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ABSTRACT Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that
represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct
disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated
phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic
mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify
opportunities to leverage our current understanding of the pathobiology of each disease process in order to
advance novel therapeutic approaches for both. We anticipate that such “outside the box” concepts could be
translated to a more precise and individualised approach to fibrotic diseases of the lung.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disorder that is characterised, in part, by the
excessive deposition and remodelling of extracellular matrix along with the accumulation and persistent
activation of fibroblasts in the context of injury to the alveolar epithelium [1]. The 5-year survival of patients
with IPF is comparable to that of lung cancer, which is among the most prevalent malignancies and is the
leading cause of cancer-related mortality in the USA [2]. The incidence of IPF is increasing globally [3]. Yet,
pharmacologic therapies have only recently been shown to limit progression of disease and have not been
definitively shown to alter mortality, demonstrating an ongoing need for novel approaches to treatment [4, 5].

Clinically, patients with IPF and other fibrotic lung diseases have increased rates of lung cancer, with a
reported prevalence as high as 48% in autopsy series of patients with usual interstitial pneumonia, the
pathologic correlate of IPF [6–9]. Anatomically, the distribution of lung cancers in patients with IPF is
predominantly lower lobe and peripheral, the same regions in which fibrosis is accentuated in IPF [8].
These associations have generated increasing interest in the clinical, anatomical and biological overlap
between cancer and fibrosis [2, 7–16].

At the mechanistic level, lung fibrosis is considered to be the result of a dysregulated wound-repair
response to lung injury characterised by the accumulation and persistence of activated reparative
mesenchymal cells (myofibroblasts), which are responsible for the deposition of excessive extracellular
matrix (ECM) [1]. Aberrant interactions between epithelial cells, mesenchymal cells and the ECM itself
promote a vicious cycle that may allow for the autonomous perpetuation of the pathobiology of fibrosis
[17, 18]. Like fibrosis, tumours have been described as “wounds that do not heal” [19], and an extensive
literature supports the overlapping mechanisms of wound repair and cancer. Among these mechanisms are
critical roles for tumour stroma and tumour associated fibroblasts. Supporting this concept, SCHAFER and
WERNER [20] reported that “the presence of large numbers of fibroblasts and myofibroblasts is a hallmark
of carcinomas…” and noted that malignant cells hijack the host wound-repair response to promote
formation of the tumour stroma, which is fundamental for cancer progression. Thus, the persistence of
activated mesenchymal cells is critical to the pathobiology of both fibrosis and cancer.

The central role of mesenchymal cells in both cancer and fibrosis prompted us to view fibrosis through the
prism of cancer biology to delineate areas in which the convergence of mechanisms might identify novel
targets for intervention. Indeed, the cell phenotypes and signalling mechanisms evident in IPF and other
forms of lung fibrosis recapitulate many features of malignancy. However, fibrosis is not cancer and neither
the aberrant epithelial cells nor the dysfunctional mesenchymal cells of fibrotic tissue are malignant cells.
Thus, we will also discuss several aspects that fundamentally distinguish the biology of cancer and fibrosis.
The goal of this Back to Basics article is to discuss lung fibrosis, with an emphasis on the fibrotic lung
mesenchymal cells (fibroblasts/myofibroblasts) within the context of established “hallmarks” of malignancy.
In doing so, our goal is not to compare fibrotic lung cells with any specific cancer (or cancer-associated cell),
but rather, to highlight the broadly overlapping cellular phenotypes and signalling paradigms that are shared
by, and distinguish, cancer cells and fibrotic lung fibroblasts [21] (figure 1). We will additionally highlight
selected aspects of carcinogenesis from the perspective of fibrotic disease. Because our focus is primarily on
the fibrotic mesenchymal cell, the reader is referred to prior reports that discuss the overlapping biology of
IPF and cancer which focus on clinical features, epithelial cell biology, genetics, epigenetics and cell–cell
interactions [2, 8, 11]. “Inducing angiogenesis” is also a hallmark of cancer and the role of angiogenesis in
lung fibrosis has also been reviewed recently [22]. Our hope is that ongoing comparisons between the
biology of fibrosis and cancer will allow us to leverage our current understanding of each to advance
innovative research hypotheses and novel therapeutic approaches for both.

Fibrotic lung mesenchymal cells and the hallmarks of cancer
Tumorigenesis represents a dynamic, multistep process leading to the malignant transformation of cells that
interact with stroma and ancillary “normal” cells in a permissive microenvironment that facilitates the growth and
progression of the tumour [21, 23]. As a whole, tumours are complex tissues comprised of the malignant cells
along with endothelial cells, immune cells, fibroblasts and stroma. Fibrotic tissues are similarly complex
microenvironments comprised of abnormal epithelial cells and fibroblasts/mesenchymal cells interacting with
immune cells, angiogenic pathways and ECM. In 2000 (with an update in 2011), HANAHAN and WEINBERG [21, 23]
proposed a set of “hallmarks of cancer” as an organisational framework for understanding the complex biology
of tumorigenesis: 1) evasion of cell death, 2) sustained proliferative signalling, 3) evading growth suppressors,
4) enabling replicative immortality, 5) activating invasion and metastasis, and 6) tumour-promoting inflammation.
Here, we discuss fibrotic mesenchymal cells in the context of these hallmarks of cancer. Additionally, as
tumour-promoting inflammation is considered an emerging hallmark of cancer and the role of inflammation,
particularly the role of macrophages, has re-emerged as significant contributor to fibrogenesis, we include a brief
discussion of macrophages in cancer and fibrosis.
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Evasion of cell death
Cancer cells circumvent death through a variety of mechanisms that prevent the recognition, propagation
and/or execution of death signals [21]. In contrast to normal wound repair, in which the majority of
myofibroblasts are ultimately cleared from the microenvironment via apoptosis, fibrotic lung fibroblasts, like
cancer cells, demonstrate an increased capacity to resist apoptotic stimuli [1, 24–26]. Consistently, biopsies
from IPF patients show a paucity of apoptosis in the mesenchymal cells that comprise the fibroblastic foci
[27–32]. As some approaches to cancer are focused on enhancing the apoptosis of malignant cells, studies
of fibrotic lung fibroblasts indicate that these cells can also be sensitised to apoptotic stimuli and that lung
fibrosis can be limited in vivo by targeting antiapoptotic signalling pathways [26, 33–37].

Decreased responsiveness to Fas ligation
The mechanisms responsible for mesenchymal cell resistance to apoptosis in IPF, as in cancer, are variable
and perturbations affecting multiple levels of apoptosis regulation have been reported [24, 25, 34–36, 38–40].
The specific mechanisms that trigger fibroblast apoptosis during homeostatic wound repair are poorly
defined. The extrinsic pathway of apoptosis, which is mediated by ligation of death receptors (such as Fas),
has been implicated in the pathogenesis of lung fibrosis both through induction of epithelial cell apoptosis
during the injury phase and through the capacity of fibroblasts to resist Fas-induced apoptosis during the
fibrotic resolution of lung injury [40–42]. Several lines of evidence suggest that the Fas/Fas ligand (FasL)
pathway is important in the regulation of lung fibroblast survival and apoptosis during lung repair and
fibrosis. First, IPF lung fibroblasts express FasL, which allows them to promote ongoing injury by induction of
epithelial cell apoptosis while also evading their own death by stimulating lymphocyte apoptosis [43, 44].
Second, fibrotic lung fibroblasts from IPF and murine models exhibit low expression levels of Fas, which may
limit the receptor clustering necessary to initiate apoptotic signalling in response to FasL [45, 46]. Notably,
Fas expression and the apoptosis susceptibility of fibroblasts can be increased by inflammatory cytokines [36].
Third, fibrotic lung fibroblasts have increased expression of c-FLIP (cellular Fas-associated protein with death
domain-like interleukin-1β-converting enzyme-inhibitory protein), which inhibits propagation of apoptotic
signals downstream of Fas [40]. Fourth, fibrotic lung fibroblasts have an increased ratio of prosurvival to
proapoptotic BCL-2 family proteins, favouring inhibition of the mitochondrial depolarisation that is a critical
component in the apoptotic programme [34]. Finally, IPF fibroblasts have increased expression of inhibitor of
apoptosis (IAP) proteins, which can prevent apoptosis via blockade of caspase activation and other effects on
cell signalling [25, 34, 37, 39, 40].

Soluble and matrix-mediated protein kinase activation
As with malignant cells, the apoptotic susceptibility of fibrotic lung fibroblasts can be regulated by the
sustained activation of protein kinases [25, 47–51]. For example, in normal fibroblasts, the soluble
profibrotic mediators transforming growth factor (TGF)-β1 and endothelin-1 activate the prosurvival
protein kinases AKT (also known as protein kinase B) and FAK (focal adhesion kinase), each of which is
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FIGURE 1 Fibrotic lung mesenchymal cells demonstrate activation of a number of signalling pathways and
acquisition of cellular phenotypes that are considered to be the “hallmarks” of malignant cells and the tumour
microenvironment. The replicative potential (immortality versus senescence) and capacity for invasion (potential
for distant metastasis versus limitation to local invasion) represent key differences. The overlapping mechanistic
biology of these processes, however, suggest that precision strategies used for therapy in cancer might be applied
as antifibrotic therapies targeting the specific mesenchymal cell phenotypes that contribute to lung fibrosis.
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strongly linked to both lung fibrosis and cancer [47–49, 52–56]. Among their downstream signalling
effectors, these protein kinases regulate expression of X-linked IAP (XIAP) and survivin, two IAP family
members that are highly expressed in fibrotic lung fibroblasts and IPF tissue and have also been strongly
linked with a variety of malignancies [25, 30, 39, 47, 57]. Moreover, inhibition of these IAPs promotes
apoptosis in both cancer cells and fibrotic lung fibroblasts [25, 30, 37, 39, 47, 57].

Similarly, signals generated through interactions with the ECM are critical to both tumorigenesis and
fibrosis. Indeed, the biochemical and biomechanical features of the fibrotic ECM have key roles in the
regulation of profibrotic fibroblast phenotypes, including resistance to apoptosis [31, 50, 51, 58]. This
matrix-mediated resistance to apoptosis is accomplished, in part, through suppression of protein
phosphatase and tensin homologue (PTEN), a negative regulator of phosphatidylinositol 3-kinase (PI3K)
and, in turn, AKT activation [31, 50, 51, 59]. Moreover, cell culture substrates that recapitulate the stiffness
of fibrotic lungs are sufficient to decrease fibroblast apoptosis and increase pro-survival BCL-2 expression
[34, 50, 51, 60]. Increasing evidence suggests that myocardin-related transcription factor (MRTF)-A may
play a key role in the integration of soluble and matrix-derived profibrotic signals. As a transcriptional
co-activator that partners with serum response factor, MRTF-A regulates myofibroblast differentiation and
survival [35]. MRTF-A nuclear localisation is promoted by TGF-β1 and by increased ECM stiffness, while
inhibition or deletion of MRTF impairs TGF-β1-induced XIAP expression, increases fibroblast
susceptibility to apoptosis, and attenuates lung fibrosis in murine models [34, 35, 60, 61]. Investigation of
MRTF-A in the context of malignancy represents an emerging opportunity, with some studies supporting
its role in tumour progression and metastasis [62, 63].

Epigenetic regulation of cell survival
Epigenetic mechanisms can contribute to the pathogenesis of malignancy and the stability of apoptosis
resistance in IPF fibroblasts through passage in cell culture supports a role for the epigenetic regulation of
this phenotype in fibrosis. Such a role for epigenetic regulation was demonstrated by a study showing that
a histone deacetylase inhibitor reversed the suppression of Fas/CD95 in murine fibrotic lung fibroblasts,
restoring the sensitivity of these cells to apoptosis [46]. Consistent with this, another study showed that a
histone deacetylase inhibitor increased the apoptosis susceptibility of IPF fibroblasts and reduced
bleomycin-induced fibrosis in mice [64]. Finally, a study showed increased resistance to apoptosis in a
subset of IPF fibroblasts that had decreased expression of the tumour suppressor protein p14ARF due to
increased promoter methylation of the encoding CDKN2A gene [38].

Autophagy and fibroblast survival
Autophagy is a distinct process involved in the homeostatic regulation and turnover of cytoplasmic
organelles via the lysosomal pathway. It is also a process involved in the regulation of cell survival. In
some circumstances, such as states of nutrient deprivation, activation of autophagy can serve as a
temporary adaptive survival mechanism. In other settings, however, activation of autophagy promotes cell
death (through classical apoptosis or through the overlapping mechanism of “autophagic cell death”) [65].
Circumvention of death by autophagy is another mechanism implicated in the evasion of cell death during
tumorigenesis [21]. Recent studies have consistently shown evidence of impaired autophagy in IPF, murine
models of lung fibrosis and fibroblasts [66–72]. Specifically, TGF-β1 activation of AKT has been shown to
inhibit autophagy in lung fibroblasts [66, 68, 72]. Moreover, nintedanib, a tyrosine kinase inhibitor
clinically approved for the treatment of IPF, increases autophagy in IPF fibroblasts, suggesting a novel
mechanism of action for this drug [71]. In this regard, impaired autophagy may represent another
mechanism by which fibrotic lung fibroblasts acquire resistance to cell death, and represents another
mechanistic similarity between fibrosis and cancer [66, 68]. Additional investigation into the regulation of
autophagy and its mechanistic impact on lung fibroblast phenotypes in the context of fibrosis could shed
light on these similarities and promote novel antifibrotic interventions.

Sustained proliferative signalling
Sustained proliferative signalling has been described as “arguably the most fundamental trait of cancer
cells” [21]. The role of mesenchymal cell proliferation as a critical component in the maintenance and
progression of fibrosis in vivo is less clear, and substantial heterogeneity has been shown in the
proliferative rates of fibroblasts isolated from patients with lung fibrosis and among subpopulations of
fibroblasts from individual patients [73]. Nevertheless, evidence strongly supports the persistent activation
of signalling pathways that are linked to proliferation in fibrotic lung fibroblasts. Moreover, activation of
these pathways contributes to the pathogenesis of lung fibrosis in murine models. The mechanisms
responsible for this sustained proliferative signalling have not been clearly elucidated, although autocrine
induction, liberation of sequestered growth factors and paracrine interactions with injured epithelial cells
have been identified [74, 75].
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Activation of proliferative signalling networks that are strongly implicated in malignancy and mediated by
protein kinases, such as the receptors for vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF) and fibroblast growth factor (FGF), have also been documented in IPF fibroblasts
(recently reviewed by GRIMMINGER et al. [74]). Indeed, nintedanib, a broad-spectrum tyrosine kinase
inhibitor that targets the receptors for VEGF, PDGF and FGF, and was developed as an anticancer therapy
due to its suppressive effects on angiogenesis, is now an approved therapy for IPF that can slow clinical
progression in patients and suppress fibroblast proliferation in vitro [5, 76, 77]. Pirfenidone, which is also
approved for therapeutic use for IPF, has an unknown molecular target but has also been shown to
decrease fibroblast proliferation in vitro [4, 78].

The PI3K/AKT pathway is activated by multiple exogenous stimuli including TGF-β1, endothelin-1 and
ECM ligation of cell-surface integrins [48, 49, 59, 79]. Increased AKT activation is observed in the
fibroblastic foci of IPF patients and is associated with lung fibrosis in murine models [55, 59, 80].
Consistent with a role in the pathogenesis of fibrosis, inhibition of PI3K/AKT and its associated signalling
pathways attenuates lung fibrosis in murine models [55, 81–83]. At the cellular level, in addition to its
previously discussed role in apoptosis resistance, this pathway has also been implicated in lung fibroblast
proliferation in vitro, as its inhibition has been shown to prevent fibroblast proliferation [2, 84, 85].
Additionally, β1-integrin-induced PI3K/AKT activation permits fibroblasts to circumvent the
antiproliferative signals transmitted to normal fibroblasts by polymerised collagen [59, 86].

Although studies demonstrate sustained activation of proliferative signalling pathways in IPF fibroblasts,
the role of excessive fibroblast proliferation as a pathogenic mechanism of IPF is unclear, and may
represent a significant difference between malignant cells and IPF fibroblasts. A number of studies conflict
with the idea of excessive fibroblast proliferation in IPF and report that IPF fibroblasts actually have a
decreased proliferative capacity when compared to normal fibroblasts. In one study, fibroblasts isolated
from patients with active alveolitis (including both IPF and sarcoidosis) had increased proliferative rates
[87]. However, the same study and others reported decreased [87–89] or unchanged [90] rates of
proliferation in fibroblasts isolated specifically from IPF lung tissue. These studies also reported that IPF
fibroblasts have decreased responsiveness to mitogens including serum and PDGF [87–90]. Moreover,
evidence demonstrating robust cell proliferation within fibroblastic foci of IPF lung biopsies is lacking [29,
32, 91]. Collectively, these studies show that the activation of proliferative signalling pathways in IPF
fibroblasts is not definitively linked with fibroblast proliferation in vivo, and that explanted fibrotic lung
fibroblasts have heterogeneous baseline and mitogen-induced proliferation in vitro despite the persistent
activation of these signalling pathways. Nevertheless, inhibition of signalling pathways that regulate
fibroblast proliferation is associated with decreased progression of fibrosis in patients with IPF,
demonstrating the need for a better understanding of the role of fibroblast proliferation in the initiation
and progression of lung fibrosis.

Evading growth suppressors
Like cancer cells, fibrotic lung fibroblasts have the capacity to evade growth-suppressive signals. For example,
IPF fibroblasts have diminished responsiveness to the suppressive effects of prostaglandin (PG)E2, an
eicosanoid mediator that inhibits proliferation, differentiation and collagen synthesis while enhancing
susceptibility to apoptosis in normal lung fibroblasts [30, 42, 92]. As noted, IPF fibroblasts resist the
growth-suppressive effects of polymerised collagen [86]. These mechanisms may be linked, as extracellular
matrices that recapitulate the biomechanical stiffness of fibrotic lung tissue suppress PGE2 production by
fibroblasts [51].

Enabling replicative immortality
Age is a risk factor for many cancers and for IPF but the mechanisms by which ageing contributes to the
pathobiology of these processes represent a key distinction between them [21, 93]. Replicative immortality is
a hallmark of malignancy [21]. As noted previously, however, excessive myofibroblast proliferation is not
readily evident in established lung fibrosis and, in stark contrast, accelerated replicative senescence is
emerging as a critical phenotype of IPF fibroblasts [26, 94]. Telomeres are specialised structures that protect
the ends of chromosomes from deterioration, and telomerase is an enzyme that functions to lengthen
telomeres and counteract the progressive telomere shortening that occurs with cell division [21, 95]. The
replicative potential of normal cells is dictated by telomere length and, despite telomerase activity,
continued cell division ultimately leads to senescence, which is the inability of a cell to continue to divide.
Therein lies a key distinction between fibrotic lung fibroblasts and cancer cells: the sustained proliferative
capacity of cancer cells requires the circumvention of cellular senescence, which can be achieved by
enhanced telomerase expression and/or activity [21]. However, accelerated telomere shortening and
impaired telomerase function is increasingly evident in both sporadic and familial forms of IPF [96].
Consistently, short telomere length has been associated with the worsened survival of patients with IPF
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[97]. Moreover, advanced age and short telomeres are associated with increased fibrosis and decreased
fibroblast apoptosis in murine models [26, 98–101].

Few studies have specifically assessed telomere length in fibrotic lung fibroblasts and those that have are not
consistent with telomere shortening as the mechanism of fibroblast senescence [102, 103]. One study showed
that telomere length was shortened in fewer than 4% of the IPF lung fibroblasts studied [102]. Interestingly,
another study from the same group reported increased activity of TERT (telomerase transcriptase) in lung
fibroblasts from patients with IPF and in fibroblasts from mice with experimentally induced lung fibrosis
[103]. The contrast between data derived from IPF patients demonstrating short telomeres and impaired
telomerase, and murine studies indicating normal telomere length and increased telomerase expression
highlights an ongoing need to delineate the mechanisms linking aging and fibrosis [94].

Activating invasion and metastasis
The capacity to invade or inappropriately migrate through connective tissue planes into nonhomeostatic
niches is a characteristic of malignant cells [21]. A feature of fibroblasts in pulmonary fibrosis is the ability
to invade through basement membranes and ECM, and emerging studies demonstrate that IPF lung
fibroblasts can be distinguished from normal lung fibroblasts by their acquisition of an invasive phenotype
[104–107]. One study showed the lung fibroblasts from mice that are deficient in β-arrestin, which are
protected from bleomycin-induced lung fibrosis, migrate normally but have an impaired ability to invade
into Matrigel [105]. Another study showed that IPF fibroblasts have an increased ability to invade Matrigel
that is dependent on expression of hyaluronan synthase (HAS) and the hyaluronan receptor CD44 [106].
Consistent with a role in fibrosis, antibody-mediated inhibition of CD44 or mesenchymal cell-specific
deletion of HAS decreased lung fibrosis in a murine model [106]. Moreover, the loss of PTEN is
associated with increased HAS activity and increased matrigel invasion by fibroblasts [108]. Another study
showed that TGF-β1 increases fibroblast expression of Toll-like receptor (TLR)9, which is linked to rapid
progression of IPF. Stimulation of TLR9 significantly increased fibroblast expression of CD44 and matrix
metalloproteinase-14 while promoting invasion into Matrigel [109]. Finally, a recent study indicates that
while fibrotic lung fibroblasts have increased invasiveness at baseline, they also have an amplified invasive
response to bronchoalveolar lavage fluid obtained from fibrotic lungs [107]. These studies demonstrate
that local invasion of fibroblasts through basement membrane and interstitium can contribute to the
pathogenesis of lung fibrosis, including IPF. In that regard, these cells are “cancer like”. However, unlike
cancers, which can acquire further invasive mechanisms that allow for distant dissemination, fibrotic lung
fibroblasts demonstrate a restriction to local invasion.

Tumour (and fibrosis)-promoting inflammation
Once thought of as a gatekeeper of tumorigenesis and a bystander of progressive tumour growth and local
tissue destruction, inflammation is now considered to be an enabling factor in the acquisition and
persistence of the hallmark malignant phenotypes [21, 110, 111]. Innate immune cells are critical
components of the tumour microenvironment that interact with both the tumour and the stromal cells.
Tumour-associated macrophages (TAMs) are uniquely positioned within this microenvironment to
support tumour growth, as evidenced by their ability to promote angiogenesis, activate mesenchymal cells,
remodel matrix and suppress effector T-cell responses [112, 113]. The elucidation of these tumour–
immune interactions has led to a dramatic paradigm shift in the field of immunotherapy, and led to the
development of numerous novel and successful therapeutics, including a class of immune checkpoint
inhibitors targeting PDL-1 (programmed cell death ligand-1), PD-1 (programmed cell death protein-1) or
CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) [114].

The contribution of inflammation to pulmonary fibrosis has been investigated and, at times, fiercely debated
[115]. Reminiscent of the paradigm shift observed in the field of tumour immunobiology, new studies are
helping us understand and appreciate how immune cells, especially monocytes and macrophages, promote
fibrogenesis through molecular mechanisms other than traditional “proinflammatory” pathways. Similar to
TAMs, fibrosis-associated macrophages (FAMs) display a predominant alternatively activated or M2 phenotype,
best characterised by strong expression of arginase, chitinase-like molecules, resistin-like molecule α and CD206
(in mice) [112, 116, 117]. Additional similarities between TAMs and FAMs include the ability of FAMs to
produce (or influence the production of) fibroblast growth factors (including PDGF and FGF2 [118]),
profibrotic cytokines (including TGF-β and interleukin (IL)-13 [112, 119, 120]) and plasminogen activator
inhibitor (PAI)-1 [121] and matrix metalloproteinases [122]. Evidence that FAMs promote pulmonary fibrosis
stems primarily from murine studies showing that ablation of these cells by liposomal clodronate, or deletion of
C–C-motif chemokine receptor 2 or PAI-1 protect against lung fibrogenesis [120, 121, 123–126], whereas
increasing the number of these cells or their monocyte precursors by IL-10 overexpression or adoptive transfer
exacerbates disease [123, 127].
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These alternatively activated macrophages express collagen (Col), suggesting that they may represent a subset
of CD45+Col1+ fibrocytes [120, 121], which are themselves implicated in the pathobiology of pulmonary
fibrosis [127–129]. Early studies indicated that bone marrow-derived cells were recruited to murine lungs
following bleomycin-induced lung injury and expressed collagen, but more recent studies demonstrate that
fibrocytes do not contribute to the collagen deposition in murine models of lung fibrosis [130, 131]. Although
the specific mechanisms remain to be elucidated, these findings indicate that their profibrotic effects are
mediated by the paracrine regulation of effector functions in other cells [132]. Collectively, these studies
suggest that macrophages (or their monocyte precursors) may represent attractive targets for the development
of new classes of therapeutics for the treatment of human fibrotic lung disease while highlighting the
importance of advancing our understanding of the relationship between the monocyte/macrophage and
fibrocyte populations, and elucidation of the specific mechanisms by which these cells orchestrate fibrosis.

Contributions of fibrotic cellular phenotypes to carcinogenesis in the lung
In the preceding sections of this article, we have focused on viewing fibrosis through the prism of cancer
biology with the goal of highlighting the ways in which fibrotic mesenchymal cells are similar to, and different
than, cancer cells. However, it is increasingly evident that stromal cells and the stroma itself are critical for the
development and progression of cancer. Accordingly, we will briefly discuss some of the emerging
mechanisms by which different tumour-associated cell populations acquire functions that recapitulate critical
profibrotic phenotypes and, in doing so, contribute to tumorigenesis in the lung.

Lung cancer-associated fibroblasts
As in lung development and fibrosis, mesenchymal cells are critical for tumorigenesis (comprehensively
reviewed by KALLURI and ZEISBERG [133]). TGF-β signalling in fibroblasts, for instance, has been identified
as a major determinant of the oncogenic potential of adjacent epithelia [17, 134]. Indeed, tumour bulk is
comprised primarily of stroma, and tumour-associated fibroblasts can become activated by growth factors
secreted by epithelial cells; at the same time, these tumour-associated fibroblasts produce growth factors
(i.e. epidermal growth factors (EGFs), FGFs and TGFs) that contribute to the growth and dissemination of
cancer cells. Additionally, tumour-associated fibroblasts regulate matrix rigidity and, thereby, tumour cell
access to the vasculature, and provide the necessary scaffold for angiogenesis [135–137].

As in fibrosis, the population of tumour-associated fibroblasts is likely to be comprised of heterogeneous cells
with different origins. Epithelial–mesenchymal transformation (or transition) (EMT) is a process that
encompasses multiple phenotypic transitions including shape changes towards elongated and spindle-shaped
cellular morphology, enhanced cytoplasmic cytoskeletal protein expression and activity, and the capacity for
anchorage-independent growth, motility, migration and invasion [133, 138]. This epithelial–mesenchymal
phenotypic transition has been clearly observed during the malignant transformation of respiratory epithelial
cells, and this link is supported by evidence suggesting that the same oncoproteins that drive lung cancer
formation and progression (i.e. mutant KRAS) are responsible for EMT [139, 140]. However, whether “true”
EMT contributes to lung fibrogenesis has been a topic of considerable controversy [138, 141–144]. While
some may consider EMT to be partial or incomplete in pulmonary fibrosis, abundant evidence supports the
plasticity of alveolar epithelial cells that can, in the context of lung injury, acquire a number of
mesenchymal-like phenotypic behaviours [143, 145–148]. This phenotypic transition is not limited to fibrotic
lung injury, as ZUO et al. [149] recently showed that airway epithelial cells migrate distally in response to
influenza H1N1 infection of mice, thereby acquiring fibroblast phenotypes. Unpublished observations from
our laboratories (A. Marazioti and G.T. Stathopoulos) indicate that similar processes occur both after tobacco
smoke-contained carcinogen exposure, and after bleomycin-induced lung injury and fibrosis (M. Spella et al.,
unpublished data). Cigarette smoking is a major risk factor for both lung cancer and fibrosis, and nicotine
possesses multiple fibrogenic properties [150, 151]. Thus, we speculate that nicotine-induced epithelial cell
phenotypic plasticity represents an additional link between the pathobiology of fibrosis and cancer.

Mesothelial stem cells could also be a cell of fibroblast origin in IPF and of tumour-associated fibroblasts
in lung cancer. To this end, fibrotic matrix deposition in IPF has been found to occur in a pleural-based
manner to form the fibrotic reticulum [152]. In addition, pleural mesothelial cells have been identified to
migrate into the lung parenchyma in response to fibrotic stimuli [153, 154]. Interestingly, RINKEVICH et al.
[155] identified a mesothelial precursor lineage that gives rise to fibroblasts capable of clonal expansion in
the lungs, kidney, liver and gut. The authors speculated that these mesothelium-derived fibroblasts may
contribute to tumour stroma. Supportive of this work, unpublished observations from our laboratories
indicate that lung adenocarcinomas induced by tobacco-related carcinogens overexpress, among other
molecules, mesothelin (M. Spella et al., unpublished data). Hence, airway- or pleura-originated progenitors
could contribute to the pool of mesenchymal cells in both IPF and lung cancer, suggesting that the
mechanisms regulating the transitional plasticity of epithelial cells might be targeted for therapy in both
cancer and fibrosis.
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Profibrotic signalling in lung carcinoma cells
In addition to the involvement of fibroblasts in lung cancer development and progression, fibroblast-like
changes occur within lung cancer cells. First, FGF and TGF signalling in lung tumour cells provides
mitogenic stimuli required for lung cancer cell proliferation and evasion of cell death [156]. Second,
mutations in the various FGF receptors (FGFRs) were recently identified in non-small cell cancers of all
histologic subtypes, but especially squamous cell carcinomas [157], and FGFR2 activation via perturbation
of its kinase domain has been shown to be sufficient for lung adenocarcinoma development [158]. Third
and most important, in addition to its aforementioned clinical impact in IPF, targeting of FGFR signalling
provides significant benefits in pre-clinical models of lung cancer [156, 158]. Finally, lung tumours
overexpress several fibroblast markers, which, in turn, have been found to promote tumour growth and
metastasis. One of many examples is S100A4, also known as fibroblast-specific protein-1 [159]. S100A4, a
proximal activator of fibroblast-specific transcriptional programmes, has been shown to be expressed in
IPF [160]. At the same time, multiple studies have identified that the protein is a gatekeeper of metastatic
colonisation [161, 162]. Collectively, these and other studies from the published literature strongly indicate
that signalling pathways intrinsic to fibroblasts are at play in lung tumour cells, and significantly
contribute to tumour cell growth and metastatic colonisation.

Conclusions: precision medicine and beyond
In cancer and in fibrosis, the precise integration and orchestration of normal wound-repair breaks down. The
proximate cause(s) of the breakdown are variable and, in many cases, unknown, but the result in each case is
the maintenance and propagation of aberrant cells resulting in tissue dysfunction. In addition to aberrant cell
behaviour, it is increasingly evident that the matrix is not an innocent bystander to the pathological responses
but is, instead, a critical contributor that is necessary for the propagation of each [1, 163, 164].

There is substantial overlap in the phenotypes observed in cancer cells and fibrotic lung fibroblasts, yet the
specific genetic and cellular mechanisms that lead to the aberrant cell behaviours observed in individuals
diagnosed with cancer and fibrosis are heterogeneous [165–167]. This heterogeneity in cancer biology has
spurred an increasing emphasis on developing and implementing “precision medicine” strategies that identify
individual variation and employ therapeutics targeting specific mechanisms that are identified as drivers of
individual cancers [165, 166]. This precision approach has been employed successfully in the diagnostic and
therapeutic approach to a number of cancers, including recent applications to some forms of lung cancer
driven by mutations in the EGF receptor or the anaplastic lymphoma kinase (ALK) gene [168, 169].

We speculate that, like cancer, heterogeneity in the inciting stimuli, genetic predisposition and signalling
mechanisms that promote profibrotic cell phenotypes contribute to the variable clinical courses observed
in patients with IPF. If so, then the approach to IPF, and fibrotic disease in general, may benefit from a
similar precision medicine approach. Such an approach would necessitate the exploration of novel
pharmacological and biological compounds, the repurposing of existing compounds, and re-examination
of previously “failed” compounds in specific populations categorised by their individual genetic and
cellular mechanisms. Toward that end, we propose that the shared mechanisms evident in fibrotic lung
fibroblasts and cancer cells present an opportunity to leverage the wealth of existing research in cancer
biology to identify novel biomarkers that reflect those underlying mechanisms and to employ those
mechanistic biomarkers to stratify patients for specific interventions selected to target those mechanisms.

Summary
In summary, lung fibrosis and cancer are distinct, but share a number of cell signalling and phenotypic
features. Given this mechanistic overlap combined with the substantial heterogeneity observed in both
pathological processes, we speculate that strategies currently employed for the diagnosis and precision
treatment of cancer might be leveraged to advance our understanding and treatment of lung fibrosis.
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