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Abstract Present technologies for wastewater treatment do
not sufficiently address the increasing pollution situation of
receiving water bodies, especially with the growing use of
personal care products and pharmaceuticals (PPCP) in the
private household and health sector. The relevance of address-
ing this problem of organic pollutants was taken into account
by the Directive 2013/39/EU that introduced (i) the quality
evaluation of aquatic compartments, (ii) the polluter pays
principle, (iii) the need for innovative and affordable waste-
water treatment technologies, and (iv) the identification of
pollution causes including a list of principal compounds to

be monitored. In addition, a watch list of 10 other substances
was recently defined by Decision 2015/495 on March 20,
2015. This list contains, among several recalcitrant chemicals,
the painkiller diclofenac and the hormones 17β-estradiol and
17α-ethinylestradiol. Although some modern approaches for
their removal exist, such as advanced oxidation processes
(AOPs), retrofitting most wastewater treatment plants with
AOPs will not be acceptable as consistent investment at rea-
sonable operational cost. Additionally, by-product and trans-
formation product formation has to be considered. The same is
true for membrane-based technologies (nanofiltration,
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reversed osmosis) despite of the incredible progress that has
been made during recent years, because these systems lead to
higher operation costs (mainly due to higher energy consump-
tion) so that the majority of communities will not easily accept
them. Advanced technologies in wastewater treatment like
membrane bioreactors (MBR) that integrate biological degra-
dation of organic matter with membrane filtration have proven
a more complete elimination of emerging pollutants in a rather
cost- and labor-intensive technology. Still, most of the pres-
ently applied methods are incapable of removing critical com-
pounds completely. In this opinion paper, the state of the art of
European WWTPs is reflected, and capacities of single
methods are described. Furthermore, the need for analytical
standards, risk assessment, and economic planning is stressed.
The survey results in the conclusion that combinations of dif-
ferent conventional and advanced technologies including bio-
logical and plant-based strategies seem to be most promising
to solve the burning problem of polluting our environment
with hazardous emerging xenobiotics.

Keywords Diclofenac . Ethinylestradiol . Emerging
pollutants . Effluent quality . EUwatch list . Pollutant
removal . Advanced technologies

Introduction and demand

Across Europe, most people do not knowwhere their drinking
water comes from, and they are not aware of how big the
efforts are to allow the performance of the most normal daily
action, namely to open the tap and to consume clean, clear,
and pure water. Still, it is the extremely high quality of our
drinking water that guarantees the healthy life we lead. In fact,
to provide unpolluted water as a resource for drinking water
supply, food production but also other aspects of daily life will
remain one of the major challenges for Europe in the near
future. Novel emergent organic compounds (pharmaceuticals,
industrial chemicals, personal care products, and others) pose
a threat to our water reserves (Heberer 2002a, b; Kasprzyk-
Hordern et al. 2008). These anthropogenic substances, often
addressed as micropollutants that may adversely affect drink-
ing water quality, are most typically polar to semipolar organic
compounds detected at concentrations in the picogram per
liter to microgram per liter range (Benner et al. 2013).
Contamination of drinking water resources (surface water
and groundwater) with these micropollutants raises important
questions related to human health, ecology, and economic
impacts (Benner et al. 2013). Among sources that are consid-
ered responsible for the occurrence of micropollutants in sur-
face and groundwater, effluents of municipal wastewater treat-
ment plants (WWTPs) are frequently pinpointed as the most
important (Ternes 1998; Zuccato et al. 2006; Kasprzyk-
Hordern et al. 2008). Whereas well-assessed treatment

strategies exist for classical issues inWWTPs such as removal
of biodegradable organic substances, nutrients (phosphorus
and nitrogen), detergents, and even microorganisms, polar
and semipolar micropollutants are not or only incompletely
removed by these technologies. Hence, with the growing
number of micropollutants being identified in surface water
and groundwater, novel remediation and management strate-
gies are needed to provide cost-effective and sustainable treat-
ment solutions across Europe.

Since the majority of all significant water bodies, lakes, and
streams are shared between several European countries, the
European Union (EU) has to find a common strategy for re-
mediation of micropollutants and to set limits for effluents
from WWTPs. Furthermore, it will be necessary to expand
the scope of water protection to all waters, surface waters
and groundwater, to achieve satisfactory status for all waters
by a set deadline, and to delegate water management to re-
gional authorities based on river catchments. This is in part
proposed by the European Water Framework Directive (see
below: international conventions and agreements), which has
already been implemented in most EU countries. The rele-
vance of addressing the problem of organic pollutants was
also taken into account by the Directive 2013/39/EU that in-
troduced (i) the quality evaluation of aquatic compartments,
(ii) the polluter pays principle, (iii) the need for innovative and
affordable wastewater treatment technologies, and (iv) the
identification of pollution causes including a list of principal
compounds to be monitored.

Among thousands of micropollutants, not everything that
can be measured is worth measuring, and not everything
worth measuring is measurable. With regard to pharmaceuti-
cally active compounds, those to be monitored in natural wa-
ters should be related to prescription and nonprescription prac-
tices in each country (compare Fig. 1). It is very important to
develop a ranking system to prioritize pharmaceutically active
compounds considering the following four criteria: (a) occur-
rence (prevalence, frequency of detection), (b) highest per-
centages of excretion, (c) removal in treatment plants, and
(d) ecological effects (bioaccumulation, ecotoxicity).

From the large number ofmicropollutants that fit this scheme,
diclofenac (2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid,
DCF) and the estrogenic hormones 17β-estradiol (1,3,5(10)-
estratrien-3,17β-diol; E2) and 17α-ethinylestradiol (19-nor-
17α-pregna-1,3,5(10)-trien-20-in-3,17-diol; EE2) have recently
been included in the updated watch list of 10 other substances
defined by Decision 2015/495 on March 20, 2015.

Diclofenac is a widely used nonsteroidal anti-inflammatory
drug used as a painkiller prescribed as pills or ointments and
among the most frequently detected pharmaceuticals in
WWTP effluents, in microgram per liter concentrations
(Verlicchi et al. 2012). E2 is a primary female sex hormone
and key regulator of the estrous and menstrual female repro-
ductive cycles, whereas EE2 is a synthetic, bioactive estrogen

Environ Sci Pollut Res



used in many formulations of combined oral contraceptive
pills. Both estrogens are detected in WWTPs in the lower
nanogram per liter concentrations and are known to cause
endocrine-disrupting effects in the biota (Forrez et al. 2009).
Again, WWTP effluents are considered the main source of
estrogens in the environment (Snyder et al. 2001).

Using these three selected micropollutants from the EU
watch list as representatives, the aim of this review is to sum-
marize current problems and solutions in several EU countries
and critically evaluate the viability of various treatment
methods for the removal of micropollutants from wastewater.

The North Sea Conference on Co-operation in dealing with
pollution of the North Sea by oil and other harmful substances
(Bonn, 1983), stimulated public awareness to the topic of
water quality for the first time. Still, it took almost a decade
until the Hague Declaration on the future European
Community groundwater policy was ratified at the EC
Ministerial Meeting on 26.-27.11.91. Another decade went
by until the Agenda 21 requested that quantitative and quali-
tative discharge standards for municipal and industrial efflu-
ents should be established and applied by the year 2000. This
recommendation included the proposal to revise Directive 76/
464/EEC (Dangerous Substances in Water) and the Directive
No. 96/61 EC on Integrated Pollution Prevention and Control
(IPCC 1996), as well as Directive 93/793/EEC on environ-
mental risk from chemicals (testing the ecotoxicity of listed
priority chemicals). Nowadays, updated European framework
legislation promotes the reduction of micropollutants. The
ETAP (Environmental Technologies Action Plan) of the
European Union claims urgent action for better water quality
and protection of our natural resources. High priority is also

given to environmentally sound water treatment technologies
that will reduce greenhouse gases, recycle materials and pro-
vide all partner countries with affordable technologies. The
discussion paper on water issues is very specific about novel
green technologies to be adopted in this respect (http://europa.
eu.int/comm/environment/etap/pdfs/etapwaterissuefr.pdf).
Substantial political concern exists that water pollutants have
to be monitored and removed. However, our knowledge of
xenobiotics control or degradation has hardly gone beyond
scratching the surface and confirming the importance of the
problem. Finally, the EU enhanced the list of dangerous
compounds and put estradiols and diclofenac on the
Watchlist (Directive 2013/39/EU). The substances (diclofenac
and two hormones: 17β-estradiol (E2) and 17α-
ethinylestradiol (EE2)) shall be monitored by the EU member
states in their surface waters for a maximum of four years. In
addition, environmental quality standard values of 100 ng L−1

for inland waters and 10 ng L−1 for coastal water were pro-
posed for diclofenac. Although such political decisions are
very helpful to increase the public awareness of water pollu-
tion problems, our general behavior towards water protection
and water pricing is ambiguous.

National inventories

The availability of data on the daily use of pharmaceuticals in
the EU is scattered and incomplete for recent years. A com-
prehensive view may be possible for the years between 2005
and 2011 where data from several countries can be compared
(Fig. 1). Diclofenac and EE2 consumption rates vary greatly

Fig. 1 Graphical representation
of DCF and EE2 consumption
levels across the EU
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between and also within countries. According to literature
data in different countries around the world (Ternes 1998;
Grung et al. 2007, 2008; Carballa et al. 2005, 2008; Ferrari
et al. 2011; INFARMED 2012), the annual consumption of
DCF varies between 195 and 940 mg per inhabitant; as for
EE2, it varies between 20 and 580 μg per inhabitant, respec-
tively. However, in Serbia with a population of 7.2 million in
2012, the annual consumption of DCF and EE2 was equal to
8650 and 0.39 kg per year, respectively, while the consump-
tion of DCF and EE2 per inhabitant was estimated to be
1197 mg and 50 μg per year per inhabitant, respectively
(Radonjić and Šipetić 2012). In Germany, for DCF and EE2,
respectively, consumption quantities of active ingredients in
human medicine were estimated to be 1033 mg and 600 μg
per inhabitant per year (SRU 2007), while the DCF consump-
tion rate in Turkey for the years 2009 and 2013 was 950 and
985 mg per inhabitant per year, respectively (Sari et al. 2014),
and 440 mg per inhabitant and year in The Netherlands
(Oosterhuis et al. 2013).

For the calculation of drug consumption in several
EU countries for 2011 (Supplemental Table 1), the con-
cept of Bdefined daily dose^ (DDD) was used, i.e., the
assumed average maintenance dose per day for a drug
used for its main indication in adults expressed as
DDD/1000 inhabitants/day, as proposed by the WHO
Collaborating Centre for Drug Statistics Methodology
(http://www.whocc.no/). Comparing the consumption
data, obviously, the DCF and EE2 are among the most
popular and most consumed medicine products.

Recent analysis of the consumption of DCF and EE2 in
three Baltic States for the 2009–2013 period revealed that
the demand for drugs that affect the musculoskeletal system
has increased by 4.9 % and the demand for drugs that affect
the urogenital system and sex hormones has increased by
9.85 %. The sales of diclofenac were equal to 30.3 % of all
the sales in accordance with the Anatomical Therapeutic
Chemical (ATC) subgroup; the sales of EE2 in its subgroup
were equal to 11.6 % (Estonian State Agency of Medicines
2013; Baranauskaite and Dvarioniene 2014).

Occurrence of analgesics and hormones in WWTP’s
effluents and surface waters

Various studies over recent years have shown that treated
municipal wastewater contributes significantly to water
pollution by micropollutants (Hollender et al. 2009; Jelic
et al. 2012; Kasprzyk-Hordern et al. 2009; Ternes 1998;
Verlicchi et al. 2012). This is a consequence of the increasing
number of prescribed medicaments and of the fact that state-
of-the-art sewage treatment plants are obviously not designed
to remove personal care products and pharmaceuticals
(PPCPs) from the wastewater they receive from households

and hospitals. DCF, E2, and EE2 have been detected in both
WWTPs (influents (WWTP-I) and effluents (WWTP-E)) and
surface waters in the range of low microgram per liter to few
nanogram per liter levels (Table 1).

One of the first compilations on this topic was a German
study detecting diclofenac among 55 pharmaceuticals and 9 of
their metabolites in the discharge of 49 sewage treatment
plants as well as in their effluents in concentrations of up to
several micrograms per liter (Ternes 1998). In the UK, DCF
was detected in estuaries at concentrations up to 125 ng L−1

(Thomas and Hilton 2004). Another study reported that 27 out
of 32 pharmaceutical substances and 4 of 5 metabolites were
detected in the effluents of European wastewater treatment
plants and that surface water peak values exceeded 1 μg L−1

(Larsen et al. 2004). During an EU-wide monitoring survey on
emerging polar organic contaminants in wastewater treatment
plant effluents, DCF was found at an average concentration of
49.5 ng L−1, while the highest concentration found was
174 ng L−1 (Loos et al. 2013).

This pollution in the effluents leads to contamination of
surface water as has been proven in several novel studies.
Levels of target compounds were in the nanogram per liter
range but concentrations of some of them exceed
1 μg L−1 (including DCF) with fairly high concentrations
of 1.3 μg L−1 and even 20.1 μg L−1, respectively
(Petrović et al. 2014), reflecting the consumption of
PhACs by the residents of Novi Sad, the second largest
town in Serbia. In recent Spanish investigations, DCF sea-
sonal behavior was also monitored north of El Albujón,
till the Mar Menor Lagoon into the Mediterranean Sea,
where even concentrations of 50 ng L−1 were detected
(Moreno-González et al. 2014). Analogously, along the
Turia River, which flows into the Mediterranean Sea at
some kilometers farther at north than El Albujón, a very
consistent amount of DCF was determined (Carmona et al.
2014). In this case, 3500 ng L−1 was detected in the
water, whereas a contamination of sediments of
100 ng g−1 was determined.

The Turia case represents an excellent example for the im-
pact on human uses of water contaminated by DCF, consider-
ing that water obtained after osmotic treatment, then used as
Bdrinkable^ water, still had a concentration of 18 ng L−1 of
this pharmaceutical. Concentrations of painkillers and hor-
mones recorded in the aquatic environment during the last
decade (2003–2013) are given in Table 1.

As for estrogens, concentrations of 1–500 ng L−1 have been
recorded in untreated municipal wastewater, with the distribu-
tion of concentrations generally following the pattern
E1>E2>E3>EE2 (Racz and Goel 2009). Interestingly, con-
centrations of 1–500 ng L−1 have also been reviewed by the
same authors in the effluents of wastewater treatment facili-
ties, indicating that elimination of these endocrine substances
is insufficient in many if not all treatment systems.

Environ Sci Pollut Res

http://www.whocc.no/


Progress in detection and identification

The detection and identification of PPCPs in environmental
samples can be divided into three categories, namely

quantitative targeted analysis employing reference standards,
suspects screening without reference standards, and
nontargeted screening (Krauss et al. 2010; Kind and Fiehn
2010; Little et al. 2011). Quantitative target analysis is the

Table 1 Concentrations of
painkillers and hormones
recorded in the aquatic
environment during the last
decade (2003–2013)

Compound Type of water Conc. (ng L−1) Country Citation

DCF WWTP-E ≤1612 Portugal Salgado et al. (2010)

WWTP-I 4534–38,674 Portugal Salgado et al. (2012)

WWTP-I 1020 Italy Patrolecco et al. (2013)

WWTP-E 507 Italy Patrolecco et al. (2013)

WWTP-E 5450 Italy Andreozzi et al. (2003)

WWTP-E 250–5450 France, Italy, and Greece Jiskra (2008)

WWTP-E 2200 Germany Letzel et al. (2009)

WWTP-E 310–930 Switzerland Jiskra (2008)

WWTP-E 290 UK Thomas and Hilton (2004)

WWTP-E 125 UK Roberts and Thomas (2005)

WWTP-E 99 Switzerland Tixier et al. (2003)

WWTP-E 91 UK Ashton et al. (2004)

WWTP-E 0.14 Finland Bignert et al. (2013)

SW 261 UK Kasprzyk-Hordern et al. (2008)

SW 140 Germany Letzel et al. (2009)

SW 94 China Huang et al. (2011)

SW 89 Germany Heberer (2002b)

SW 16–65 Finland Bignert et al. (2013)

SW 35 Finland Vulliet et al. (2011)

SW 10–16 Italy Marchese et al. (2003)

SW 1.6 Italy Loos et al. (2013)

SW 4–260 The Netherlands RIWA (2014)

SW 10–120 Belgium RIWA (2014)

GW/DW 6 Germany Heberer (2002b)

E2 WWTP-I ≤97 Portugal Salgado et al. (2012)

WWTP-I 64 Belgium Forrez et al. (2009)

WWTP-E 15–27 Germany Carballa et al. (2004)

WWTP-E 17 USA Wright-Walters and Volz (2007)

WWTP-E <10 Sweden Bigner et al. (2013)

SW 9.5 Italy Pojana et al. (2007)

SW 9 Italy Viganò et al. (2008)

SW 1 Italy (Rome) Baronti et al. (2000)

SW <1 The Netherlands RIWA (2014)

EE2 WWTP-I ≤39 Portugal Salgado et al. (2012)

WWTP-I 106 Belgium Forrez et al. (2009)

WWTP-E <1 Spain Carballa et al. (2004)

WWTP-E 0.04 Sweden Bigner et al. (2013)

SW 11 Italy Pojana et al. (2007)

SW 0.04 Italy (Rome) Baronti et al. (2000)

SW <500 The Netherlands RIWA (2014)

WWTP-I wastewater treatment plant influent, WWTP-E wastewater treatment plant effluent, SW surface water,
DW drinking water, GW groundwater
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most common approach, in which only a number of previous-
ly selected, and often regulated, compounds are determined
and the method is only validated for such compounds. For the
monitoring of the target compounds DCF, EE2, and E2 in
water samples, preconcentration is required prior to analysis.
Currently, solid-phase extraction (SPE) is the most widely
used procedure to extract and concentrate pharmaceuticals
and other organic pollutants from environmental samples. In
the specific case of DCF, acidification of the aqueous sample
is frequently used to facilitate more efficient recovery of the
target molecule from natural samples (Table 2). When the
adopted analytical technique is based on gas chromatography
(GC) coupled with mass spectrometry (GC-ion trap-MS/MS,
GC-MS, or GC-MS-SIM), derivatization is necessary (meth-
ylation, terbutylation, etc.) to enable separation and detection.
These operations are not necessary when final analysis is per-
formed with LC-MS/MS. In any case, pretreatment and deriv-
atization will enhance the overall difficulty of the analysis, and
its final net cost for the respective additional preparative
works, without a significant difference in terms of limits of
quantification (LOQ). Consequently, and specifically since
coelution occurs, several labs have proposed to omit this
preconcentration step and begun to search for other solutions.

Often there is lack of information on analyzed sam-
ples because only user-defined MS/MS transitions are
saved in the method and compounds in the sample that
are not specif ied beforehand remain unknown.
Employment of the MS/MS techniques for quantitative
target analysis has also some drawbacks and limitations,
namely (i) methods are typically limited to about 100–
150 target compounds depending on chromatographic
separation under the constraints of having at least two
transitions per compound; (ii) for some compounds, on-
ly nonspecific transitions might occur such as the neu-
tral loss of H2O or CO2, which are also common for
matrix interferences; and (iii) for some analytes, espe-
cially those of low molecular weight, only one transi-
tion is present.

When analyzing sewage sludge, an additional step is nec-
essary for exhaustive determination of DCF, E2, and EE2.
Namely, the first step in pretreatment usually applied involves
extraction of the target compounds from a solid sample by
pressurized liquid extraction (PLE, Radjenović et al. 2009),
microwave assisted extraction (MAE, Cortazar et al. 2005;
Rice and Mitra 2007), or ultrasound sonification (US,
Gatidou et al. 2007). In addition, an extensive cleaning of
the obtained extract to avoid any matrix interference will re-
move organic and inorganic coextractives, before they might
interfere with analyte separation and detection causing back-
ground noise in GC-MS analysis and signal suppression and/
or enhancement in LC-MS analysis.

After application of one of the mentioned extraction tech-
niques (PLE, MAE, or US) as the first pretreatment step to

solid matrices, the next steps involved are presented in
Table 2. Which of the listed methodologies will be selected
depends on the type of analyte and particular techniques avail-
able in the laboratory.

In Table 2, the main published procedures for ana-
lyzing DCF, E2, and EE2 in environmental water sam-
ples are compiled. It becomes clear that for both DCF
and the estrogen determination by GC-MS necessarily
involves an additional derivatization step (e.g., by meth-
ylation, tert-butyldimethylsi lyl , with N-methyl-
N-(trimethylsilyl)trifluoroacetamide, etc.) due to the po-
larity of the compounds. Determination by LC-MS is
indeed simpler and can even be automated provided that
an online SPE can be used to reach the low detection
limits that are frequently required (Patrolecco et al.
2013).

Another issue worth considering is the presence in environ-
mental aqueous samples, together with target pharmaceutical
compounds, of other compounds that are practically linked to
the selected targets, namely metabolites and transformation
products (TP). The determination of such compounds is not
straightforward due to the lack of relevant mass spectrometric
data available in LC-MS/MS methods, namely the precursor
ion mass, the product ion masses (quantifier ion and qualifier
ion), and the collision energy voltage. Therefore, an approach
that is not based on the selectivity of theMS/MSmode but that
employs high-resolution MS (HRMS) allowing the detection
in scan mode would be much more beneficial.

In nontarget screening analysis, unknown components
in the sample chromatogram are extracted from tentatively
identified compounds (TIC), using special deconvolution
software that detects the ions filtering them out from the
background. For this type of experiment, the employment
of HRMS(/MS) is reported to be the only effective tech-
nique to be used (Krauss et al. 2010; Nurmi et al. 2012;
Godfrey and Brenton 2012). Indeed, a structure proposi-
tion for a peak detected by HRMS and MS/MS spectra
involves several work-intensive data and expert processing
steps (Krauss et al. 2010; Nurmi et al. 2012; Kind and Fiehn
2010; Little et al. 2011, 2012; Amorisco et al. 2013).

It is evident that nontarget screening analysis is incapable
of revealing all compounds in the sample, causing possible
false negative results. This is due to the inherent nature of
LC-MS analysis, since both, chromatography and ionization
always exclude some of the compounds. As a very useful
evaluation tool for possible candidates, HRMS is ideal when
combined subsequently with a powerful structure elucidation
technique like nuclear magnetic resonance spectroscopy
(NMR, De Laurentiis et al. 2014). An efficient modern meth-
od for both target and nontarget screening analysis for DCF is
the hyphenation of hydrophilic interaction chromatography
(HILIC) with RPLC coupled with highly accurate MS, such
as TOF-MS.
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With the set of detection methods discussed here, the ana-
lyst has a powerful tool for comprehensive and simultaneous
analysis of compounds in a wide range of polarity, including
the estrogens, DCF, and their transformation products (Rajab
et al. 2013).

Conventional treatment systems
and their shortcomings

Conventional WWTPs are designed to limit the discharges of
organic carbon, nitrogen, phosphorus, and pathogens to the

Table 2 Relevant information related to preconcentration steps and
analysis of environmental water samples for diclofenac, E2, and EE2
determination. Costs listed refer to the different analytical options,
without considering those related to instrument investment or the
possibility, for each method, to be capable of determining several

compounds simultaneously (multiresidual analysis). In any case,
limiting the determination only to a restricted number of target
compounds could be considered a too simplistic approach which might
not be useful to fully take advantage of the potentialities of the
instrumentation nowadays available

Sample Preparation
steps

Recovery
(%)

Analytical
technique

LOQ
(μg L−1)

Analysis
time and
difficultya

Analysis
costs
(€/sample)b

Reference

Diclofenac

Wastewater influent and effluent 1. Filtration
2. SPE preconcentration
3. Derivatization

100 GC-MS/MS 0.05 +++ 40–60 Carballa et al.
(2004, 2005, 2007)

raw industrial and municipal
wastewater, surface, ground,
drinking water

1. Acidification
2. SPE pre-concentration
3. IS addition

55–116 LC-ESI-MS/MS 0.012–0.02 ++ 30–50 Gros et al. (2006a, b,
2009, 2012),
Petrović et al.
(2014)

Wastewater influent and effluent,
groundwater

1. Filtration
2. SPE preconcentration
3. Derivatization

55–100 GC-MS 0.025 +++ 40–60 Ternes (1998, 2001),
Ternes et al. (2003)

Wastewater influent and effluent,
basin water

1. Acidification
2. IS addition
3. SPE preconcentration

100 LC/ESI-MS/MS >0.03 ++ 30–50 Sacher et al. (2008),
Oosterhuis et al.
(2013)

Wastewater influent and effluent 1. Acidification
2. IS addition
3. SPE preconcentration

100 UHPLC-MS/
MS

0.05–0.14 ++ 30–50 Gracia-Lor et al.
(2010, 2011)

River water, WWTP effluent 1. Addition of deuterated
standards

2. Acidification
3. SPE preconcentration
4. IS addition

99 LC/ESI/MS 0.02 ++ Letzel et al. (2009)

Wastewater influent and effluent 1. Acidification
2. SPE preconcentration
3. Derivatization

65–85 GC/ion
trap-MS/MS

0.12 +++ 40–60 Serrano et al. (2011)

River, wastewater influent
and effluent

1. Filtration
2. SPE preconcentration
3. Derivatization

56–112 UHPLC-MS/
MS

0.006–0.012 +++ 40–60 Huang et al. (2011)

E2 and EE2

Surface water and wastewater 1. Filtration (1.5 μm)
2. SDB-XC disk extraction
3. SPE (C18 and NH2)
4. HPLC elution
5. Derivatization

88–92 GC/ion
trap-MS/MS

0.1–2.4 +++ 40–60 Belfroid et al. (1999)

Wastewater influent and
effluent, rivers

1. Filtration (1.5 μm)
2. SPE preconcentration
3. Addition of IS

80–92 LC/ESI-MS/MS 0.008–0.8 ++ 30–50 Baronti et al. (2000)

Wastewater influent and effluent,
anaerobic digester influent
and effluent

1. Filtration (1.5 μm)
2. SPE purification/

preconcentration
3. Derivatization

82–84 GC/ion
trap-MS/MS

1 +++ 40–60 Ternes (1998),
Carballa et al.
(2004, 2005, 2007)

Synthetic, wastewater influent
and effluent, surface waters

1. Filtration (1.5 μm)
2. MeOH and IS addition
3. SPE purification/

preconcentration
4. Derivatization

79–100 GC/ion
trap-MS/MS

3–20 +++ 40–60 Quintana et al. (2004)

Surface water, wastewater
influent and effluent

1. Filtration 65–105 LC/LC-MS/MS 0.002–0.003 +++ 20–40 Gorga et al. (2013)

a +: low, ++: moderate, +++: high
bAnalysis cost was estimated including the cost of the column (lasting about 500 injections) and SPE cartridge and amortization of instrumentation
(lasting 5 years)
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aquatic environment. To do so, WWTPs apply a primary, a
secondary, and an optional tertiary treatment process. During
primary treatment, coarse solids are separated from the liquid
stream and micropollutants are removed mainly by chemical
and mechanical separation. The sorption of micropollutants
onto solids depends basically on their physicochemical prop-
erties, such as lipophilicity or acidity. Two types of coeffi-
cients have been mostly used to determine the sorption effec-
tiveness: the octanol-water partition coefficient (Kow) and the
organic carbon partition coefficient (Koc). Log Kow<2.5 indi-
cates a low sorption potential, 2.5< log Kow<4 indicates a
medium sorption potential, while log Kow>4 indicates a high
sorption potential (Rogers 1996). However, some limitations
have been found in the literature (Holbrook et al. 2004; Lai
et al. 2000) for the applicability of these coefficients to explain
the sorption behavior of some micropollutants, because acid-
ity determined by functional groups also plays a significant
role in sorption behavior. Therefore, the solid-water distribu-
tion coefficient (Kd), defined as the ratio between the concen-
trations of a substance in the solid and in the aqueous phase at
equilibrium conditions, has been proposed as the most suitable
parameter (Schwarzenbach et al. 2003; Ternes et al. 2004a, b;
Joss et al. 2005). This coefficient takes into account the two
main sorption mechanisms absorption (hydrophobic interac-
tions characterized by the Kow value, relevant for neutral com-
pounds) and adsorption (electrostatic interactions related to
the substance tendency to be ionized or dissociated in aqueous
phase, characterized by the dissociation constant, pKa). At pH
above the pKa, phenolic hydroxyl or carboxyl groups dissoci-
ate and become negatively charged (Schäfer et al. 2011). DCF,
for example, with a pKa > 4 is negatively charged in municipal
WWTP effluents, while E2 and EE2 are still in their neutral
form. Table 3 summarizes these properties for the compounds
under consideration. It can be observed that the three sub-
stances show a medium tendency to sorb onto solids, and
consequently, only intermediate removal (20–45 %) has been

obtained during primary treatment (Carballa et al. 2005;
Behera et al. 2011).

The most commonly applied secondary treatment in
WWTPs is the conventional activated sludge process (CAS),
where both organic matter and nutrients are biologically re-
moved. In this step, removal of a parent compound occurs by
different mechanisms: a) stripping by aeration; b) sorption to
particles or biomass; and c) biotransformation/biodegradation.
Stripping is not significant for DCF, EE2 or E2 due to their
high molecular mass and therefore low volatility (Radjenović
et al. 2009). As described in the previous paragraph, sorption
to sewage sludge is moderate, and therefore, biological trans-
formation is the most likely mechanism responsible for
micropollutant elimination in WWTPs. Although the micro-
biota developed in WWTPs may have been exposed to a
plethora of micropollutants for a long time, the effective bio-
logical removal of these substances is conditioned by singular
factors. Some of these factors are micropollutant-related, such
as chemical structure or functional groups. In general, linear
compounds with short side chains, unsaturated aliphatic com-
pounds, and compounds possessing electron donating func-
tional groups are easily degradable (Luo et al. 2014). The
biodegradability of organic compounds is commonly classi-
fied according to their kinetic reaction rate (kbiol). Suarez et al.
(2010) have defined four groups of substances according to
their biodegradability based on grams of suspended solids (ss)
and days:

& Very highly degradable: kbiol > 5 L/(gss day)
& Highly degradable: 1< kbiol < 5 L/(gss day)
& Moderate degradable: 0.5< kbiol < 1 L/(gss day)
& Hardly degradable: kbiol < 0.5

From the data compiled in Table 3, only E2 and EE2 can be
identified as very highly degradable, while DCF is very recalci-
trant. However, it should be considered that these degradation

Table 3 Molecular properties of the compounds under consideration

Compound Molecular weight
(g mol−1)

Molecular width (Å) Log Kow pKa Log Kd kbiol for CAS
L/(gss day)

DCF 296.2 5.95a 4.5–4.8a, b 4.0–4.5b 1.2c–2.1d ≤0.1e

E2 272.4 5.21a 3.9–4.0a, f 10.4 2.5–3.5 300–800

EE2 296.4 2.8–4.2f 10.5–10.7 2.3–2.8c 7–9g

a Drewes et al. (2005)
b Yang et al. (2011)
c Ternes et al. (2004a, b)
d Radjenović et al. (2009)
e Joss et al. (2006)
f Schäfer et al. (2011)
g Suárez et al. (2008)
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constants are usually determined in lab-scale experiments and
the operational conditions inWWTPsmight be different. In fact,
there is evidence that some operating parameters, such as hy-
draulic retention time (HRT), solid retention time (SRT), redox
conditions, and temperature may affect micropollutant removal.
HRT is the time that allows for biodegradation and sorption (Luo
et al. 2014). Micropollutants having slow/intermediate kinetics
will experience less effective biotransformation at shorter HRT
or increasing loading rates (Fernandez-Fontaina et al. 2012).
However, for E2 and EE2, the effect of this parameter is minor.
Extended SRT, facilitating the buildup of slowly growing mi-
crobes, such as nitrifying bacteria, will enhance the elimination
of micropollutants (Clara et al. 2005; Suarez et al. 2010, 2012;
Silva et al. 2012; Luo et al. 2014), but beyond 25–30 days, this
parameter is not significant anymore. This influence is clear for
E2 and EE2, but contradictory results have been published for
DCF. According to the findings of Joss et al. (2005), the elimi-
nation rates of DCF did not improve even when extreme SRT
(more than 60 days) was applied. In contrast, promoted removal
rates for DCF with increasing SRT were reported by Nikolaou
et al. (2007), Stasinakis et al. (2010), Falas et al. (2012),
Fernandez-Fontaina et al. (2012), and Falas et al. (2013).
However, extremely high SRT (>150 days) is unrealistic in con-
ventional WWTPs with activated sludge process. Regarding re-
dox conditions, different removal efficiencies have been ob-
served for anaerobic, anoxic, and aerobic conditions (Joss et al.
2004). Overall, aerobic conditions are preferable for estrogen
removal (Silva et al. 2012), while anoxic and anaerobic condi-
tions might be slightly better for DCF (Zwiener and Frimmel
2003; Vieno and Sillanpää 2014). Finally, higher temperatures
positively influence the removal ofmicropollutants, as shown for
example in Ternes et al. (1999) when comparing the removal
efficiencies of estrogens in a German and a Brazilian WWTP.

To sum up, conventional WWTPs have not been designed
for micropollutant elimination and have therefore only limited
capacity to remove DCF, E2, and EE2. During recent years,
various studies have demonstrated this shortcoming and point-
ed out that treated municipal wastewater even contributes sig-
nificantly to water pollution (see Table 4). In order to mini-
mize micropollutant discharges into the environment, existing
wastewater treatment processes must be upgraded with ad-
vanced and alternative methods.

Advanced and alternative methods

Mechanical-physical methods

Membrane filtration

Microfiltration (MF) and ultrafiltration (UF) are suitable to
decrease the concentrations of pharmaceuticals by improved
retention of suspended solids in which the more hydrophobic/

neutral pharmaceuticals are adsorbed. Hydrophilic substances
which are not adsorbed to sludge cannot be retained by MF
and UF because of the pore sizes (MF 100–5000 nm, UF 10–
100 nm) (Joss et al. 2005). Nanofiltration (NF) and reverse
osmosis (RO) have much tighter structures (NF 1–10 nm and
RO 0.1–1 nm). In NF and RO membrane processes, the rejec-
tion of organic micropollutants like DCF, E2, and EE2 can
generally be achieved by size exclusion/steric hindrance, ad-
sorption onto membrane, and/or charge repulsion (Bellona
et al. 2004; Xu et al. 2006). The removal efficiency
(Table 5) is dependent on properties of the target compound
(e.g., molecular weight (MW), molecular diameter (MWd),
pKa, hydrophilicity/hydrophobicity (log Kow), and diffusion
coefficient) and membrane properties. Key membrane proper-
ties affecting rejection are pore size, molecular weight cutoff
(MWCO), surface charge (measured as zeta potential), hydro-
philicity/hydrophobicity, and surface morphology (measured
as surface roughness). Additionally, operation conditions like
pH value, ionic strength, hardness, the presence of organic
matter, and membrane fouling influence the rejection of or-
ganic micropollutants (Bellona et al. 2008; Xu et al. 2006;
Schäfer et al. 2011). Membrane operation conditions as well
as hydrodynamic conditions, such as feedwater recovery, con-
centration polarization, and feedwater velocity, have been
found to influence the rejection of organic micropollutants.
Concentrations in influent and effluents and the removal effi-
ciency by advanced biological methods are given in Table 5.

In general, if the MW of an organic compound is larger
than MWCO of the membrane, the rejection of the compound
can be expected to be very high because of steric and electro-
static exclusion. Especially for compounds with a log Kow<2,
rejection is governed by MWd compared to the pore size of
the membrane. The pH value has a strong influence on the
retention of DCF, since the retention of ion species is higher
than that of neutral solutes in nanofiltration (Bellona et al.
2004). At lower pH range, where the acidic pharmaceuticals
are neutral, larger molecules gave higher retention, because
size is the most important parameter in nanofiltration (Urase
and Sato 2007).

Table 6 shows the percentage of rejection determined for
DCF, E2, and EE2 by different authors along with the type of
membrane applied.

A study by Nghiem et al. (2005) observed that, in the pres-
ence of organic matter, micropollutant retention (e.g., hor-
mones) was favored. A clear pH dependency was also found
by these authors. As the pH value decreases in the water ma-
trix, the amount of humic acids adsorbed on the membrane
increased, as well as the adsorption of the endocrine sub-
stances. Koyuncu et al. (2008) explained this by the formation
of macromolecular complexes, resulting from the association
of humic acids with the hormones. This leads to an increase of
size and may enhance the size exclusion effect and the adsorp-
tion of hormones onto membranes (Silva et al. 2012).
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Röhricht et al. (2009) investigated two different types of
submerged nanofiltration flat sheet modules for the removal of
pharmaceuticals from WWTP effluents. It was shown that
DCF was retained up to 60 %. At pH 8, DCF (pKa value of
4.15) was deprotonated and could be rejected by the
negatively charged membrane surface. This was in
accordance with the statement pointed out by Nghiem et al.
(2005) indicating that speciation of pharmaceuticals may re-
sult in significant change in rejection as a function of pH, with

much greater retention for ionized, negatively charged mole-
cules. When reverse osmosis was applied after conventional
activated sludge-ultrafiltration (CAS)-UF/RO and membrane
bioreactor MBR/RO, Sahar et al. (2011) reported relatively
similar and high elimination of 95 % for DCF in both process-
es. Despite the highly effective RO treatment, DCF was found
in permeates from both units indicating that RO could not
completely eliminate this compound and that the additional
process was necessary.

Table 5 Concentrations in influent and effluents and the removal efficiency by advanced biological methods

Treatment process SRT (days) Removal efficiency (%) Reference

Diclofenac

Full-scale WWTP 14–16 68 Kruglova et al. (2014)

Lab-scale SBR 10–12 90 Ribeiro et al. (2013)

Lab-scale MBR 37 23 Quintana et al. (2005)

Single-house MBR >100 103 Abegglen et al. (2009)

Lab-scale MBR, synthetic WW, HRT 24 h 70 17.3 (mean) Tadkaew et al. (2011)

E2

Lab-scale MBR, synthetic WW, HRT 24 h 70 >99.4 Tadkaew et al. (2011)

EE2

Single-house MBR >100 77 Abegglen et al. (2009)

Lab-scale MBR, synthetic WW, HRT 24 h 70 93.5 (mean) Tadkaew et al. (2011)

MBR membrane bioreactor, HRT hydraulic retention time, SBR sequential bioreactor; WW wastewater, WWTP wastewater treatment plant

Table 6 Rejection of DF, E2, and
EE2 by membrane filtration Compound Membrane type Rejection (%)a Reference

Diclofenac NF 100 Radjenović et al. (2009)

RO 100 Radjenović et al. (2009)

NF 60 Röhricht et al. (2009)

NF 65 Röhricht et al. (2010)

MBR/RO 95 Sahar et al. (2011)

E2 RO 83 Kimura et al. (2007a, b)

NF/RO 90 Nghiem et al. (2005)

NF >99 Weber et al. (2004)

NF >95 Yoon et al. (2007)

RO/NF High Drewes et al. (2005)

NF 77 Bodzek and Dudziak (2006)

DCMD ≥99.5 Cartinella et al. (2006)

NF 100 Koyuncu et al. (2008)

NF/RF 100 Alturki et al. (2010)

NF 100 McCallum et al. (2008)

EE2 NF >99 Weber et al. (2004)

NF 90 Dudziak and Bodzek (2009)

NF 60 Yoon et al. (2007)

NF/RO 99 Alturki et al. (2010)

NF nanofiltration, RO reverse osmosis,MBR membrane bioreactor, DCMD direct contact membrane distillation
a Under optimal conditions
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One drawback of NF and RO is membrane fouling which
may influence the performance of the process as a whole by
causing a noticeable decrease in the rejection of organic
micropollutants (Ng and Elimelech 2004).

Special types of membrane filtration are direct contact
membrane distillation (DCMD) and forward osmosis (FO)
which were investigated by Cartinella et al. (2006) for the
rejection of hormones. With these techniques, high rejection
of over 99.5 % was observed.

The overall conclusion is that membrane filtration is prom-
ising, but has not yet been established to provide stable and
complete operation at technical scale. There is still great need
for research.

Adsorption onto sorption materials

Over the years, adsorption has been considered one of
the most effective methods to eliminate pollutants from
contaminated water (Table 7). Adsorption elimination is
based on the uptake of pollutants from the aqueous
phase onto a solid phase (sorbent). The affinity of a
target compound for its sorbent is often quantified by
the specific sorption coefficient, representing the ratio of
sorbed and dissolved concentrations of a target com-
pound in equilibrium (Silva et al. 2012). Especially ac-
tivated carbon (AC) is a well-studied sorbent. In
Europe, the most commonly applied ACs are powdered
activated carbon (PAC, 5–50 μm diameters) and granu-
lar activated carbon (GAC, 100–2400 μm diameters).
Table 7 lists different studies concerning the removal
of DCF, E2, and EE2 from aqueous solution and
WWTP effluents. Zhang et al. (2007) reported that the
adsorption process onto AC is strongly influenced by
environmental conditions. Contact time has a major ef-
fect on removal efficiency. Short contact is likely to
lead to significantly lowered adsorption efficiency (Luo
et al. 2014). Kumar and Mohan (2011) demonstrated
that the adsorption capacity of WWTP effluents is max-
imum at neutral conditions and at temperatures of up to
30 °C. Sorption of micropollutants onto AC may be
reduced by the amount of organic matter and other sub-
stances, which are also present in the water matrix be-
cause they compete for AC adsorption sites (Fukuhara
et al. 2006; Kumar and Mohan 2011; Snyder et al.
2007; Zhang and Zhou 2005). Grover et al. (2011)
showed removal efficiencies for DCF, EE2, and E2 of
>98 % in a full-scale granular activated carbon plant
treating WWTP effluent. The efficiency of GAC-based
removal will decrease over time due to saturation of
adsorption sites. Therefore, reactors based on GAC have
to be operated with care (Luo et al. 2014).

On the technical scale, PAC is added to WWTP either
directly into the activated sludge process or in a subsequent

process and needs to be separated from the treated wastewater
after application. This is achieved by sedimentation under the
addition of flocculation agents or ultrafiltration or sand filtra-
tion (Margot et al. 2013). These authors reported mean remov-
al efficiency with GAC/UF combination of 69 %. However,
PAC adsorption, with a dosage of 10–20 mg L−1, has been
proposed as a more efficient alternative compared to GAC
treatment (Boehler et al. 2012; Nowotny et al. 2007; Serrano
et al. 2011).

The main advan tage of us ing AC to remove
micropollutants is that it does not generate toxic or pharma-
cologically active products (Rivera-Utrilla et al. 2013). The
addition of PAC or GAC could also enhance the removal
efficiency of micropollutants during biological treatment.
Serrano et al. (2010, 2011) reported a significant improvement
of DCF removal by adding 1 mg L−1 PAC to anMBR treating
municipal wastewater and of 0.5 mg L−1 GAC to a conven-
tional activated sludge treatment.

Apart from AC, several other sorbent materials have been
studied to remove DCF, E2, and EE2. Zhang and Zhou (2005)
used chitin, chitosan, an ion-exchange resin, and a waste-
derived carbonaceous adsorbent for the removal of E2, but
the sorption capacity was lower than with GAC. Another
studied sorbent is steroid-based imprinted polymer (molecu-
larly imprinted polymer, MIP). Different groups studied the
adsorption of E2 and EE2 onto MIP but only in aqueous
solution and never in WWTP effluent. Joseph et al. (2011)
reported good removal efficiency up to 98 % from sea water
and brackish water with single-walled carbon nanotubes
(CNTs). They recorded that removal efficiency is independent
of pH and ionic strength. However, increasing concentrations
of copresent organic matter decreases the removal of EE2 by
5–15 %.

Overall, the adsorption on activated carbon (PAC and
GAC) is a very promising method to reduce trace organic
micropollutants from WWTP effluents. Adsorption onto acti-
vated carbon is one of the two main technologies that have
been identified in Switzerland and Germany with a potential
for large-scale application concerning efficiency, energy re-
quirements, and costs (Barjenbruch et al. 2014; Stamm et al.
2015). However, the increased amount of sludge (or loaded
activated carbon) for disposal and the high operating costs
must not be disregarded.

Coagulation-flocculation

In general, the coagulation-flocculation process is applied in
WWTP to remove particulate matter. For the elimination of
micropollutants, it is inefficient (Matamoros and Salvadó
2013). DCF was removed at a rate of 21.6 % when using
FeCl3/Al2(SO4)3 as coagulant in hospital wastewater (Suarez
et al. 2009). Dissolved humic acids could enhance its elimi-
nation (Vieno et al. 2006). The efficiency of coagulation-
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flocculation can be influenced by different operating condi-
tions such as pH, temperature, alkalinity, presence of divalent
cations, and concentration of destabilizing anions (Alexander
et al. 2012).

Physicochemical processes

Photolysis

Irradiation with ultraviolet light (UV) is widely used in
WWTPs for effluent disinfection prior to discharge into sur-
face water. UV treatment is also known to transform some
micropollutants through light absorption on photoactive
groups, e.g., photoactive phenolics (Coleman et al. 2004).
Two types of photocatalysis are known: (a) direct photolysis
via direct absorption of light (Rosenfeldt and Linden 2004a, b)
and (b) indirect photolysis, when photosensitizers (dissolved

organic matter) adsorb the light and generate reactive oxygen-
ated radicals performing the degradation of the target sub-
stance (Caupos et al. 2011). Numerous studies describe deg-
radation of DCF, E2, and EE2 in deionized water but also in
WWTP effluents up to 100 % due to their high absorption
values (Caupos et al. 2011; Rosenfeldt and Linden 2004a, b;
Chowdhury et al. 2010; Silva et al. 2012; De la Cruz et al.
2012).

Kolarova et al. (2013) reported that the removal of DCF in
UV254 nm increases with increasing UV dose. While DCF was
eliminated only 47 % at 800 J m−2, over 98 % removal was
observed at 7200 J m−2.

Phototransformation has been identified as the important
elimination process of DCF in the open environment (Pal et al.
2010). Although the turbidity of wastewater blocks some sun-
light, water in the top layers (e.g., in clarifiers) will be well
exposed to sunlight irradiation, especially in summer.

Table 7 Advanced technologies

Sorbent Amount of sorbent Removal details Reference

Diclofenac

AC 30 mg L−1 Activated carbon, P110 Hydraffin, (ultrapure water), tubular glass reactor
(300 mm long and 50 mm, 93 % after 20 min

Beltrán et al. (2009)

PAC 50 mg L−1 Pilot scale, natural water with organic matter spiked with 0.1 μg L−1,
contact time 4 h, 38–46 %

Snyder et al. (2007)

PAC 10–20 mg L−1 300 mg L−1 DCF, surface water, 2 h; 76.7 % Dai et al. (2011)

PAC 23 mg L−1 PAC 8, 23, 43 mg L−1 in MBR effluent, hospital wastewater, 96, 98, 99 % Kovalova et al. (2012)

PAC/UF 10–20 mg L−1 1.13 μg L−1 ± 0.39 WWTP effluent, 10–20 mg L−1 PAC, 69 % Margot et al. (2013)

PAC 5–10 mg L−1 WWTP effluent; HRT 25–30 min, pilot scale, up to 98 % Mailler et al. (2014)

GAC Packed Full scale; >98 % Grover et al. (2011)

GAC Packed Full scale (empty bed), 15 min contact Yang et al. (2011)

GAC/activated sludge 0.5 g L−1 Addition of GAC to bioreactor, 93 % Serrano et al. (2010)

PAC/MBR 1 g L−1 Addition of PAC to bioreactor, 93 % Serrano et al. (2011)

MIP 10 mg L−1 300 mg L−1 DCF in surface water, MIP 97.6 % Dai et al. (2011)

E2

GAC Packed Max. adsorption constant: Kd 12,200 mL g−1 with 24.8 μg L−1 E2
in water; Kd 7988 mL g−1 with 24.8 μg L−1 E2 in WWTP effluent

Zhang and Zhou (2005)

AC 0.03-1.5 mg L−1 Various pore size distributions; max. adsorption capacity: 67.6 mg g−1

at 1 μg L−1 in pure water
Fukuhara et al. (2006)

GAC Packed Full scale; 100 % Grover et al. (2011)

GAC, PAC Packed, 5 mg L−1 Full scale; >90 % for both materials Snyder et al. (2007)

MIP 25 % Meng et al. (2005)

MIP Packed 95 % from 2 μg L−1 in deionized water Le Noir et al. (2007)

MIP 0.5–20 g L−1 Dest water, 0.1–1 mg L−1 E2, 97 %, 15 mg/g Lai et al. (2010)

MIP 0.25 g L−1 90 % after 2 min incubation, 96 % after long equilibrium DeMaleki et al. (2010)

EE2

AC Packed Highest adsorption at neutral conditions (95 %), 50 μg L−1

EE2 solution (dest water)
Kumar and Mohan (2011)

GAC Packed Full scale; 100 % Grover et al. (2011)

Single-walled CNT 95–98 %, in sea water and brackish water Joseph et al. (2011)

Multiwalled CNT 25, 50, 75 μg L−1 aqueous solution; sorption capacity: 5.6 μg g−1 Kumar and Mohan (2012)

AC activated carbon, PAC powdered activated carbon, UF ultrafiltration, GAC granular activated carbon, MIP molecularly imprinted polymer, CNT
carbon nanotubes
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Therefore, DCF phototransformation will occur in bright sun-
light with half-life of less than 1 h. Natural sunlight has also
been shown to degrade EE2 (Pal et al. 2010).

Radiation

Ionizing radiation such as e-beam accelerators (β-rays) and
gamma irradiation (γ-rays, 60Co), originally intended for dis-
infection, is under research for micropollutant degradation.
Table 8 lists the facilities in Europe performing wastewater
treatment by ionizing radiation.

The basic differences between these two sources are the
dose rate and penetration. Gamma rays are highly pene-
trating, enabling the processing of bulk material. Ionizing
radiation leads to OH radical formation in water dependent
on dose, rate, and irradiation time (Borrely et al. 1998;
Pikaev 2000; Getoff 2002). When wastewater is irradiated,
organic molecules are oxidized. Irradiation excites water
electronically and some ions, excited molecules, and free
radicals are formed. In the presence of oxygen in water,
H⋅-atoms and e−aq (solvated electrons) are converted into
oxidizing species: Perhydroxyl radicals (HO2) and anions
(O2

−), (HO2) and (O2
−) together with OH-radicals initiate

degradation of pollutants.
The gamma irradiation (60Co) dose required for the

elimination of estrogen activity below 1 ng L−1 has been
found to be about 0.2 kGy (Kimura et al. 2007a).
Complete decomposition of DCF (50 mg L−1) in aqueous
solutions requires 4.0 kGy (60Co); however, saturation
with N2O decreases the dose to 1.0 kGy (Trojanowicz
et al. 2012). The sterilization dose for DCF sodium salt,
as a pharmaceutical raw material, has been found to be
12.4 kGy (60Co) (Ozer et al. 2013). Homlok et al. 2011
described complete removal of DCF with 1.0 kGy. When
cost is an issue, it is difficult to give a precise price for
irradiation systems in advance because of the many factors
involved: the kind and amount of pollutants in water, their
properties (chemical, biological, etc.), dose-rate to be used,
presence of ozone, combined methods of radiation, and
conventional techniques. In general, costs decrease with
increase of treatment capacity, and it is possible to say
that γ-irradiation costs about four times more than e-
beam irradiation because of the high cost of 60Co source
and the facility (Borrely et al. 1998).

Ultrasonic treatment

Ultrasonic treatment is also described as a method to degrade
organic micropollutants. Ultrasonic treatment creates three
zones of reaction solution: cavitation bubbles, supercritical
interface, and bulk solution (Méndez-Arriaga et al. 2008;
Naddeo et al. 2010). Méndez-Arriaga et al. (2008) and
Chiha et al. (2010) reported that hydrophilic and nonvolatile
compounds weremainly degraded in the bulk solution, where-
as hydrophobic, nonpolar, and/or volatile compounds react in
all three zones. DCF, EE2, and E2 are mainly attacked in bulk
solution (Naddeo et al. 2009, 2010; Güyer and Ince 2011). It
was found that DCF conversion is enhanced at increased ap-
plied power densities, acidic conditions, and in the presence of
dissolved air (formation of hydroxyl radicals during ultrasonic
treatment). They also reported that biodegradability increased
after ultrasonic treatment (Naddeo et al. 2010; Güyer and Ince
2011).

Oxidation with single strong oxidation agent

Treatment of WWTP effluents with ozone (O3) as oxidizer is
one of the most studied chemical treatment technologies in
Europe. Ozone oxidizes micropollutants directly or indirectly
via HO radical formation (Gerrity et al. 2011). One of the first
studies to remove DCF from wastewater was by Ternes et al.
(2003). The authors employed ozone concentrations of 5.0 to
15.0 mg L−1 to investigate the removal efficiency in WWTP
effluents which was >96 %. Magdeburg et al. (2014) de-
scribed an oxidation efficiency of >90 % for nine different
micropollutants including DCF by ozonation of secondary
effluent of WWTP using an ozone dose of 0.7 g g−1 DOC.
These removal efficiencies are in the same range as reported
by Hollender et al. (2009), Ternes et al. (2003), and Antoniou
et al. (2013). Huber et al. (2005a) investigated the removal of
estrogen activity by ozone at three different pH values (3, 7,
and 11). Estrogenic activity had disappeared at pH 3, but re-
sidual activity remained after oxidation at pH 7 and 11, prob-
ably due to by-product formation. Suspended sludge particles
could lead to higher ozone consumption, which might reduce
the efficiency of ozone for DCF, E2, and EE2 (Hernández-
Leal et al. 2011). Recently, Antoniou et al. (2013) investigated
the required ozone doses for removing pharmaceuticals in
wastewater effluents. They normalized the specific ozone

Table 8 Major facilities for wastewater treatment by ionizing radiation (Borrely et al. 1998)

Country Radiation source Energy (MeV) Power (kW)/activity (kCi) Purpose Dose (kGy)

Austria EBA 0.5 12.5 TCE, PCE removal 0.2–2.0

Germany 60Co 1.25 135 Disinfection of sludge 2.0–3.0

EBA electron beam accelerator, TCE trichloroethylene, PCE perchloroethylene
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dose to the dissolved organic carbon (DOC) of the effluent,
which resulted in an applied ozone dose (DDO3/DOC) ratio of
0.67 for DCF.

Because ozonation has been considered a second promis-
ing technology in Europe during the last years, some of
WWTPs in Switzerland and Germany have been upgraded
with ozone oxidation or/and activated carbon adsorption
(Barjenbruch et al. 2014; Stamm et al. 2015). While in an
adsorp t ive process us ing PAC or GAC organic
micropollutants are removed, oxidation processes like ozona-
t ion do not result in complete mineral izat ion of
micropollutants but in the formation of predominantly un-
known transformation products (TP) with unknown toxicity.
Additionally, inorganic by-product from oxidation will be
formed (Joss et al. 2008; Stadler et al. 2012).

In general, the TP have low concentrations as well as in-
significant estrogenic and antimicrobial activities compared to
the parent compound (Hollender et al. 2009; Reungoat et al.
2011). To further reduce TP, biological post-filtration over
activated carbon or sand can be considered (Luo et al.
2014).

Huber et al. (2005b) investigated the potential of chlorine
dioxide (ClO2) for the oxidation of DCF and EE2 duringwater
treatment (drinking water, groundwater, and lake water; not
wastewater). ClO2 is a stable free radical that reacts with
micropollutants through a one-electron transfer and is a highly
selective oxidant with respect to specific functional groups
like phenolic groups (Huber et al. 2005b). DCF (1 μg L−1)
was readily oxidized with ClO2 in 30min with a dose of 0.95–
11.5 mg L−1 ClO2 but in lake water only after 60 min. EE2
(11 μg L−1) reacted very fast in less than 5 min with
0.1 mg L−1 ClO2 in groundwater (Huber et al. 2005b). There
are no studies available for WWTP effluents.

When the degradation of EE2 and DCF was studied under
MnO2 or biogenic produced manganese oxides (BioMnOx) in
a synthetic wastewater (Forrez et al. 2009, 2010), removal of
up to 80 % could be verified. At neutral pH, the diclofenac
oxidation with BioMnOx was 10-fold faster than with chem-
ically producedMnO2. Themain advantage of BioMnOx over
chemical MnO2 is the ability of bacteria to reoxidize the
formed Mn2+, which inhibits the oxidation of DCF.
Diclofenac oxidation was proportional to the amount of
BioMnOx dosed, and the pseudo first-order rate constant k
was 6-fold higher when pH was decreased from 6.8 to 6.2.
These results combined with previous studies suggest the po-
tential of BioMnOx for WWTP effluent polishing, but the
technique is not yet used in technical scale.

Advanced oxidation processes

Advanced oxidation processes (AOPs) are very effective in
the oxidation of numerous organic and inorganic pollutants.
AOPs are based on the generation of free radicals, mainly the

HO⋅ radical, with high oxidizing power, which can success-
fully attack most organic molecules with elevated reaction
constants from 106 to 109 M−1 s−1 (Von Sonntag 2008;
Huber et al. 2003; Rivera-Utrilla et al. 2013). This makes
AOPs superior to treat organic molecules with high chemical
stability and/or low biodegradability (Oller et al. 2011). Due to
their electrophilic nature, HO⋅ radicals oxidize almost all
electron-rich organic substances, eventually converting them
to carbon dioxide and water. Most AOPs use a combination of
two different oxidants (e.g., O3/H2O2), oxidant and irradiation
(e.g., H2O2/UV), oxidant and catalyst (e.g., H2O2/Fe

2+/3+

(Fenton)), oxidant and photocatalyst (e.g., H2O2/UV/Fe
2+/3+

(photo-Fenton), or oxidant and ultrasonic (e.g., H2O2/ultra-
sonic) (Von Gunten 2003; De la Cruz et al. 2012). Many of
these advanced systems have been evaluated in laboratory
batch tests and have yet to be applied on technical scale; thus,
there is a lack of good quality data on the mechanisms in-
volved, the influence of operational variables, the reaction
kinetics, and reactor design issues.

Gerrity et al. (2011) reported high removal efficiency for
DCF of >99 % and of E2 of >83 % in a pilot-scale treatment
plant of WWTP effluent with O3/H2O2. Recently, Rivera-
Utrilla et al. (2013) and Silva et al. (2012) exhaustively
reviewed the literature on the removal of pharmaceuticals
from water, summarizing also the performances of different
water treatment systems including advanced technologies. In
the case of DCF, EE2, and E2, some promising technologies
have been identified and summarized in Table 9.

In recent years, the electrochemical based AOPs (EAOPs)
have gained more attention due to several advantages over
normal AOPs (Martínez-Huitle and Ferro 2006; Sirés et al.
2014; Sirés and Brillas 2012). The EAOPs are clean technol-
ogies that do not use any chemicals during the process.
Besides, the operation under mild (room temperature and am-
bient pressure) and versatile (applicable to CODs of 0.1 to
100 g L−1) conditions, the high energy efficiency, and the easy
handling are—among others—advantages that distinguish the
application of EAOPs from classical methods (Sirés et al.
2014). The EAOPs can be classified into two groups: (1)
anodic oxidation (AO), where, at the anode surface, in situ
OH radical is generated (e.g., boron-doped diamond elec-
trodes (BDD); and (2) electro-Fenton (EF), via in situ
electrocatalytically generated Fenton’s reagent, including dif-
ferent coupling with other photo-, sono-, or physio-chemical
treatment methods (Oturan and Aaron 2014). The anode ma-
terial is a crucial element in an EAOP. Originally, the AO
process was conducted with high O2 evolution overpotential
anodes (Brillas and Martinez-Huitle 2011), such as Pt, graph-
ite, PbO2, doped SnO2, IrO2, or dimensionally stable (DSA)
anodes. An essential feature of the anode material is to inhibit
the generation of oxygen molecules and to impose the forma-
tion of significant amounts of oxidizing agent such as hydrox-
yl radicals (Comninellis et al. 2008). The previously reported
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electrode materials are not stable against the reactive species
formed on their surfaces and erosion of the material would be
possible (Barrera-Díaz et al. 2014). The boron-doped diamond
(BDD) electrode, however, shows an outstanding specificity
for electrochemical oxidation processes promoting it as a very
promising anode material (Fryda et al. 2003; Kraft et al. 2003;
Tröster et al. 2004; Martínez-Huitle and Quiroz Alfaro 2008).
Depending on the source of the water, the degradation prog-
ress may be quite heterogeneous, due to competitive reactions
with organic and inorganic matter at high concentrations in
hard water andWWTP effluents (Wert et al. 2011; Rajab et al.
2013). AOPs and EAOPs have been tested mainly in lab scale
and are far from technical application, also because of by-
product formation and costs.

Heterogeneous photocatalytic oxidation is a method rely-
ing on the capability of photocatalysts like titanium dioxide
(TiO2), zinc oxide (ZnO), zinc sulfide (ZnS), ferric oxide
(Fe2O3), silicon (si), and tin oxide (SnO2) to act as sensitizers
for light-induced redox processes (Silva et al. 2012). TiO2 is
the most widely cited photocatalyst due to its considerable
activity, high stability, nonenvironmental impact, and low cost
(Augugliaro et al. 2012; Silva et al. 2012). The heterogeneous
photocatalysis process using TiO2 was applied successfully
for the removal of DCF, E2, and EE2 with high removal
efficiencies in aqueous solutions including WWTP effluents.
Selected studies are listed in Table 9. Coleman et al. (2004)
found a selectivity for estrogens EE2>E2. The removal effi-
ciency of E2 and EE2 increases with increasing pH value
(Karpova et al. 2007).

None of the AOPs mentioned above will result in a
complete mineralization of organic micropollutants.
Transformation products are formed which could be bio-
degradable but also toxic, bound, or mobile, which
makes a biological posttreatment to degrade these TP
indispensable (Christensen et al. 2009).

Phytoremediation

DCF

Recent reviews have indicated that besides longer SRT and
HRT, the implementation of wetland plants might improve the
performance of older WWTPs in small settlements.
Recommendations have been made to add lagunar
phytoremediation modules to improve the removal of PPCPs
even more effectively (Schröder et al. 2007). In such systems,
the uptake and removal of DCF and estrogens relies on the
biology of green plants and their accompanying rhizospheric
microbial communities, in analogy to mammalian detoxifica-
tion systems.

In humans, many drugs undergo a cascade of different
reactions. An initial activation reaction is frequently followed
by conjugation with smaller biomolecules like glucuronic acid

or sulfuric acid. These modifications of the parent drug in-
crease its solubility and the potential for excretion of active
metabolites. The very same mechanisms exist in plants
(Schröder and Collins 2002), and it has been demonstrated
that they are active against a broad spectrum of xenobiotic
compounds. In mechanistic laboratory and greenhouse studies
with different plant species (Armoracia rusticana, Brassica
juncea, Hordeum vulgare, Lupinus luteolus, Typha latifolia,
Phragmites australis), the uptake and subsequent detoxifica-
tion of DCF has recently been demonstrated (Kotyza et al.
2010; Huber et al. 2012; Bartha et al. 2014). Since DCF is a
weak acid, its uptake in the plant with the transpiration stream
is not inhibited, and significant concentrations accumulate in
both roots and shoots of investigated species. Interestingly, the
pharmaceutical is attacked by enzymes very similar to mam-
malian ones. After activation by P450 or peroxidase enzymes,
the hydroxylated primary metabolites were conjugated either
with glucose, or glutathione (Fig. 2), rendering the products
more water soluble and nontoxic.

Estradiols

Phytoremediation of ECDs has been investigated in different
studies. The removal of 17 β-estradiol and 17 α-
ethinylestradiol from contaminated waters by macrophytes
was discussed by Trueman and Erber (2013). The authors
studied the uptake of two estrogenic compounds as well as
Bisphenol A into the tissues of two Potamogeton species.
Whereas the amounts of the estradiol compounds in both

4´OH-diclofenac 

(M+H)+ m/z 312 →
m/z 294 
m/z 266 

diclofenac-glycopyranoside 

(M+H)+ m/z 474 →
m/z 312 
m/z 294 
m/z 266

OH-glutathionyl-diclofenac 

(M+H)+ m/z 617 →
m/z 324 
m/z 342 
m/z 488 
m/z 542

Fig. 2 Chemical structures of diclofenac metabolites identified in plants
and the characteristic mass transitions obtained in positive ionization
mode by LC-MS/MS analysis
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species were rather low (15.7 ng L−1) compared to the con-
centration in the water, the plants took up a considerable
amount of Bisphenol A (8.3 μg g−1 DW).

The use of vertical flowwetlands is a common technique in
phytoremediation. Planted with common reed (Phragmites
australis) these systems have been tested for the removal of
endocrine disruptors fromwastewaters (Song et al. 2009). The
authors reported a maximal removal efficiency of 67.8
± 28.0 %, 84.0 ±15.4 % and 75.3 ±17.6 % for E1, E2 and
EE2, respectively. In a comparison of different wetland
depths, they found the shallowest (7.5 cm) to be the most
efficient one to remove EDCs from the water body.

Apart frommacrophytes, Duckweed (Lemna species) and a
mixture of algae and cyanobacteria were studied for their ca-
pacity to remove ECDs from synthetic wastewater under dif-
ferent conditions in batch experiments. In the presence of
duckweed and algae, effective removal of the estrogens E1,
E2, and EE2 fromwaters was observed, even at nanogram per
liter concentrations (Shi et al. 2010). The accelerated removal
of estrogens is probably due to its absorption on the duckweed
or algae and subsequent degradation by microorganisms ad-
hering to the plants. However, plant metabolism was not ex-
cluded, and duckweed showed a slightly higher efficiency to
remove estrogens than algae.

Generally, for the use of plants in any remediation scenario,
the selection of the most suitable species to do the job is
crucial (Schröder 2007). This includes knowledge of the
plants’ metabolic capacity, their ability to grow under given
environmental conditions, and favorable milieu (e.g., oxygen,
root surface, chemical milieu) for plant-associated microor-
ganisms which may contribute to degradation and removal
of the pollutants in manifold ways. When using macrophyte
species, it remains important to remove all plants after reme-
diation to avoid the release of sequestered nutrients and pol-
lutants back into the system during decomposition. In many
cases, especially for small settlements, phytoremediation,
when properly performed, may be an appropriate and cost-
effective way to remove considerable amounts of pollutants
from aquatic ecosystems and WWTPs.

Ecotoxicology and risk assessment

While compilations on the occurrence and fate of pharmaceuti-
cally active compounds and their metabolites in sewage and
potable water are increasingly available and point to the danger
of their widespread distribution (Sweetman 2002; Petrović et al.
2014; Škrbić et al. 2014), the environmental effects of their pres-
ence alone and in mixtures have so far not been properly ad-
dressed (Halling-Sorensen et al. 1998; Daughton 2001; Ternes
2001; Arnold et al. 2013; Manickum and John 2014; Vieno and
Sillanpää 2014; Shore et al. 2014; Gabet-Giraud et al. 2014). In
this section, the main ecotoxicological issues related to

diclofenac and EE2 are summarized; for a wider discussion on
the topic, the reader is referred to the accompanying paper on
ecotoxicity of micropollutants (Papa et al., in preparation).

Pure compound approach

The objective of an environmental risk assessment (ERA) is to
prove, beyond reasonable doubt, that the compounds are safe
for all manmade and natural ecosystems which they may enter,
such as WWTPs, rivers, and soil. A compound is judged as
having little or no environmental risk if the predicted environ-
mental concentration (PECs)—which is the concentration of
the compound expected to be found in the environment—is
lower than the predicted no effect concentration (PNEC)—that
is, the concentration that causes no adverse effect to the
environment. However, the compounds are rarely present alone
in the environment; hence, the concentrations of compounds
that are asserting similar adverse effects in the environment are
usually added for the ERA (Fent et al. 2006). Moreover, since
many compounds may be altered prior to or during treatment,
and/or in the receiving organisms themselves, further potential
metabolites (relevant for many pharmaceuticals) and transfor-
mation products should be included in the assessment.

The ERA is a tiered process that progresses from using
screening-level tests and conservative assumptions to increas-
ingly more realistic assumptions (EC 2003). The PNEC is
typically obtained from the lowest effect concentration
(LOEC) for the most sensitive species. However, ecotoxicity
data are often limited or not available, especially for metabo-
lites and transformation products. Hence, the traditional ERA,
as described by the European Commission Technical
Guidance Document (TGD), allows the use of assessment
factors to account for the uncertainty in deriving PNEC values
based on acute toxicity data and a limited number of species
(EC 2003). For biologically active compounds such as phar-
maceuticals, this approach may overlook sublethal and subtle
subcellular effects that may occur in some species at much
lower concentrations during chronic exposure (Fent et al.
2006).

Typical PNEC values for diclofenac and EE2when derived
from traditional ERA using acute toxicity data lies in the mil-
ligram per liter range, while chronic histopathological effects
have been observed in rainbow trout after 28 days of exposure
to 1–5 μg L−1 DCF (Schwaiger et al. 2004; Triebskorn et al.
2004). The fact that diclofenac also bioaccumulates is also of
concern and should be addressed properly (Fent et al. 2006).
Kallio et al. (2010) found that the total bioconcentration fac-
tors (BCFtotal) for diclofenac and its metabolites in rainbow
trout bile varied between individuals and was roughly estimat-
ed to range from 320 to 950.

As for EE2, Caldwell et al. (2008, 2012) proposed a
PNEC value of 0.1 ng L−1 in surface water. It was derived
from a species sensitivity distribution using no observed effect
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concentrations (NOECs) for reproductive effects from 42 pa-
pers in 26 species and was determined as the median hazard-
ous concentration at which 5 % of the species tested were
affected (HC5,50).

Whole-effects approach

Another approach to the assessment of micropollutants would
be to switch from a compounds-oriented to an effects-oriented
one, in order to take into account (i) unknown/undetected
compounds, like metabolites and parent compounds, and (ii)
the mixture effects of substances, either synergistic or antag-
onistic. Therefore, comprehensive bioanalytical tools can di-
rectly measure the specific biological activity of groups of
chemicals. This is just the case for EE2: indeed, when
assessing its ecotoxicological effects, the main threat is repre-
sented by the induced estrogenic activity, i.e., a specific mode
of toxic action directly related to all those molecules (then
called endocrine-disrupting compounds, EDCs) that can mim-
ic, block, or interfere with hormonal activities in living organ-
isms. In regard to ERA for the receiving water bodies, the
main adverse impact related to this kind of biological activity
is represented by impaired reproductive performance in wild-
life and especially in fish: levels of 0.1–0.4 ng L−1 were pos-
tulated by Jarošová et al. (2014) for safe concentrations of
estrogenic equivalents (EEQs) for municipal WWTP efflu-
ents. The concept of estrogenic equivalents is used to group
all the chemicals able to induce this specific mode of toxic
action, and is measured via estrogenic activity assays (Leusch
et al. 2010). They are based on the interaction between com-
pounds and estrogenic receptors and can be performed with
cells (E-SCREEN, ER-CALUX, MELN, and KBluc assays)
and yeast (YES assay) (Leusch et al. 2010).

Modeling of diclofenac and hormones

In wastewater treatment plants, mathematical models are rou-
tinely used for plant design, optimization, and control. In gen-
eral, the most commonly used models are derived from the
activated sludge models (ASMs) that were developed to pre-
dict the degradation of organic carbon, nitrogen, and phospho-
rus (Henze et al. 2000). In recent years, ASMs have been
extended to include the degradation of micropollutants, in-
cluding pharmaceutical compounds such as diclofenac and
estrogens such as E2 and EE2 (Lust et al. 2012; Plosz et al.
2012). These models have been developed to primarily in-
clude removal mechanisms associated with biotransformation
and adsorption, since removal via volatilization/stripping has
been found to be comparatively negligible for these
compounds.

In the modeling of biotransformation processes, separate
kinetic expressions are typically employed in order to describe

both aerobic and anoxic degradation (Joss et al. 2004, 2006).
Biotransformation, described by Joss et al. (2004, 2006)
through pseudo first-order degradation kinetics, generally oc-
curs at a higher rate aerobically than anoxically, due to the
contribution of autotrophic bacteria (i.e., nitrifiers), which of-
ten display higher kinetics for pharmaceutical degradation
than heterotrophic bacteria. Adsorption and desorption are
typically estimated assuming an equilibrium between the dis-
solved and sorbed concentration of the respective pharmaceu-
tical. This equilibrium is dependent on the suspended solids
concentration. The sorption behavior for pharmaceuticals
such as DCF and estrogens will routinely be estimated by their
Kd (see BConventional treatment systems and their
shortcomings^).

The ASM-X model developed by Plosz et al. (2012) for
DCF (and other pharmaceuticals) incorporates expressions in-
volving both the biotransformation of the micropollutant and
its reformation into the parent compound. This is due to the
fact that closely related DCF conjugates can also be found in
influent wastewaters (typically generated as human metabo-
lites), where the parent DCF molecule is then reliberated bio-
logically through conjugate-cleavage in the activated sludge
process. The biodegradation of DCF is predicted through both
direct biodegradation as well as through cometabolic biodeg-
radation via other soluble substrates present in the wastewater.
While sorption and desorption of DCF to the sludge was
predicted through its Kd, Plosz et al. (2012) also employed a
term to predict the fraction of DCF sequestered in sludge to
account for the fact that the sorbed DCF detected in the acti-
vated sludge was substantially higher than that predicted by
liquid–solid equilibrium.

Models describing the biodegradation of estrogens (estrone
(E1), E2) and EE2 have also been developed (Monteith et al.
2008; Lust et al. 2012), which also predict both their biodeg-
radation and adsorption/desorption to sludge through liquid–
solid equilibrium (Kd) coefficients. With respect to biodegra-
dation, since E1 is formed from E2 biodegradation, sequential
degradation of E2 to E1 has been considered in these models
as the major biochemical pathway. Formation of conjugated
estrogens was also incorporated into the model of Lust et al.
(2012).

Recently, the ASM-X model has also been incorporated
into the benchmark simulation model (BSM) structure in or-
der to facilitate its integration with plant-wide control strategy
scenarios (Snip et al. 2014). This study also proposed a dy-
namic influent prediction tool to estimate the concentration of,
e.g., DCF as a function of administration pattern, bioavailabil-
ity, and residence time in the human body.

Now it will be necessary to include the transformation of
these compounds in tertiary treatment processes, such as fil-
tration, UV, and ozonation, eventually combined with
phytoremediation, considering the fact that these processes
have been typically found to contribute to a substantial portion
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of the removal of pharmaceutical compounds. Of course, ki-
netic approaches regarding the generation of TPs fromDCF or
estrogen biotransformation or oxidation processes must be
included, particularly in view of the toxicity that such metab-
olites may exhibit, often higher than the parent compounds
themselves, and that they may constitute the bulk chemical
from reaching and persisting within the environment.

WWTP effluents, if properly treated, can be reclaimed and
reused for determined restricted uses, contributing in this way
to the reduction of water pollutants and the pressure over the
worldwide water scarcity. It will be also up to the models to
forecast limits of such technologies and develop action plans
for optimized remediation techniques aiming at avoiding the
release of these substances into the environment, to preserve
the ecosystem but also protect biodiversity.

Economics

The level of pollutant removal from wastewater exponentially
increases the associated costs. When the treatment involves
micropollutants like the DCF and estrogens, there is also an
additional cost due to the advanced technology required.
Owen and Jobling (2012) reported that, in order to remove
EE2 fromwastewater to comply with the proposed legislation,
GAC systems should be implemented in all conventional
WWTPs. The investment cost of such a system for a town
of 250,000 inhabitants would be around 8 million €, and its
operating costs around 800,000 € per year. A similar finding
was drawn by Jones et al. (2007), who concluded that the cost
of utilizing drinking water technologies to treat wastewater
will likely be really expensive. In particular, it was estimated
that for medium- and large-sized WWTPs, the capital cost of
sand filter and membranes exceeded the cost of the basic ac-
tivated sludgeWWTP by 2.63 £ and 1.5 million £, respective-
ly. Moreover, the potential operating costs of the extra treat-
ment processes would be also significantly higher than stan-
dard treatment, since they would increase by around six times.

Since economies of scale apply to wastewater treatment
facilities (Tsagarakis et al. 2003; Fraquelli and Giandrone
2003; Hernandez-Sancho et al. 2011), the cost for removing
micropollutants from small installations will be extremely
high. Advances in technology are promising in achieving high
removal rates for micropollutants (see section BAdvanced and
alternative methods^) but should be achieved with affordable
tariffs for the residents. The main challenge is to quantify the
benefits of micropollutant removal, which is difficult, since
the level of damage to the environment and biodiversity has
yet to be fully taken into account (Luo et al. 2014; Vieno and
Sillanpää 2014; Pereira et al. 2015).

In such cases, nonmarket valuation can be applied so that a
monetary value can be attributed to the benefits derived from
the wastewater treatment (Menegaki et al. 2007; Genius et al.

2012). Since costs are transferred to the residents, any new
investment for advanced treatment should be investigated for
acceptance and willingness to pay for the capital and operation
cost. This is essential since residents will be asked to pay for
higher tariffs (Genius et al. 2005).

Literature is very scarce on nonmarket valuation of
micropollutants. In a contingent valuation study, Kotchen
et al. (2009) investigated the willingness to pay for a surcharge
on prescriptions to support a pharmaceutical disposal program
in southern California. Logar et al. (2014) report findings from
a choice experiment, aimed at giving monetary value to ben-
efits deriving from reducing environmental risks of specific
micropollutants, including, among others, diclofenac. These
benefits are then entered in a cost benefit analysis for the
Swiss national plan to reducemicropollutants in treated waste-
water effluents, resulting in a positive net present value of this
policy.

In another context, Molinos-Senante et al. (2013a, b)
quantified the environmental benefits of preventing the
discharge of DCF and EE2 into water bodies using the
distance function approach. They estimated the shadow
prices of those compounds, which can be interpreted as the
economic value of environmental benefits to avoid the
discharge of contaminants into the environment. In
particular, for nonsensitive areas, the shadow prices of the
DCF and EE2 were quantified by 42.20 and 73.73 € kg−1,
while for sensitive areas, they were 53.47 and 93.76 € kg−1,
respectively. These figures represent the positive externalities
of removing both pollutants from wastewater with the highest
available standards. For example, the value of 42.20 € kg−1

means that for each kilogram of DCF that is removed from
wastewater, the environmental benefit is quantified by 42.20
€. It should be noted, that to estimate the overall benefits from
wastewater treatment, not only the value of the shadow prices
in € per kilogram should be considered, but the volume of
each pollutant removed in kilogram per cubic meter as well.

Concluding remarks

Nearly half of the European countries are facing water stress
issues today, both in terms of water scarcity and water quality
deterioration, and it is estimated that 20–40 % of Europe’s
available water is being wasted (lack of water-saving technol-
ogies installed, too much unnecessary irrigation, etc.). In ad-
dition, priority and emerging organic pollutants and pathogens
are continuously discharged into European rivers and streams,
thereby compromising valuable ecosystem services and
resulting in potentially adverse effects to aquatic organisms.
This is due to the fact that our conventional WWTPs are
neither specifically designed nor operated to remove residual
concentrations of organic pollutants, causing the potential ac-
cumulation of such pollutants into receiving water bodies and
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limiting at the same time proper reuse of water. Although
concentrations of DCF and EE2 in groundwater and surface
waters are still generally low and an acute toxicological risk
for consumers has not been identified so far, contamination is
increasing, like for other emerging compounds.

Cleaning highly treated wastewater through an environ-
mental buffer and stripping residual contaminants into the
matrix by sorption and occult microbial processes to augment
a drinking water supply is a recent practice, which is referred
to as intentional indirect potable reuse, which can occur
through recharge of unconfined or confined aquifers. It has
been demonstrated by several projects that nonpotable and
potable water reuse can represent a viable option to diversify
local water resources while at the same time reducing the
demand for conventional freshwater supplies. In consequence,
the potential economic value of this particular water is
decreased.

At this time, there are some novel potent remediation tech-
nologies available for conventionally treated wastewater ap-
plying, e.g., filtration, adsorption, or ozonation. Typically,
they contribute to a substantial removal of pharmaceutical
compounds such as DCF and EE2. But only adsorption onto
activated carbon and ozonation are techniques which have
reached marketable technology readiness levels in Europe at
present. Further research needs to be directed into the optimi-
zation of such technologies or the transfer of promising tech-
nologies and combinations of processes from laboratory to
technical scale. WWTP effluents, if properly treated, can be
reclaimed and reused for determined restricted uses, contrib-
uting in this way to the reduction of water pollutants and the
pressure over the worldwide water scarcity. Nevertheless, the
use of inadequately treated wastewaters for irrigation will def-
initely raise public health concerns arising from the presence
of microorganisms and contaminants of emerging concern.

This situation strongly calls for the development of opti-
mized remediation techniques to generally limit the release of
these substances in the environment. It is also evident that in
order to protect resources for future generations, approaches
have to be adopted, which sustainably protect ecosystems and
biodiversity.

With the increasing need to alleviate the load of emerging
contaminants, treatment facilities across Europe need
upgrading to fulfill water standards and to keep the end users
healthy. The lack of knowledge about the occurrence of many
emerging organic pollutants in WWTP effluents as well as
about the efficiency of treatment options must be overcome.
Interdisciplinary initiatives like the COST Action ESSEM
1202 (Conceiving Wastewater Treatment in 2020—
Energetic, environmental and economic challenges; http://
www.water2020.eu) are a potent instrument to collect
knowledge and feed it into discussion panels. From
starting points like those, it will be urgently required to
develop overall evaluation schemes for wastewater

management, including its energetic, environmental, and
economic challenges, to provide national and EU authorities
with useful and reliable decision support tools for future
investments and implementations. Among these tools,
validated sampling and analytical techniques, (eco-)
toxicological assessment, and sound economical background
data have to be made available. Existing WWTPs need to be
upgraded by most advanced modules, enhancing degradation
and optimizing overall retention times.

And last but not least, for groundwater, one of our most
valuable resources, in addition to the requirements of good
status, any significant and sustained upward trend in the con-
centration of any pollutant should be identified and reversed
as early as possible.
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