])[CX4][#6X3]2[#6 X3](=[OX1])-,:[#7X3H1]- ,:[#6X3]=,:[#6X3]-,:[#6X3]12
8	Benzoxathiolones	$[S,O]$ $[N,O]$ $[N,O]$ An expanded PAINS-filter "Thio_carbonate_A"	33	1	-	-	-	1	30	[\$([#8]1-,:[#6](- ,:[#16]c4cc(ccc14)[#7,#8])=[OX1 ,\$X1]),\$([#8]1-,:[#6](- ,:[#16]c4ccc(cc14)[#7,#8])=[OX1 ,\$X1]))]
9	Indoloquinones	O N	50	-	-	-	-	-	1	[#6X3]1-,:[#6X3]=,:[#6X3]- ,:[#6X3]=,:[#6X3]2-,:[#6X3]1- ,:[#6X3](=[OX1])-,:[#6X3]3- ,:[nX3]4-,:[#6X3](- ,:[#6X3]=,:[#6X3]- ,:[#6X3]=,:[#6X3]4)=,:[#6X3]- ,:[#6X3]3-,:[#6X3]2=[OX1]
10	Catechols	OH OH A copy of PAINS-filter "Catechol_A"	17	1	3	2	1	8	281	[c!\$([#6]=[A])][c!\$([#6]=[A])][c!\$([#6]=[A])][c!\$([#6]=[A])]([c! \$([#6]=[A])]([c!\$([#6]=[A])]1)[O H1])[OH1]

11	Pyrazolones	[O, S] N—N An expanded PAINS-filter "Ene_five_het_H"	300	4	-	2	2	22	180	[#7X2]1=,:[#6X3]-,:[#6X3](- ,:[#6X3](- ,:[#7X3]1)=[SX1,OX1])=,:[#6X3 H1](-,:[#7X3H1])
12	Sulfonylamide_A	$R_{1} - \frac{0}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$ $R_{1}, R_{2} = \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$ $A = \text{any atom}/$ $An expanded PAINS-filter$ $"Diazox_sulfon_A"^{l}$	100	-	1	-	1	1	74	[\$([cX3!\$([#6X3]=[A])]3[cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])]][cX3!\$([#6X3]=[A])][cX3!\$([# 6X3]=[A])][cX3]3[SX4](=[OX1]) (=[OX1])[NX3H1][cX3]1[cX3!\$) ([#6X3]=[A])][cX3!\$([#6X3]=[A])]][cX3!\$([#6X3]=[A])]2s[cX3!\$ ([#6X3]=[A])]n[cX3!\$([#6X3]=[A])]2[cX3!\$([#6X3]=[A])]1],\$([NX3]([cX3]1[cX3!\$([#6X3]=[A])]1],\$([NX3]([cX3]1[cX3!\$([#6X3]=[A])]][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])]1] cX3!\$([#6X3]=[A])]1][SX4](=[O X1])(=[OX1])[cX3]2c3n[o,s]n[c X3!\$([#6X3]=[A])]3[cX3!\$([#6X3]=[A])][cX3!\$([
13	Sulfonylamide_B	$R_{1} = \frac{1}{N} - R_{2}$ $R_{1} = \frac{1}{N} - R_{2}$ $R_{2} = \frac{1}{N} - CH_{3}$ $An expanded PAINS-filter$ $"Diazox sulfon B"$	17	1	-	-	1	2	544	[NX3]1([CH3,\$(c5[cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3R1]][cX3R1][cX3R1][s([#6X3]=[OX1])][cX3R1]][cX3R1][s([#6X3]=[OX1])][cX3R1][s([#6X3]=[OX1])][cX3R1][s([#6X3]=[OX1])][cX3R1][s([#6X3]=[OX1])][cX3R1][s([#6X3]=[OX1])][cX3R1][s([#6X3]=[OX1])][cX3R1][s([#6X3]=[A])][s([#6X3]=[A])][s([#6X3]=[A])[s([#6X3]=[A])][s([#6X3]=[A])][s([#6X3]=[A])[s([#6X3]=[A])][s([#6X3]=[A])[s([#6X3]=[A])[s([#6X3]=[A])][s([#6X3]=[A])[s([#6X3]=[A])[s([#6X3]=[A])][s([#6X3]=[A])[s([#6X3]=[A])[s([#6X3]=[A])][s([#6X3]=[A])[s([#6X3]=[A])[s([#6X3]=[A])][s([#6X3]=[A])[s([#6X3]=[A])[s([#6X3]=[A])[s([#6X3]=[A])][s([#6X3]=[A])[s([#6

14	Thiopyrylium	Copy of Promiscuous-filter "Thiopyrylium" ²	NA	-	-	-	-	-	-	c1[#16+]cccc1
15	Pyrimidinones_A	* indicates that a bond also can be aromatic	71	-	-	-	-	2	21	[OX1,SX1]=[#6X3]1[#7X3](- ;:[#7X2]=;:[#6X3][NX3H1][#6])- ;:[cX3!\$([#6X3]=[A])]=;:[#7X2]- ;:[cX3!\$([#6X3]=[A])]=;:[cX3!\$([#6X3]=[A])]1
16	Pyrimidinones_B		25	-	-	-	-	-	18	[OX1]=[#6X3]1-,:[#6X3]2scc-,:[#6X3]2-,:[#7X3]3-,:[#6X3](=,:[#7X2]-,:[#7X2]=,:[#6X3]3[CX4])-,:[#7X3]1[CX4H3]
17	Pyrimidones_C		17	-	-	-	-	-	-	[OX1,SX1]=[#6X3]1[#7X3]-,:[#6X3]\$([#6X3]=[A])](- [NX3])=,:[#7X2]-,:[#6X3]2([nX2][#6X3]\$([#6X3]=[A])][#6 X3!\$([#6X3]=[A])]c12)

18	Pyrimidinodiones	[O,S] [N,S] NH [O,S]	133	-	-	-	-	2	16	[#6X3]1(=[OX1,SX1])- ,:[#7X3H1]- ,:[#6X3](=[OX1,SX1])- ,:[#7X3,#7X2]~[#6X3]([#7X2,#7 X3;R1])- ,:[#6X3]1[sX2r5R1,nX2r5R1,\$([nx2r6R1]([eX3])[eX3])]
19	Thienopyrimidino ne_A	[S,O] NH NH	38	1	-	-	-	1	24	[OX1,SX1]=[#6X3]1- ,:[#7X3H1]-,:[#6X4]-,:[#7X3H1]- ,:[#6]2-,:[#16X2,#8X2]- ,:[#6]3[CX4][NX3,CX4][CX4][C X4]-,:[#6]3-,:[#6]12
20	Thienopyrimidino ne_B	[S,O] O N N N N N N N N N	100	-	-	-	-	-	-	[OX1,SX1]=[#6X3]1- ,:[#6X2]([#6X3]=[OX1])=,:[#6X 3]-,:[#7X2]=,:[#6X3]2- ,:[#16X2,#8X2]- ,:[#6]3[cX3!\$([#6X3]=[A])][cX3! \$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])]3-,:[#7X3,#6]12
21	Piperazinediones	[S,O] N O N H	50	-	-	-	-	-	-	[#7X3]1-,:[#6X3](=[OX1,SX1])-,:[#6X3](=[OX1,SX1])-,:[NX3]-,:[#6X3]2[cX3!\$([#6X3]=[A])][cX3]([NX3H1][CX3]=[OX1)][cX3!\$([#6X3]=[A])][cX3!\$([#6X3]=[A])][cX3]12
22	4-Heteryl- thiazoles	S N S N	87	43	2	2	-	61	287	s1[c,nX2][c,nX2](- c(c)[nX2,nX3,sX2])[nX2]c1
23	Oxadiazoles	O I S	50	-	-	-	-	-	-	o1nc([CX4])nc1[CX4H2][SX4](=[OX1])(=[OX1])[CX4H2][CX3] (=[OX1])[NX3!H0]

24	Cycloheptenones	ОН	100	-	2	2	-	4	12	[#6]1-,:[#6]-,:[#6]-,:[#6X3](=[OX1])-,:[#6]([OX2H1])=,:[#6]-,:[#6]=,:1
25	Thiophenes	A = any aromatic atom	33	-	-	-	-	-	75	[sX2]1[cX3]([NX3H1][CX3](=[OX1])- e)[cX3]([CX3](=[OX1])[OX2][C X4H3])[cX3][cX3]1
26	Thiazoles	NH ₂	100	-	-	1	1	-	1	[nX2]1[cX3](- [cX3])[sX2][cX3]1[CX3](= [OX1])[NX3H2]
27	Cyanothioethers	N-A $N=A$ $N=A$ $N=A$ $N=A$ $N=A$ $N=A$	33	-	-	-	-	1	49	[NX1]#[CX2][CX4H2][SX2]c1n[c,n][c,n][c,n]n1

28	Aminopyrimidino nes_A		NA	-	-	-	-	-	-	c1[nX2]c[nX2][nX3]1[CX4][CX 4][NX3]([CX4])-c2cc[nX2]c(- c3cc[nX2]cc3)[nX2]2
29	Aminopyrimidino nes_B	NH ₂	NA	-	-	-	-	-	16	[NX3H2]c1ncnc2ncccc21
30	Fused azacycles_A	A = A $A = A$ $A =$	50	-	-	-	-	-	4	[nX2R1][c,n;R2]1[c,n;R2]([c,n;R 1])[c,n][c,n][c,n;R2]([c,n;R1])[nR 2]1[nX2R1]
31	Fused azacycles_B	A = aromatic C or N	29	-	-	-	-	-	83	[NX1]#[CX2]c1[c!\$([#6]=[OX1])]n[n,c!\$([#6]=[OX1])]2[c,n][c!\$([#6]=[OX1])]n[c!\$([#6]=[OX1])]nc12
32	Ethylenediamines	HN A	50	-	-	-	-	-		[NX3H1]1[CX4][CX4][CX4][C X4]([NX3H1][CX4][CX4]Ac)[C X4]1

		A = any aliphatic atom								
33	Arylethanolamine s	A dashed line indicates aromatic bonds; * indicates atoms that must belong to 6-membered ring	29	-	-	-	-	1	12	[\$([NX3]((CX4,H])([CX4,H])[C X4]),\$([OX2]([H,CX4])[CX4])][CX4!H0][CX4H2][NX3H1]c[nX 2r6R1][nX2,nX3][nX2,cX3;R1][cX3,nX2][cX3,nX2][sX2,cX3][c X3]
34	Azaspironones	%	33	1	-	-	-	2	11	[X4;R2]12(-,;;@[#6X3]- ,;;@[#6X3]-,;;@[#7X3]- ,;;@[#6X3]-,;;@[)-,;;@[#16X2]- ,;;@[#6X3]-,;;@[#7X2]- ,;;@[#7X3]-,;;@2

^{*} The number of active "PC-Confirmatory"-compounds was reduced by the number of identical compounds found among "Artifacts"-compounds.

Table S6

Aromatic sulfonylamides identified in "PC-Artifacts" dataset

Searched fragment	Active compounds	Inactive compounds
O	70 (30) ¹	58 (4) ¹

¹The number of total and (in parenthesis) compounds identified by AlphaScreen-HIS-FHs³ filters are shown.

The PC-Artifacts dataset included compounds tested for their ability to be false positive. The screening assays incorporated both GST-tagged and His-tagged proteins. Thus their promiscuity could be due to their interference with His/Ni²⁺- or GST/GSH-systems. The AlphaScreen-HIS-FHs³ filters identified 30 (43%) of compounds responsible for the first mechanism while promiscuity of the remaining 40 (57%) of compounds can be assumed to be GST specific.

Table S7
GST-FHs recognized by Potential Electrophilic Agents (PEA) filters⁴

OCHEM ID	Structure	Filter name
M3383345		Acetates
M1111066		Acetates
M1215709		Acetates
M1108012	S N N O O O O O O O O O O O O O O O O O	Hydroquinones
M2675581	S N O O O O O O O O O O O O O O O O O O	Hydroquinones

M1217802	N N N N N N N N N N N N N N N N N N N	Hydroquinones
M3200831		Hydroquinones

Table S8 Assay counts for the PAINS-, Promiscuous- and PEA-filters recognized the studied GST-FHs^{1, 2, 4}

Filter name	HMGU*		"PC- Artifacts"		"PC- Confirmatory"		"PC- Primary screen"				
	active	inactive	active	inactive	active	inactive	active	inactive			
PAINS-filters ¹											
Cyano_pyridone_A	2	4	-	-	-	-	-	44			
Catechol_A	3	12	1	3	3	1	8	281			
Ene_five_het_H	2	-	-	-	-	-	-	-			
Dhp_bis_amino_CN	14	3	-	-	-	-	-	15			
Quinone_A	31	27	5	1	6	-	63	449			
Keto_phenone_A	1	2	-	-	-	-	-	21			
Het_65_E	1	-	-	-	-	-	-	-			
Thio_carbonate_A	-	8	-	-	-	-	-	27			
]	Promiscu	ous-fil	ters ²							
Thiopyrylium	1	-	-	-	-	-	-	-			
Four_nitriles	2	1	-	-	-	-	-	11			
Linear_polycyclic_aromatic_I	4	5	-	-	-	-	-	23			
Poten	tial ele	ctrophili	c agent	s (PEA)	- filters ⁴						
Acetates	62	2,025	90	79	136	35	277	56,311			
Hydroquinones	44	510	14	31	31	14	96	13,129			
Pyranones	15	513	2	9	6	5	40	8,724			
Poly aromatic hydrocarbons	35	216	15	-	22	8	61	7,251			
Azlactones	8	80	-	-	-	-	-	672			

^{*} Compounds from HMGU-collection that are active at least in one GST/GSH-comprising assay were considered as "active" (in total 775 compounds) and compounds that are inactive in both GST/GSH-comprising assays were considered as inactive (in total 24,222).

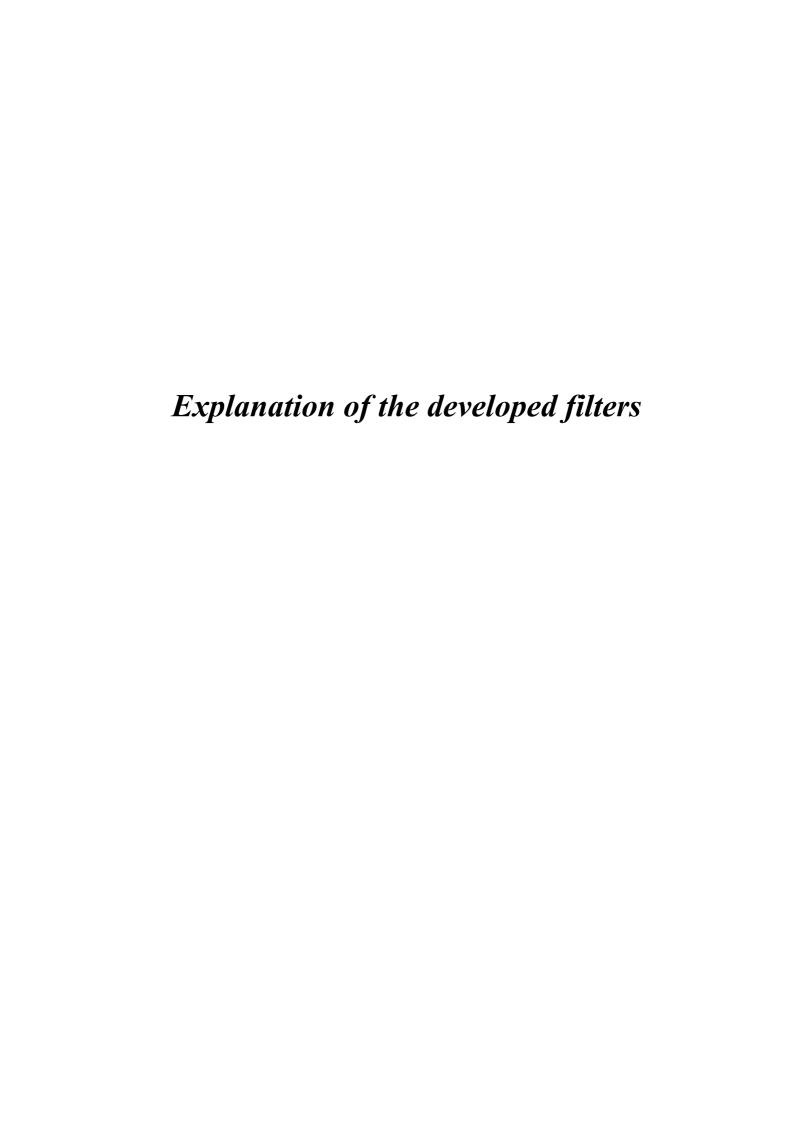
Acceptance/rejection of a filter was based on both, the ratio of active and active compounds for a given dataset and mechanistical background for the filter. According to the received data PAINS- and promiscuous filters are more selective than PEA-filters. In average for the formers inactive/active ratio is ≤ 4 while for PEA-filters is ≥ 20 . The activity of the compounds in PubChem dataset can result from both, a true protein-protein disruption effect as well as an interference with AlphaScreenTM technology. Therefore, we paid more attention to assay counts for HMGU-collection and if inactive/active ratio for a filter was ≥ 4 we skipped the filter from the further consideration.

Table S9 Assays counts for "Cyanothioazinones" GST-FH filter and its oxo-analogue

Filter	GST- FHs	HM	HMGU*		"PC- Artifacts"		PC- matory"	"PC- Primary screen"	
		active	inactive	active	inactive	active	inactive	active	inactive
H N N N N N N N N N N N N N N N N N N N	1	2	4	-	-	-	-	-	44
H N N N N N N N N N N N N N N N N N N N	-	-	18	-	-	-	-	1	

Table S10 GST-FH recognized by "Cyanothioazinones" filter and its "clean" oxo-analogues found in HMGU-collection

GST-FH	"Clean" oxo-analogues							
N S N N N N N N N N N N N N N N N N N N	N N	N N	N N					
M416273	M1025582	M1027169	M1027170					


Example of compounds for which substituents greatly modulate sensitivity to GST/GSH-system (based on the HMGU-collection screening results)

System (based on the fividu-	
GST-FH	"Clean" compound
O N N N S	O N N N N S
M1111171 (28\ 5\ 103\ 95\ 104) *	M1111172 (86\ 84\ 88\ 101\ 104)
N N N N N N N N N N N N N N N N N N N	
M1109005 (50\ 65\ 124\ 109\ 113)	M1951244 (105\ 89\ 110\ 104\ 98)
N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
M1113194 (47\ 51\ 96\ nd\ 94)	M1113190 (95\ 94\ 101\ 90\ 102)
N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
M1040939 (59\ 12\ 104\ 97\ 102)	M1108669 (103\ 106\ 107\ 104\ 103)

* Each molecule is characterized as follow:

<OCHEMID (E (assay 1) / E (assay 2) / E (assay 3) / E (assay 4) / E (assay 5))> where OCHEMID is the ID-number of a compound in OCHEM database; 5

E (assay i) is the measured light emission in the studied i^{th} AlphaScreenTM assay, % (i = 1...5). For detailed information on assays please refer to "Materials and Methods" section in the corresponding publication.

GST-FH CONTAINING QUINONE MOIETY

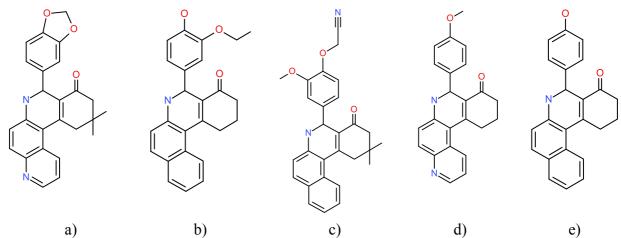
The only GSH-FH containing quinone moiety is shown on Fig. S2a. In this compound a quinone structure is a part of the anthraquinone aromatic system and so does not possess double bonds activated for electrophilic attacks. We think that the quinone moiety alone does not provoke promiscuity of this class of compounds. Additionally, a structural examination showed that highly structurally similar quinones appear among "clean" substances (Fig. S2b,c).

Fig. S2. Examples of studied compounds containing a quinone moiety: a) GST-FH; b) and c) "clean" compounds that are structurally similar to the GST-FH.

Therefore we assumed that promiscuity of this compound in GST/GSH assays is due to presence of a dimethoxymethane-like "tail". Overall statistics for this fragment is presented in Table S12. It is clear that the dialkoxyethane-tail alone also does not allow distinguishing between GST-FHs and "clean" compounds. Its combination with an aromatic scaffold is required for the promiscuity and this effect is also structure specific. Due to these reasons we created a singleton-like filter. It can be extended once new data will be collected or there will a better mechanistic understanding of interference of compounds with GST/GSH assays.

Table S12
Assay counts for filters identifying a dialkoxyethane fragment

Filter	HMGU*		"PC-A	rtifacts"		PC- matory"	"PC-Primary screen"	
Titter	active	inactive	active	inactive	active	inactive	active	inactive
"Dialkoxyethane tail_1"								
C Aliph, X=any								
Aliph = aliphatic atom; X = the number of total connection of the carbon	2	49	1	7	2	6	15	721
SMARTS:<[CX4][OX2][CX4H2][CX4H2][CY4H2][OX2]C> "Dialkoxyethane tail 2"	2	33	1	1		2	3	291


Alk CAliph, X=any								
Alk = alkyl substituent;								
Aliph = aliphatic atom; X = the number of total								
connection of the carbon								
SMARTS:<[\$([CH3]),\$([CH2][CH3]) ,\$([CH2]([CH3]),[CH3]),\$([CH2][CH 2][CH3]),\$([CH2][CH2][CH2][CH3])][OX2][CX4H2][CX4H2][OX2]C>								
"Dialkoxyethane tail_3"								
Alk	1	1	1	1	-	2	2	70
Alk = alkyl substituent; A = any aromatic atom								
SMARTS:<[CX4H3][OX2][CX4H2][CX4H2][OX2][CX3](=[OX1])c>								
"Dialkoxyethane tail_4"								
H ₃ C	1	-	1	1	-	2	2	4
SMARTS:<[CX4][OX2][CX4H2][C X4H2][OX2][CX3](=[OX1])c1c[nX3]c2[c,n][c,n]3[c,n][c,n][c,n][c,n]3 [c,n]c12>								
"Dialkoxyethane tail_5"								
Alk	1	-	1	1	-	2	2	4
SMARTS:<[\$([CH3]),\$([CH2][CH3]) ,\$([CH2]([CH3])[CH3]),\$([CH2][CH 2][CH3]),\$([CH2][CH2][CH2][CH2][CH3])][OX2][CX4H2][CX4H2][OX2][CX3](=[OX1])c1c[nX3]c2[c,n][c,n]3[c,n][c,n][c,n][c,n]3[c,n]c12>								

GST-FH CONTAINING CATECHOL MOIETY

The only GSH-FH containing a catechol moiety is shown on Fig. S3a:

Fig. S3. Compounds containing benzophenanthrene-like molecular scaffold a) a GST-FH identified in HMGU collection; b) benzophenanthrene-like molecular scaffold.

A benzophenanthrene-like molecular scaffold (Fig. S3b) to which the catechol moiety is attached can be easily found among "clean" substances (Fig. S4). Thus this scaffold should not be considered alone as a reason for the compound promiscuity in GST/GSH-assays.

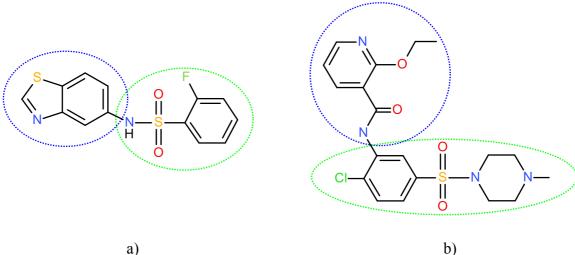


Fig. S4. Examples of "clean" compounds containing the benzophenanthrene-like molecular scaffold.

A catechol fragment is incorporated in 12 clean substances of very high diversity and met among 281 inactive versus 8 active compounds in the primary screen. Despite of its known problematic nature it is difficult to assume that this fragment is the reason for GST-promiscuity. The latter is more likely caused by simultaneous contributions of the scaffold, catechol moiety, overall molecular shape and hydrogen bond donating/accepting properties. So we restricted "Catechol_A" filter by inclusion of the aromatic molecular scaffold (Fig. S3b). The filter might be refined once more structural information appear.

GST-FH CONTAINING SULFONYLAMIDE MOIETY

Two sulfonylamide derivatives were presented among the studied GST-FHs: secondary heterylsulfonylamide (Fig. S5a) and tertiary sulfonylpiperazine (Fig. S5b).

Fig. S5. GST-FHs containing aromatic sulfonylamide moiety: a) secondary heterylsulfonylamide; b) tertiary sulfonylpiperazine. Dashed lines show applied structural fragmentation.

Sulfonylpiperazine chemical moiety is a relatively unreactive scaffold used as a basic of several medicines. Structural analysis showed that more than 100 "clean" substances comprise this moiety what allowed assuming that this fragment is not responsible for GST/GSH-interfering potential of the substances. Hence, it can be assumed that promiscuity of the sulfonylpiperazine is caused by fragment contoured by a blue dashed line on Fig. S5b. However, this fragment was present in 20 "clean" substances. So either both these fragments define the compound promiscuity synergistically or there is another fragment that causes interference with GST/GSH-system.

The heterylsulfonylnamide comprises a benzothiazole moiety (countered by a blue dashed line on Fig. S5a). This fragment does not possess any reactive properties too. The secondary sulfonylamide moiety (countered by a green dashed line on Fig. S5a) is incorporated by more than 500 "clean" compounds.

One of distinguishing structural features of these two GST-FHs is that both of them contain halogen substituted benzene ring with electron withdrawing sulphonylamido group in *ortho*- or *para*- positions. Structural analysis of HMGU and PubChem datasets revealed next assay counts (Table S13):

Table S13
Assay counts for halogen substituted aromatic sulfonylamides

Filter	HMGU*		"PC-Artifacts"		"PC- Confirmatory"		"PC-Primary screen"	
	active	inactive	active	inactive	active	inactive	active	inactive
X = F, Cl, Br, I	5	108	8	7	2	5	8	7,836

According to the results this filter did not distinguish between "clean" compounds and GST-FHs too. Therefore, PAINS-filters "Diazox_sulfon_A" and "Diazox_sulfon_B" that recognize structurally highly similar sulfonylamides were slightly modified to include the identified GST-FHs and added to GST-FH-S as filters with high selectivity.

GST-FH CONTAINING AZASPIRONONE MOIETY

For all studied azaspironones chirality of spirocarbon was not provided for the analyzed datasets. Azaspironones belong to a compound class where the nature of substituents greatly modifies their GST/GSH-promiscuity.

Among GST-FHs only one spironone was presented (Fig. S6a). The structural analysis showed that in PubChem and HMGU collections there were other spirocompounds containing a common scaffold depicted on Fig. S6b.

Fig. S6. Compounds containing azaspironone-like molecular scaffold: a) GST-FH; b) azaspironone-like molecular scaffold.

HMGU collection comprised three (Fig. S7) and "PC-Primary screen" collection had 11 (Fig. S8) "clean" compounds containing azaspironone-like molecular scaffold. The only difference between GST-FH and "clean" compounds (cmp. Fig. S7a and Fig. S8a) is a bromine substituent in benzene ring. However, we were not able to check the influence of halogen-substituents onto GST-promiscuity of compounds due to the limited structural data. Meanwhile, analysis of PubChem data showed that all inactive compounds contain alkyl-group at the amide nitrogen while in active substances (shared data from HMGU and PubChem collections) this position is occupied either by hydrogen or acetyl-group (Fig. S8b-d). However, the developed filter does not include the restriction for the amide nitrogen substituent because more structural information is necessary to confirm it.

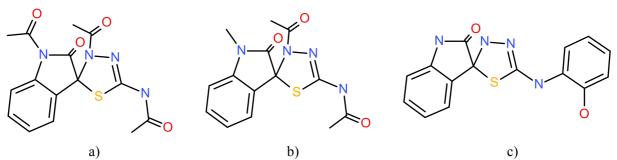
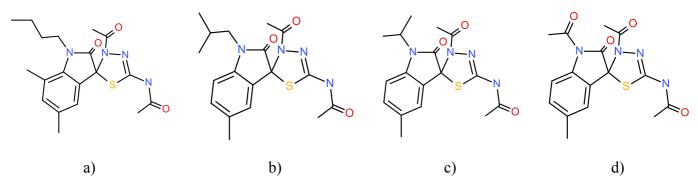



Fig. S7. "Clean" compounds from HMGU-collection that contain azaspironone-like molecular scaffold.

Fig. S8. Examples of "clean" compounds from "PC-Primary screen" collection that contain azaspironone-like molecular scaffold.

Supplementary references

- 1. Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. *J. Med. Chem.* **2010**, 53, 2719-40.
- 2. Pearce, B.C.; Sofia, M.J.; Good, A.C.; Drexler, D.M.; Stock, D.A. An empirical process for the design of high-throughput screening deck filters. *J. Chem. Inf. Model.* **2006**, 46, 1060-8.
- 3. Schorpp, K.; Rothenaigner, I.; Salmina, E.; Reinshagen, J.; Low, T.; Brenke, J.K.; Gopalakrishnan, J.; Tetko, I.V.; Gul, S.; Hadian, K. Identification of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput Screens. *J. Biomol. Screen.* **2014**, 19, 715-726.
- 4. Enoch, S.J.; Madden, J.C.; Cronin, M.T. Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. *SAR QSAR Environ. Res.* **2008**, 19, 555-78.
- 5. Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, I.I.; Palyulin, V.A.; Radchenko, E.V.; Welsh, W.J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q.Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I.V. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. *J. Comput.-Aided Mol. Des.* 2011, 25, 533-54.