- Ray-Keil L, Chandler JW. Rejection of murine heterotopic corneal transplants. Transplantation 1985; 39: 473.
- 32. Wood TO, Tuberville AW. The effect of donor cornea epithelium removal on homograft rejection. Invest Ophthalmol 1982; 22:
- 33. Polack FM. Corneal transplantation. New York: Grune & Stratton,

1977; 201

 Steinmuller D. Which T cells mediate allograft rejection? Transplantation 1985; 40: 229.

Received 24 March 1987. Accepted 5 June 1987.

0041-1337/88/4502-0443\$02.00/0 Transplantation Copyright © 1988 by The Williams & Wilkins Co.

Vol. 45, 443–448, No. 2, Feb. 1988 Printed in U.S.A.

RECOGNITION OF TWO EPITOPES OF AN ANTIGEN PRESENT ON CANINE T CELLS BUT NOT ON HEMOPOIETIC PROGENITORS BY FOUR MONOCLONAL ANTIBODIES¹

JOSEF J. MYSLIWIETZ,² GERTRUD HOFFMANN-FEZER, STEFAN THIERFELDER, HANS-JOCHEM KOLB, AND JULIANE MALDACKER

Institut für Immunologie, GSF, Munich, Federal Republic of Germany

Pairs of murine monoclonal antibodies, which recognize 2 different epitopes on a single antigen are described. These antibodies (MdT-P₁, -P₂, -Q₁, -Q₂) defining a canine pan-T cell antigen, were raised against dog thymocytes. In immunoblotting of solubilized and polyacrylamide gradient gel electrophoresis in sodium dodecyl sulphate (SDS-PAGE) fractionated dog thymocytes, they revealed a strong heterogeneous antigen. Competitive inhibition of binding of directly labeled mouse-antidog T lymphocytes monoclonal antibodies (MdT-mAbs) to solubilized dog thymocytes indicates that 2 different antigenic epitopes (P, Q) are recognized. In indirect peroxidase immunocytochemistry, MdT monoclonal antibodies recognized up to 95% thymocytes, 69% blood lymphocytes, 76% lymph node lymphocytes, and approximately 2% bone marrow lymphocytes; they were nonreactive with surface immunoglobulin positive blood cells, monocytes, platelets, cells of myeloand erythropoietic lineage in the bone marrow. Immunohistochemistry on thymus, lymph nodes, and spleen sections revealed that MdT-mAbs had labeled cortical and medullary thymocytes, paracortical T cell areas in lymph nodes and the periarteriolar zone of spleen white pulp, whereas B cell areas remained unstained. The antibodies lysed dog thymocytes in the presence of complement. Lethally irradiated dog receiving bone marrow autograft depleted of MdT-P1 positive cells ex vivo showed engraftment and complete recovery of marrow function. Studies of antibody activity on canine hemopoietic progenitor cells in granulocyte-macrophage progenitors (CFU_{GM}) also showed no reduction of CFU_{GM} in MdT-P₁-depleted bone marrow.

Antibody-induced T cell depletion for suppression of graft-versus-host reactions is still little investigated in canine bone marrow transplantation because of certain logistic difficulties in the production of suitable monoclonal antibodies (mAbs).* This is also why, contrary to the immune system of mice and humans, canine cell populations involved in the immune regulation have not yet been well defined. Recently, several monoclonal antibodies have become available for characterization of dog lymphocytes. These antibodies allow the distinction between lymphoid and nonlymphoid cells: =DLy 6 (1); T and B lymphocytes = F3-20-7 (2); 1 WMD-1 (3); and a subset of T cells = DT2 (4), Aby 1A1 (5). Other mAbs-DLy1 (1) and Aby 6C6 (6) react with canine lymphoid and nonlymphoid cells.

This report describes 4 novel murine monoclonal antibodies that react with 2 distinct epitopes on an antigen of dog lymphocytes; this antigen is present on T lymphocytes but not on SIg⁺ lymphocytes, nonlymphoid cells, or hemopoietic progenitors

MATERIALS AND METHODS

Animals and cells. Lymphoid organs were obtained from 1-6-day-old outbred dogs. Thymus, lymph nodes, and femoral bone marrow were

* Abbreviations used: ATG, antidog-thymocyte globulin; BM, bone marrow cell suspension; CFU $_{\rm GM}$, granulocyte-macrophage progenitors; DTE, dithioerythritol; ELISA, enzyme-linked immunosorbent assay; GA, glutaraldehyde; GVHD, graft-versus-host disease; HRP, horse-radish peroxidase; IgG, immunoglobulin; mAbs, monoclonal antibodies; MdT-mab, mouse-antidog T lymphocytes monoclonal antibody; MEM, minimum essential medium; MNS, mouse normal serum; NP-40, nonidet P-40; PBMC, peripheral blood mononuclear cells; PBS, Dulbecco's calcium- and magnesium-free phosphate-buffered saline; PLL, poly-Llysine; SDS-PAGE, polyacrylamide gradient gel electrophoresis in sodium dodecyl sulphate; SPA-SRBC, staphylococcal protein-A-coated sheep red blood cells.

¹ Furthered by SFB 217.

²Address correspondence to: Josef Mysliwietz, Institut für Immunologie, Landwehrstr. 61, D-8000 Munich 2, FRG.

minced and passed through a stainless-steel mesh, and the cell suspension separated on Percoll 1.040 g/cm³ in order to remove dead cells and cell debris. Contaminating erythrocytes from bone marrow were removed by separation on Percoll 1.085 g/cm³. Peripheral blood was obtained from beagles bred in the kennels of the Gesellschaft für Strahlen- und Umweltforschung. Mononuclear cells were obtained following separation on Percoll 1.078 g/cm³ by centrifugation at 1000 × g for 15 min.

Balb/c mice, originally obtained from Jackson Laboratories (Bar Harbor, ME), were raised and maintained in our breeding facilities.

Cell fusion and screening for antibodies. The method of Köhler and Milstein (7) was applied as modified by Fazekas (8) using NS-1 myeloma and spleen cells from Balb/c mice immunized with canine thymocytes. Primary screening was performed in a radioimmunoassay using dog thymocytes as target cells (9, 10).

Proof of Specificity of Mouse-Antidog T Lymphocytes Monoclonal Antibodies (MdT-mAbs) and Tissue Distribution of Antigen Recognized by MdT-mAbs

Slides. Multispot poly-L-lysine (PLL) coated slides, preparations of target monolayer and glutaraldehyde (GA) fixation were performed as described elsewhere (11).

Preparation of SIg^+ cells. An excess of PLL was rinsed and 20 μ l of the IgG fraction of sheep-antidog IgG (Paesel, Frankfurt, FRG), adjusted to a concentration of 10 μ g/ml in 0.05 M Tris buffer, pH 9.4, were pipetted onto each spot. After overnight incubation at 4°C, the spots were washed with Dulbecco's calcium- and magnesium-free phosphate-buffered saline (PBS), and the free binding sites of PLL blocked with undiluted FCS. The spots were washed again and 10 μ l of cell suspension, at a concentration of $7-10\times10^6$ cells/ml of minimum essential medium (MEM), 5% fetal calf serum (FCS), added to each spot. After 1 hr sedimentation in a moist chamber, the slide was turned onto the reverse side in order to allow sedimentation of unbound cells into the medium for 20 min. The slides were gently dipped in PBS and fixed for 15 min with 0.05% GA in PBS.

Immunocytochemistry. The cells previously immobilized and fixed on PLL-coated slides were incubated with (1) mAb under test; (2) affinity-purified rat-antimouse-Ig horseradish peroxidase (HRP) (Jackson, Avondale, PA); (3) affinity-purified goat-antirat-Ig HRP (Jackson) antibodies. For staining the SIg⁺ cells, the spots were incubated with rabbit-antidog (Miles, München, FRG) followed by goat-antirabbit-Ig HRP (Tago, Burlinghame, CA) antibodies.

The peroxidase reaction with 3-amino-9-ethylcarbazole, counterstaining, and sealing was performed as described elsewhere (11). In some experiments, the endogenous peroxidase was counterstained with 4 chloro-1-naphtol as described previously (12).

Immunohistochemistry. Tissue blocks of thymus, spleen, and lymph nodes taken from dogs aged 6–8 weeks were rapidly frozen in liquid nitrogen. Frozen sections were cut at 7 μ m in a cryostat at -20° C, air dried, and fixed in acetone for 5 min. The sections were incubated with the following: (1) undiluted supernatants, or diluted NS 1 ascites for negative controls; (2) biotinylated sheep-antimouse-Ig (Amersham, Braunschweig, FRG); (3) peroxidase labeled avidin (Vector, Burlington, CA). B-cell regions were demonstrated by incubation with the following: (1) rabbit-antidog-Ig (Nordic, Dietzenbach, FRG); (2) goat-antirabbit-Ig in excess; (3) peroxidase-antiperoxidase-complex. The sections were incubated in each case for 60 min at room temperature. Peroxidase activity was demonstrated as described above under immunocytochemistry.

Microcytotoxicity assay. The microdroplet cytotoxicity test technique was performed as described in detail elsewhere (13). Rabbit complement absorbed with dog thymocytes and lymph node cells (250 mg cells/ml complement) was used.

Molecular weight estimation of antigen recognized by MdT monoclonal antibodies. SDS-polyacrylamide electrophoresis was carried out on discontinuous vertical slab gels (SDS-PAGE) as described by Laemmli (14). Linear gradient gels of 7-14% T, 2,67% C were prepared.

Dog thymocytes solubilized with nonidet P-40 (NP-40) as described previously (15, 16) were diluted in 4 times concentrated sample buffer (final concentration 50 mM Tris, 1% SDS, 20 mM dithioerythritol [DTE], 8% glycerol, 0.001% bromphenolblue pH 6.8, for nonreducing conditions DTE was omitted), denatured for 3 min at 100°C, and applied as equivalent of 4×10⁶ cells/lane. After electrophoresis, the gel was equilibrated in 25 mM Tris, 192 mM glycine, 20% methanol buffer and blotted to NC membrane (Schleicher u. Schüll, Dassel, FRG) for 2 hr at 25 V/cm. After soaking in PBS, 1% nonfat dry milk to saturate nonspecific protein-binding sites, the sheet was cut into strips, each of which was incubated with the following: (1) mAb under test or irrelevant control mAb; (2) rat-antimouse Ig-HRP; (3) goat-antirat Ig-HRP. The peroxidase reaction with 4-chloro-1-naphtol was performed as described elsewhere (12).

Identification of binding determinants on the MdT antigen by competitive inhibition of binding. Solubilized membranes of canine thymocytes were immobilized on microtiter plates as described by Noteboom et al. (17). Nonspecific binding sites were blocked with 10% mouse normal serum (MNS) in PBS. The competitive inhibition assay was performed as described elsewhere (18) using biotinylated immunoglobulin (IgG) fraction of MdT monoclonal antibodies.

Hemopoietic progenitor cell activity (CFU_{GM}) in bone marrow cell suspension. MdT-P₁ or antidog thymocytes globulin (ATG) positive cells from canine bone marrow cell suspension (BM) were separated using the staphylococcal protein-A-coated sheep red blood cells (SPA-SRBC) technique (19) and density gradient centrifugation on Percoll 1.085 g/cm³ by $1000 \times g$ for 15 min. The cells from the interphase and pellet were assayed for CFU_{GM} activity as described by Pike et al. (20). The number of CFU_{GM} was estimated per 100,000 bone marrow cells in the original suspension and in each fraction after separation.

RESULTS

Isolation and immunochemical characterization of antibodies specific for canine lymphocytes. Out of 960 plated wells, 9 were T specific as estimated in immunohistology on thymus, lymph nodes and spleen sections, and immunocytochemistry on SIg⁺ blood lymphocytes, cells of myelo- and erythropoietic lineage in the bone marrow and platelets. We describe 4 of these hybridomas, designated: MdT-P₁, MdT-P₂, MdT-Q₁, MdT-Q₂.

The subclass of the mAbs described was identified in double immunodiffusion using appropriate antimouse immunoglobulins as: MdT-P₁ IgG2b, MdT-P₂ IgG2a, MdT-Q₁ IgG2b, MdT-Q₂ IgG2b, all kappa.

These 4 MdT-mAbs recognized the same heterogeneous antigen of canine thymocytes. "Western blotting" of solubilized thymocytes have shown an antigen with band clusters at 90–120 kD and 140–160 kD. The MdT-P₁ mAb recognized additionally 2 bands of 33 and 66 kD molecular weight, presumably due to the high affinity of this antibody and in this way increased sensitivity of the system (Fig. 1). The same pattern has been observed under nonreducing conditions (not shown). As internal control, the F3-20-7 anticanine Thy-1 (2) (Serotec Ltd., Blackthorn Bicester, U.K.) was included. The molecular weight of canine Thy-1 antigen has previously been estimated as 24 kD (2); using our method, this antigen was estimated as 31 kD (Fig. 1).

Identification of topographically separate determinants on the MdT antigen by competitive inhibition of binding. Competitive inhibition ELISA assays using biotinylated MdT monoclonal antibodies were set up to determine whether the binding of one unlabeled antibody to the antigen interfered with the binding of another labeled antibody. Figure 2 shows that mAbs MdT- Q_1 , $-Q_2$ and MdT- P_1 , $-P_2$, on the other hand, defined 2 separate binding sites on the MdT antigen. MAbs MdT- Q_1 and MdT-

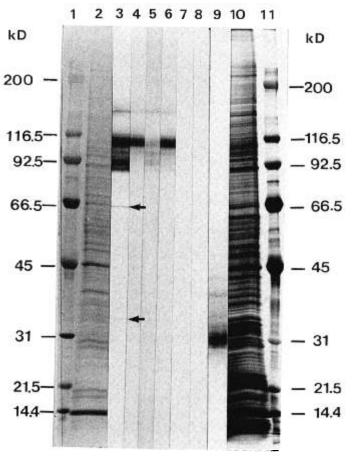


FIGURE 1. Immunoblotting of canine thymocytes surface membrane components. Lane 1-2: after SDS-PAGE fractionation, molecular weight protein standards and solubilized surface membrane components of canine thymocytes were blotted to NC-membrane and stained with Amidoblack 10B. Lane 1, molecular weight protein standards (Bio-Rad) lysosyme 14.4 kD-soybean trypsin inhibitor-21.5 kD, carbonic anhydrase-31 kD ovalbumin 45 kD, bovine serum albumin-66.2 kD, phosphorylase B-92.5 kD, β -galactosidase-116.25 kD, myosin-200 kD; lane 2, solubilized thymocytes membranes-equivalent of 4×106 cells. Lane 3-9: after SDS fractionation and electroblotting, solubilized thymocytes membranes—equivalent of 4×106 cells—were immunologically probed as described in the Materials and Methods section. Lane 3, MdT-P₁; lane 4, MdT-Q₂; lane 5, MdT-P₂; lane 6, MdT-Q₁; lane 7, irrelevant MRC-Ox7 mAb; lane 8, diluting medium; lane 9, F3-20-7 anticanine Thy-1. Lane 10-11: after SDS fractionation, molecular weight protein standards and solubilized surface membrane components were stained in combined silver-coomassie stain. Lane 10, solubilized thymocytes membranes-equivalent of 4×10⁶ cells; lane 10, molecular weight protein standards as in lane 1. SDS-PAGE fractionation was performed under reducing conditions using DTE.

 Q_2 were found to be mutually competitive: unlabeled MdT- Q_2 inhibited the binding of biotinylated MdT- Q_1 as completely as did unlabeled MdT- Q_1 itself. MdT- P_1 and MdT- P_2 antibodies, on the other hand, displayed only slight inhibition in the high concentration area (Fig. 2A). Figure 2B shows the inhibition of the binding of biotinylated MdT- Q_2 monoclonal antibody. The inhibition pattern corresponds very well to that in Figure 2A. Mutual competition in the case of MdT- P_1 and MdT- P_2 antibodies was markedly asymmetrical, MdT- P_1 being a better competitor of MdT- P_2 than MdT- P_2 itself (Fig. 2D) and MdT- P_2 being a weak competitive inhibitor of MdT- P_1 (Fig. 2C).

The mAbs MdT- Q_1 and MdT- Q_2 show only slight inhibition at the highest concentrations. The irrelevant MRC-Ox7 mAb (21) has no inhibitive effect whatsoever.

Distribution of MdT Antigen on Canine Lymphoid Tissue

Single cell suspensions. Table 1 depicts the reactivity pattern of MdT-mAbs with peripheral blood mononuclear cells (PBMC), thymocytes, lymph node cells, and bone marrow cells. Analysis of enriched SIg⁺ blood lymphocytes showed that none of the MdT-mAbs recognized B lymphocytes. The enrichment of SIg⁺ blood lymphocytes on the multispot slides was increased to 98%. In addition, the crossreactivity of MdT-mAbs with blood monocytes, granulocytes, erythrocytes, platelets, as well as cells of myelo- and erythropoietic lineage in the bone mar-

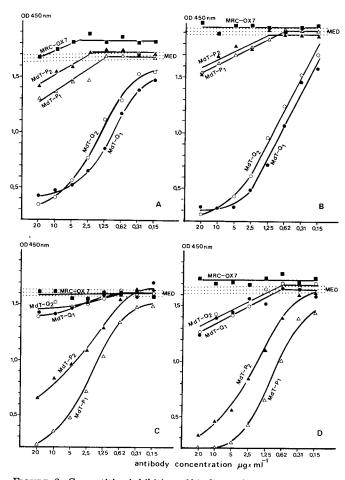


FIGURE 2. Competitive inhibition of binding of biotin labeled MdT mAbs to solubilized membranes of dog thymocytes. Immobilized canine thymocytes NP-40 extract was incubated with serial twofold dilutions of purified unlabeled competitor antibodies in concentrations ranging from 20 to $0.015~\mu g/ml$. Purified biotinylated antibody was added in constant concentration to the unlabeled competitor antibodies. The biotinylated antibody had the following specificity: MdT- Q_1 in A, MdT- Q_2 in B, MdT- Q_1 in C, MdT- Q_2 in D. The inhibition of the binding was estimated using avidin HRP; 100% binding (uninhibited control) was achieved by including irrelevant MRC-OX7 antibody, or diluting medium in the first incubation step. For the positive, inhibited control unlabeled mAb was used in the first incubation step and the same, biotinylated, in the second one. \blacksquare MdT- Q_1 ; \bigcirc MdT- Q_2 ; \triangle MdT- Q_2 ; \triangle MdT- Q_1 , \triangle MdT- Q_2 ; \triangle MdT- Q_2 ; \triangle MdT- Q_1 , \triangle MdT- Q_2 ; \triangle MdT- Q_2 ;

TARLE 1 B	Reactivity of MdT	monoclonal antibodies	in indirect	peroxidase assay
-----------	-------------------	-----------------------	-------------	------------------

Antibody ^a	MdT-P ₁	MdT-P ₂ 0 (8)	MdT-Q ₁ 0 (9)	MdT-Q ₂	Rabbit-antidog IgG ^b ND
Blood monocytes, granulocytes, eryth- rocytes, platelets	0 (9)				
Blood lymphocytes	58±4.9 (13) /55-69/	48±6.3 (7) /40–57/	43±7.3 (10) /35-57/	38±5.0 (9) /30-45/	24±6.3 (9) /16–34/
SIg ⁺ blood lymphocytes Thymocytes	2 (3) 91±3.4 (4) /88–95/	0 (3) 81±3.2 (4) /76–83/	0 (3) 74±6.0 (3) /68–80/	0 (3) 67±9.0 (3) /58-76/	98±1.0 (3) 3.5±2.3 (3) /1-6/
Lymph node lymphocytes	72±6.6 (3) /64-76/	56±1.1 (3) /55–57/	49±6.1 (3) /42–53/	40±8.9 (3) /34-50/	21±3.0 (3) /18-24/
Bone marrow lymphocytes	2 (3)	0 (3)	0 (3)	0 (3)	26±3, 5 (3)
Bone marrow cells (myelo- and eryth- ropoietic lineage)	0 (3)	0 (3)	0 (3)	0 (3)	ND

^a Percentage-Mean ± SD (No. different dogs)/range/-of cells labeled after incubation with MdT ascitic fluids followed by second rat-antimouse IgG HRP and third goat-antirat IgG HRP antibodies.

^b Percentage of cells labeled after incubation with rabbit-antidog IgG followed by goat-antirabbit IgG HRP (ND, not done).

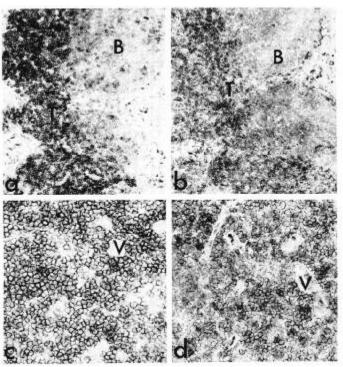


FIGURE 3. Lymph node sections stained with antibody MdT- P_1 (a, c) and MdT- P_2 (b, d). B cell cortical zones (B) are almost free of labeled cells, paracortical T cell zones (T) contain a majority of MdT- P_1 labeled lymphocytes (a, c) and a lower percentage of lymphocytes labeled with MdT- P_2 (b, d). V: high endothelial venules = typical vessel of T cell areas a, b ×70, c, d ×175.

row, was tested by way of endogenous peroxidase counterstaining with 4-Cl-1-naphtol. Table 1 shows that none of the MdT-mAbs react with nonlymphoid cells. The complement-dependent cytotoxicity tested against PBMC, thymocytes, and lymph node cells was restricted to thymocytes; all the MdT-mAbs lysed over 90% of thymocytes but not peripheral lymphocytes (data not shown).

Frozen sections. Labeling patterns of the 4 monoclonal antibodies differed in thymic medulla and in peripheral lymphoid organs. The vast majority of thymic cortex was labeled strongly by antibodies MdT-Q₁, MdT-P₂, MdT-P₁, and more weakly by

MdT-Q₂. Antibody MdT-P₁ also strongly labeled the majority of medullary thymocytes and of paracortical T cell areas in lymph nodes (Fig. 3) and in the periarteriolar zone in spleen white pulp. Antibody MdT-P₂ distinctly stained about 60% of thymic medulla cells and lymph node (Fig. 3) as well as spleen T cell zones, leaving the remaining cells unstained. Antibody MdT-Q₁ distinctly labeled about 50% of thymic medulla, whereas the remaining half was stained very weakly.

Peripheral T cell areas in lymph node and spleen showed a similar staining as in the thymic medulla. Antibody MdT- Q_2 stained—to differing extents—only 30–40% of thymic medulla, lymph node paracortex, and the periarteriolar zone in spleen white pulp.

Studies of antibody activity on canine hemopoietic progenitors. In order to study the expression of MdT antigen on hemopoietic progenitor cells, a CFU_{GM} assay was set up. Figure 4 shows that subsequent to SpA rosetting and density gradient separation of BM cells incubated with saturating concentrations of MdT-P₁, nearly all CFU_{GM} were found in the interphase. Only 3% of CFU_{GM} were found in the pellet (containing MdT-P₁ positive cells). Contrary to this, CFU_{GM} activity in bone marrow cells separated after incubation with ATG was found mainly in the pellet (95%); the interphase contained only about 3% of CFU_{GM}. The number of CFU_{GM} per 100,000 unseparated BM cells was taken to represent 100% CFU_{GM} activity.

DISCUSSION

In the present study, we describe 4 monoclonal antibodies, recognizing the same heterogeneous antigen on canine T cells. The same patterns under reducing and nonreducing conditions have shown that the differences in molecular weight of the revealed bands could not be explained through disulphide interactions. Further investigations are required, if the described heterogeneity is due to differences in the degree of glycosylation and/or hydrophobic interactions.

The epitope analysis of MdT antigen shows that there are 2 distinct binding regions (P, Q). Complete mutual competition of MdT- Q_1 and MdT- Q_2 pair indicates that MdT- Q_1 and MdT- Q_2 recognize the same or very closely linked epitope(s). This was also the case with the MdT- P_1 , - P_2 pair. The mutual competition within this binding group was, however, asymmetrical—with MdT- P_1 being a better competitor of MdT- P_2 than

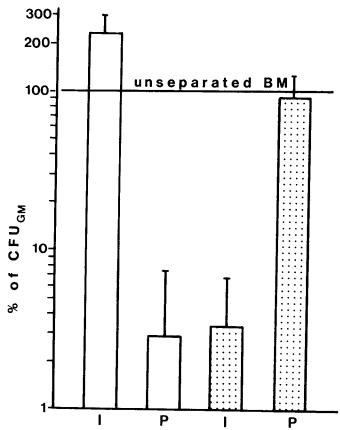


FIGURE 4. CFU_{GM} activity in bone marrow cell suspension before and after depletion of MdT-P₁ or ATG positive cells. Percentage (mean of 5 experiments +SD) of CFU_{GM} in bone marrow cell suspension after indirect SpA rosetting and density gradient separation of \square MdT-P₁ positive or ATG positive (dotted columns) cells. I: interphase, P: pellet. The number of CFU_{GM}/100,000 unseparated bone marrow cells was taken to represent 100% CFU_{GM} activity.

 $MdT-P_2$ itself. Time kinetics in the case of $MdT-P_1$, $-P_2$ pair show that $MdT-P_2$ was displaced by $MdT-P_1$ to an extent proportional to the incubation time (data not shown). This could indicate low avidity of $MdT-P_2$.

To determine the distribution of MdT antigen on single cell suspensions, we used the multispot immunoperoxidase assay that combines surface labeling with excellent morphology, so that the exact cell lineage can be quickly determined. The problem of endogenous peroxidase, which complicates evaluations of bone marrow and to some extent of PBMC, was satisfactorily overcome by counterstaining with 4-Chloro-1-naphtol. Counterstaining rather than inhibiting endogenous peroxidase also allows classification of certain cells that are difficult to discriminate otherwise.

The reactivity of our MdT antibodies in immunocytochemistry included peripheral blood T lymphocytes, thymocytes, lymph nodes, and bone marrow lymphocytes. MdT-mAbs labeled neither SIg positive lymphocytes nor monocytes, platelets or cells of myelo- and erythropoietic lineage in the bone marrow from normal dogs (Table 1). The T cell specificity of these reagents was also supported by immunohistochemistry performed on thymus, spleen, and lymph node sections, where the reactivity of the MdT-mAbs was restricted to T cell areas only. It is interesting to note that mAbs directed against the same

epitope exhibited a different binding pattern when tested on single cell suspension of lymphoid organs, presumably due to different avidity of these monospecific reagents.

As a single monoclonal IgG, our MdT-mAbs were generally able to fix complement in the complement-dependent cytotoxicity test; approximately 90% of the thymocytes were killed by all 4 antibodies, independent of their isotype. These antibodies also bound human Clq, a subunit of the first component of the classic pathway, using canine thymocytes as target. In contrast, none of our mAbs lysed peripheral lymphocytes, which is probably due to a lower antigen density on peripheral lymphocytes.

Transplantation of marrow from DLA homozygous dogs to 1-DLA-haplotype mismatched littermates was observed by us with absence of graft-versus-host disease (GVHD) in more than half of the dogs when bone marrow was incubated with absorbed rabbit ATG in the absence of complement (22, 23). However, numerous monoclonal anti-T lymphocyte antibodies showed little suppression of GVHD in mice (24, 25) and humans (26), following in vitro treatment in the absence of complement. A high affinity of monoclonal reagents for Clq seems to be an important factor for efficacy in the clearance of antibody-coated T cells in the marrow recipient (27). Recently, we have shown (28) that in vivo injection of monoclonal antibodies with high affinity for Clq before transfusion of the marrow cells suppresses GVH and host-versus-graft reactions in 2-haplotype H-2, IA mismatched mice. Hughes-Jones and colleagues (29) demonstrated that pairs of synergistic antibodies are able to increase the binding constant between Clq and mAbs bound at the cell surface, and to increase the rate of Cl activation. Defining canine T cell specific antigens with epitopes for synergistic pairs of antibodies may prove useful for in vitro and in vivo T cell depletion in bone marrow transplantation. Our studies of antibody activity on canine hemopoietic progenitor cells in CFU_{GM} using MdT-P₁ and a SPA-SRBC rosetting technique showed no reduction of CFU_{GM} in T-cell-depleted bone marrow.

Additionally, a lethally irradiated dog receiving a bone marrow autograft depleted of $MdT-P_1$, positive cells showed engraftment and complete recovery of marrow function (unpublished observation). This indicates that $MdT-P_1$ antibody spares stem cells and may prove of value for the study of treating GVHD in a preclinical animal model.

Acknowledgments. We thank Dr. U. Kummer for help and advice by the fusion and RIA techniques, and Dr. B. Kranz for valuable suggestions by multispots slides techniques. The excellent technical assistance of U. Ehrler, B. Glöckner, H. Jennen, and secretarial assistance of S. Donhauser are greatly appreciated.

REFERENCES

- Wulff JC, Durkopp N, Aprile J, et al. Two monoclonal antibodies (DLy-1 and DLy-6) directed against canine lymphocytes. Exp Hematol 1982; 10: 609.
- McKenzie JL, Fabre JW. Studies with a monoclonal antibody on the distribution of Thy-1 in the lymphoid and extracellular connective tissues of the dog. Transplantation 1981; 31: 275.
- Prendergast MM, Bradstock KF, Broomhead AF, et al. Monoclonal antibody analysis of canine hemopoietic cells. Transplantation 1986; 41: 565.
- Wulff JC, Deeg J, Storb R. A monoclonal antibody (DT-2) recognizing canine T lymphocytes. Transplantation 1982; 33: 616.
- Krawiec DR, Muscoplat ChC. Development and characterization of a hybridoma-derived antibody (Aby 1A1) with specificity to canine T lymphocytes. Am J Vet Res 1984; 45: 491.

- Krawiec DR, Muscoplat ChC. Development and characterization of a monoclonal antibody (Aby 6C6) that distinguishes medullary from cortical thymocytes. Am J Vet Res 1984; 45: 499.
- Köhler G, Milstein C. Continuous culture of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495.
- Fazekas de St, Groth S, Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 1980; 35: 1.
- Kummer U, Thiel E, Doxiadis I, Eulitz M, Sladoljev S, Thierfelder S. Tritium radiolabelling of antibodies to high specific activity with N-succinimidyl/2,3-3H/propionate: use in detecting monoclonal antibodies. J Immunol Methods 1981; 42: 367.
- Kummer U. Tritium radiolabelling of antibodies to high specific activity with N-succinimidyl (2,3-3H)propionate: use in detecting and analyzing monoclonal antibodies. Methods Enzymol 1986; 121: 670.
- Kranz BR, Thierfelder S. Improved detection of terminal transferase (TdT): the use of detergents on glutaraldehyde fixed nondehydrated cells prevents denaturation and diffusion artifacts. Leuk Res 1986; 10: 1041.
- 12. Farr AG, Nakane PK. Immunohistochemistry with enzyme-labeled antibodies: a brief review. J Immunol Methods 1981; 47: 129.
- Mittal KK, Mickey MR, Singal D, Terasaki RI. Serotyping for homotransplantation: XVIII. Redefinement of microdroplet lymphocyte cytotoxicity test. Transplantation 1968; 6: 913.
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T₄. Nature 1970; 227: 680.
- 15. Dalchau R, Fabre JW. The purification of antigens and other studies with monoclonal antibody affinity columns: the complementary new dimension of monoclonal antibodies. In: Michael AJ, Fabre JW, eds. Monoclonal antibodies in clinical medicine. London: Academic, 1982: 519.
- 16. Pearson TW, Anderson NL. Use of high-resolution two-dimensional gel electrophoresis for analysis of monoclonal antibodies and their specific antigens. In: Langone JJ, van Vunakis H, eds. Methods in Enzymology. New York: Academic, 1983; 92: 196.
- Noteboom WD, Knurr KE, Kim HS, Richmond WG, Martin AP, Vorbeck ML. An ELISA for screening hybridoma cultures for monoclonal antibodies against a detergent solubilised integral membrane protein. J Immunol Methods 1984; 75: 141.
- Stähli C, Miggiagno V, Stocker J, Staehlin P, Häring P, Takacs B.
 Distinction of epitopes by monoclonal antibodies. In: Langone JJ, van Vunakis H, eds. Methods in enzymology. New York: Academic, 1983; 92: 242.

- Holler E, Kolb HJ, Bodenberger U, et al. Serological identification and separation of canine lymphocyte subpopulations. Exp Hematol 1984: 12: 774.
- Pike BL, Robinson WA. Human bone marrow colony growth in agar-gel. Cell Physiol 1970; 1: 77.
- Mason DW, Williams F. The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem J 1980; 187; 1.
- 22. Kolb HJ, Rieder J, Rodt H, et al. Anti-lymphocytic antibodies in marrow transplantation: VI. Graft versus host tolerance in DLA incompatible dogs after in vitro treatment of bone marrow with absorbed anti-thymocyte globulin. Transplantation 1979; 27: 242.
- 23. Kolb HJ, Bodenberger U, Rodt H, et al. Bone marrow transplantation in DLA-haploidentical littermates-fractionated total body irradiation (FTBI) and in vitro treatment of the marrow graft with anti T cell globulin (ATG). In: Thierfelder S, Rodt H, Kolb HJ, eds. Immunobiology of bone marrow transplantation. Berlin: Springer-Verlag, 1980: 60.
- Rodt H, Thierfelder S, Eulitz M. Suppression of acute secondary disease by heterologous anti-brain serum. Blut 1972; 25: 385.
- Rodt H, Thierfelder S, Eulitz M. Anti-lymphocytic antibodies and marrow transplantation: III. Effect of heterologous anti-brain antibodies on acute secondary disease in mice. Eur J Immunol 1974; 4: 25.
- Martin PJ, Hansen JA, Thomas ED. Preincubation of donor bone marrow cells with a combination of murine monoclonal anti-Tcell antibodies without complement does not prevent graft-versus-host disease after allogeneic marrow transplantation. J Clin Immunol 1984; 4: 18.
- 27. Kummer U, Thierfelder S, Schuh R. Not only complement fixation but also complement affinity of monoclonal anti-T greatly effect the suppression of GVHD [Abstract]. Exp Hematol 1985; 13: 352
- Thierfelder S, Kummer U, Schuh R, Mysliwietz J. Antilymphocytic antibodies and marrow transplantation: VIII. Recipient conditioning with Clq affine monoclonal anti-Pan T antibodies prevents GVHD in homozygous fully mismatched mice. Blood 1986; 68: 818.
- Hughes-Jones NC, Gorrick B, Howard J. The mechanism of synergistic complement-mediated lysis of rat red cells by monoclonal IGG antibodies. Eur J Immunol 1983; 13: 635.

Received 5 January 1987. Accepted 2 June 1987.