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Genome-wide study for circulating metabolites
identifies 62 loci and reveals novel systemic effects
of LPA
Johannes Kettunen et al.#

Genome-wide association studies have identified numerous loci linked with complex

diseases, for which the molecular mechanisms remain largely unclear. Comprehensive

molecular profiling of circulating metabolites captures highly heritable traits, which can help

to uncover metabolic pathophysiology underlying established disease variants. We conduct

an extended genome-wide association study of genetic influences on 123 circulating

metabolic traits quantified by nuclear magnetic resonance metabolomics from up to 24,925

individuals and identify eight novel loci for amino acids, pyruvate and fatty acids. The LPA

locus link with cardiovascular risk exemplifies how detailed metabolic profiling may inform

underlying aetiology via extensive associations with very-low-density lipoprotein and trigly-

ceride metabolism. Genetic fine mapping and Mendelian randomization uncover wide-spread

causal effects of lipoprotein(a) on overall lipoprotein metabolism and we assess potential

pleiotropic consequences of genetically elevated lipoprotein(a) on diverse morbidities via

electronic health-care records. Our findings strengthen the argument for safe LPA-targeted

intervention to reduce cardiovascular risk.
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A
n understanding of the genetic factors involved in
systemic metabolism and their associations with chronic
disease is a key objective, as large disease consortia have

now uncovered numerous variants associated with metabolic
diseases1,2. Metabolic phenotypes serve as good intermediate
traits for a genome-wide association study (GWAS) and
blood metabolites can be potentially used to discover genetic
determinants of circulating metabolites, and particularly to
understand the metabolic context of disease-associated genetic
variants. Advances in nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry have enabled analytical
techniques that can provide hundreds of quantitative metabolic
measures from large biological sample collections3. GWAS meta-
analysis of metabolic measures from these methodologies have
been performed, however, the sample sizes have only reached
several thousand, which is still modest compared with disease
consortia studies4–6. The size of previous GWASs utilizing
metabolic profiling techniques may partially explain the modest
new biological insight added for known disease-associated
variants.

To overcome the challenge of small sample size, we perform an
expanded GWAS from our previous study4 by combining up to
24,925 individuals in a meta-analysis of 123 metabolic measures.
We discover eight new loci for circulating metabolites. We focus
on a new metabolite association with variants in LPA, a known
coronary heart disease (CHD) risk locus. We follow up the novel
association by constructing a strong genetic risk score for LPA
and use the risk score for the molecular characterization of the
metabolic effects of Lp(a) synthesis and assessment of causality
for the metabolic associations. Finally, we perform reverse
genetics using electronic health records together with the
genetic risk score to test if LPA targeting treatment for
reducing CHD risk would be associated with potential strong
comorbidities. To conclude, we demonstrate how intermediate
phenotypes can provide new biological information for known
disease loci and how large multi-omics biobank data could be
used to inform drug discovery already at an early stage.

Results
Genome-wide association study. Using the additive genetic
model, we tested for univariate associations between genome-
wide single-nucleotide polymorphism (SNP) panels imputed to
39 million genetic markers and 123 human blood lipid and
metabolite concentrations quantified by high-throughput NMR
spectroscopy metabolomics (Supplementary Table 1 for trait
information, Methods for analysis details) in 14 genotyped data
sets derived from ten European studies (Fig. 1) for up to 24,925
individuals (Table 1 for study characteristics, Supplementary
Table 2 for study details and Supplementary Notes 1 for study
descriptions). Cohorts were analysed individually and summary
statistics were combined in a meta-analysis (Methods). Up to
12,133,295 SNPs, small insertions and deletions were included in
the meta-analysis after applying quality control filters. All meta-
analysis results are available through URL: http://www.compu-
tationalmedicine.fi/data/NMR_GWAS/. To correct for multiple
testing, genome- and metabolome-wide statistical significance
was set to Po2.3� 10� 9, where the standard genome-wide
significance level (5� 10� 8) is divided by the number of prin-
cipal components (22) that explain over 95% of variation in the
metabolomics data. Overall, 62 loci were significantly associated
with at least one metabolic measure. Supplementary Fig. 1 pre-
sents the associations in 2 Mb windows around the strongest
individual variant for the 62 loci. The forest plots for all 62 lead
variant associations are shown in Supplementary Fig. 2. We tested
if the identified 62 loci harboured additional independent

variants. In 9 out of the 62 loci (PCSK9, LPL, PPM1K, HAL,
CETP, CILP, PLTP, APOB and LIPC), we found a secondary
statistically independent association, in 2 of these loci (APOB and
LIPC), we found a third independent variant and LIPC addi-
tionally harboured a fourth independent variant (Supplementary
Table 3 and Methods). The formal conditional testing was first
performed in a subset of cohorts and after conditioning with
significant variants, the resulting lead variant was then tested
using the genomic correlation structure information and sum-
mary statistics (Methods). Our correlation structure was obtained
from the Finnish population that has longer linkage dis-
equilibrium structure than more outbred populations7 and as a
result our discovered number of independent variants may be an
underestimate. The strength of our approach was to first optimize
the variance explained by the next best variant. However, our
approach may result in an underestimate of the number of
independent variants in a locus, as the variant that explains
largest proportion of variance in a trait may be tagging two or
more functional variants8. In contrast, if the independent variant
detection relied only on correlation structure and summary
statistics, it may result in a gross overestimate on the number of
independent variants in a locus if data are imputed with 1,000
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Figure 1 | A genome-wide association study for circulating metabolites.

Study was conducted to elucidate the genetic variation of systemic

metabolism and to discover new metabolic associations in established loci.

We also revealed an intriguing novel relation between Lp(a) and systemic

triglyceride and VLDL metabolism. Thereby, we highlighted the LPA locus

and generated the best possible Lp(a) genetic risk score (GRSLp(a)) that

enabled us to clarify causal associations between Lp(a) and systemic

triglyceride and lipoprotein metabolism. Further, with the aid of extensive

electronic health-care records, we were able to use the GRSLp(a) to show

that Lp(a) is associated with ischaemic heart disease but not strongly with

other morbidities. Put together, these findings suggest safe molecular

intervention on LPA to reduce individual cardiovascular risk.
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Genomes reference panel. This is because an algorithm based on
r-squared between markers does not perform well with rare or
low-frequency variants. Overall, this resulted in a total of 74
variants that were independently associated with one or more of
the 123 metabolic traits. We estimated the proportion of
variance explained by these 74 variants on the metabolic traits
(Supplementary Table 1 and Methods). For all, but six, metabolite
traits, we observed at least one genome-wide significant
association, with the proportion of variance explained ranging
from 0.2% for acetoacetate to 12.5% for glycine, with a median of
5%. The average increase in the proportion of variance explained
was 1.1% when comparing with our previous study4. In 8 of the
62 loci, we found the lead variant to be a non-synonymous
substitution. The SERPINA1 missense variant (rs28929474) had
not been identified as the lead variant for the associated
metabolite in prior GWAS. The variant had not been available
from the HapMap-panel or through genotyping arrays but has
become available through 1,000 Genomes imputation. This may
explain why we see it as a new lead variant. The PCSK9 locus also
harboured a missense variant as a secondary signal that was
independent of the lead variant (Supplementary Table 3). We
used the Genotype-Tissue Expression (GTEx) project database to
further evaluate if the independent SNPs would be associated
with the expression of nearby genes in various human tissues9

and the expression quantitative loci (eQTLs) are presented in

Supplementary Table 4 (Methods). Although GTEx is still in pilot
phase, we were able to link 14 variants with gene expression of
nearby genes, and in six loci, our manually curated functional
candidate was confirmed as an eQTL (Table 2 and Supplementary
Table 4). The eight loci that have not previously been associated
with the same or similar metabolic measures in population
samples are listed in Table 2. Six of the eight novel loci were
associated with the blood concentration of amino acids, one with
pyruvate and one with polyunsaturated fatty acids. The glycine
decarboxylase (GLDC) on chromosome 9q24.1 (rs140348140,
P¼ 3.7� 10� 40) and glycine cleavage system protein H (GCSH)
on chromosome 16q23.2 (rs10083777, P¼ 3.0� 10� 13) gene
regions showed association with glycine concentrations. In
addition, rs10083777 was associated with the expression of
GCSH in the tibial nerve in the GTEx data (Supplementary
Table 5). As a potential limitation, because of GTEx still being in
pilot phase, we cannot assess if the variant is also associated with
GCSH expression in other tissues. Mutations in these two genes
have been previously shown to cause Glycine Encephalopathy
(OMIM: 605899), a rare recessive disorder of glycine metabolism
that manifests as severe early onset neurological complications
and is diagnosed by abnormally high glycine concentration in the
blood. In this study, we have linked the neuronal expression of
GCSH and circulating glycine levels with a common variant on
the population level.

Table 1 | Sample demographics.

Study Age BMI Female%

N Mean s.d. Mean s.d.

EGCUT 3,287 46.3 19.5 26.4 5.4 58
ERF 2,118 48.2 14.7 26.7 4.7 58
FTC 664 23.9 2.1 23.1 3.7 50
FR97 3,661 45.3 12.8 26.3 4.5 55
COROGENE 828 53.2 13.2 26.6 4.1 54
GenMets 572 55.8 7.3 27.2 4.5 57
HBCS 708 61.3 2.9 27.1 4.1 60
KORA 1,745 60.9 8.8 28.2 4.8 52
LLS 2,227 59.2 6.8 25.4 3.5 54
NTR 1,192 38.8 12.8 24.6 4.2 64
NFBC 1966 4,709 31.2 0.4 24.6 4.1 51
PredictCVD 374 47.5 14.6 26.6 4.4 37
PROTE 597 38.3 16 25.2 4.6 51
YFS 2,390 37.7 5.0 26 4.7 54

BMI, body mass index; COROGENE, Genetic Predisposition of Coronary Heart Disease in Patients Verified with Coronary Angiogram; EGCUT, Estonian Genome Center of University of Tartu Cohort; ERF,
Erasmus Rucphen Family Study; FR97, a subsample of FINRISK 1997; FTC, Finnish Twin Cohort; GenMets, Genetics of METabolic Syndrome; HBCS, Helsinki Birth Cohort Study; KORA, Cooperative Health
Research in the Region of Augsburg; LLS, Leiden Longevity Study; N, number of individuals with both genotype and metabolite traits analysed; NFBC 1966, Northern Finland Birth Cohort 1966; NTR,
Netherlands Twin Register; PredictCVD, FINRISK subsample of incident cardiovascular cases and controls; PROTE, EGCUT sub-cohort; YFS, The Cardiovascular Risk in Young Finns Study.

Table 2 | Novel significant loci identified in the GWAS.

Trait Variant identifier Chr Position ea/nea Eaf Beta s.e. P-value Q P-value N
samples

Candidate
gene

eQTL Function

Glycine chr3:125905336:D 3 125905336 A/ACCT
GACCCTGAC

0.40 0.07 0.01 1.1� 10� 9 0.03 17,541 SLC41A3 — TFBS

Glycine rs140348140 9 5877295 TA/T 0.05 0.33 0.03 3.7� 10�40 4.7� 10� 6 17,535 GLDC — —
otPUFA rs186183604 11 67128733 A/G 0.04 �0.24 0.04 3.2� 10� 11 0.71 13,545 CLCF1 — Intron;LOC100130987
Alanine rs4554975 12 47201814 G/A 0.64 �0.07 0.01 6.1� 10� 13 0.76 24,792 SLC38A4 — Intron
Histidine rs7954638 12 96314795 A/C 0.48 �0.08 0.01 7.3� 10� 15 0.53 19,240 HAL AMDH1 Intron;CCDC38
Histidine rs1998848 14 21492229 A/G 0.05 0.15 0.02 4.9� 10� 10 0.06 19,239 NDRG2 — TFBS/5’UTR
Pyruvate rs74249229 16 69979271 T/C 0.05 �0.15 0.02 2.1� 10� 11 0.17 23,561 PDPR — —
Glycine rs10083777 16 81065282 T/C 0.17 �0.11 0.01 3.0� 10� 13 0.92 18,732 GCSH GCSH, ATMIN,

LOC102724325
TFBS

Beta, effect estimate; ea, effect allele; Eaf, effect allele frequency; eQTL, expression quantitative trait locus from GTEx; GWAS, genome-wide association study; nea, non-effect allele; otPUFA,
polyunsaturated fatty acids (other than 18:2); Q, heterogeneity statistics; TFBS, transcription factor-binding site.
If the SNP is located in an intron of a different gene than the candidate, then the gene is presented in the Function column after semicolon.
Beta refers to one copy addition of the effect allele in s.d. units.
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Known loci and LPA association. In addition to the new loci
discovered, we found significant SNPs spread in 54 loci that have
already been associated with the same or related metabolic
measures as presented in the catalogue of published GWASs1 or
recently discovered5 (Supplementary Table 4). We then went
through the loci that had been associated with similar metabolic
traits compared with the prior published findings to pinpoint
potential novel biological functions for the already known loci.
Here, we noted that the Lp(a)-raising allele rs10455872-G located
in the intron of LPA was associated with a smaller diameter of
very-low-density lipoprotein (VLDL) particles (P¼ 1.3� 10� 12).
This allele was also associated with lower concentrations of extra-
large, large and medium VLDL particles (Fig. 2). This metabolic
link found between circulating Lp(a) with VLDL metabolism is
novel. Lp(a) is thought to be comprised of an low-density
lipoprotein (LDL) particle and a covalently bound protein
product of the LPA gene, apo(a). Although the same variant in
the LPA locus has been associated with LDL and total cholesterol
in over 100,000 individuals10, our association in this study had
nearly twice the effect estimate for the VLDL associations using
the same variant. Both studies had standardized values and
compared effect estimates were in standard deviation units. The
LPA locus is known for its association with CHD risk11,12 and

the genetic variants associated with higher CHD risk are also
associated with higher Lp(a) concentrations13 making it a
potentially important drug target for CHD. Furthermore, the
Lp(a) increasing allele rs10455872-G has also been shown to
reduce statin response, which implies that LPA targeting
treatment could also potentially improve statin efficacy14,15.

Genetic risk score for LPA and metabolite associations. We
have discovered new and stronger metabolic associations for a
known important CHD risk locus than identified previously10.
This intriguing finding directed us to fine map the genetic
architecture of Lp(a) in order to generate the best possible Lp(a)
genetic risk score (GRSLp(a)) that would enable us to clarify
associations with the intricate aspects of lipoprotein metabolism.
The gene score was generated by performing GWAS on
circulating Lp(a) levels in FINRISK97 (N¼ 4,935) using
stepwise incremental conditioning (Supplementary Methods).
The resulting gene score consisted of 18 independent genetic
variants located near the LPA gene and associated with Lp(a) at
genome-wide significance (Po5� 10� 8). All 18 SNPs were
further replicated for circulating Lp(a) in The Cardiovascular Risk
in Young Finns Study (YFS; N¼ 2,022, Supplementary Table 6).
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the strongest association was observed for the mean diameter of very-low-density lipoprotein particles (VLDL.D).
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The effect estimate weighted gene score explained 54% of Lp(a)
variation in the discovery and 45% in the replication cohort.
Notably, the effect estimates for the 18 variants were generally
larger in the replication cohort, which might be reflective of the
different assay methods used (Supplementary Table 5). We then
assessed whether the metabolic associations were strengthened by
the better instrument for genetically elevated Lp(a) by meta-
analysing risk score associations with the metabolic measures in
FINRISK97 and YFS (Fig. 3). The strongest association for the
GRSLp(a) was again with the diameter of VLDL particles
(P¼ 8.6� 10� 47, N¼ 7,365, Supplementary Data 1 for all
associations in both individuals cohorts). We used Mendelian
randomization16 to evaluate causality of Lp(a) for metabolic
disturbances (Supplementary Methods and Fig. 3); the detailed
lipoprotein measures and circulating Lp(a) levels were available in
the FINRISK97 and YFS cohort for 4,889 and 1,991 individuals,
respectively. The similar association pattern between obser-
vational associations and causal effect estimates strongly
support that Lp(a) synthesis is causally altering lipoprotein
concentrations (observational associations and instrumental
variable estimates for the metabolites are presented in Fig. 3,
and Supplementary Data 1). These findings suggest, maybe
somewhat surprisingly, that Lp(a) synthesis widely affects overall
lipoprotein metabolism, and in particular, the synthesis of large
VLDL particles in the liver and thereby the triglyceride
metabolism in general. Based on these results, we propose that
the apoB-containing lipoprotein particle used to form Lp(a) by
the covalent attachment of apo(a), may actually also be a poorly
lipidated VLDL-type of particle. This suggests that circulating
Lp(a) particles are likely to be a more heterogeneous group than
simply an apo(a) component added to LDL particles17.

LPA genetic risk score with electronic health records. Although
several pharmaceutical agents are known to cause a modest
decrease of circulating Lp(a), no drugs exist yet to effectively
lower Lp(a)18. Statins do not lower the risk due to Lp(a) as statin
use was not associated with a change in Lp(a) levels in a study by
Cobbaert et al.19 and the JUPITER trial showed that Lp(a) was a
significant predictor of residual risk in participants treated with
potent statin therapy20. However, an antisense oligonucleotide
targeting LPA mRNA was shown to effectively lower circulating
Lp(a) in a phase 1 trial21 and is now in phase 2 trial
(ClinicalTrials.gov Identifier: NCT02160899). The pharma-
cological use still depends on whether the LPA expression
modifying treatment would be associated with unintended side
effects. Since we were able to derive an exceptionally strong
genetic instrument for the metabolic associations, we used reverse
genetics to assess whether genetically elevated Lp(a) would be
associated with any disease leading to hospitalization or death
across the nation-wide electronic health-care registers in Finland
in the FINRISK samples (N¼ 17,487; 429,357 person-year follow-
up; Supplementary Methods). We found that the gene score for
Lp(a) was associated with ischaemic heart diseases (ICD10
I20-I25, P¼ 6.8� 10� 9, Nevents¼ 1,634, odds ratio (OR)¼ 1.25
per unit increment in log(Lp(a))) but not with any of the other of
the 218 summary diagnoses tested (Supplementary Data 2).
Consistently, the gene score was only associated with diagnoses
within this ICD-block when testing associations across all the 615
diagnoses in the electronic health-care records at the accuracy of
three-digit ICD codes (Supplementary Data 2). Our study extends
the results from a loss-of-function study by Lim et al.22 that used
two truncating LPA splice variants serving as a human knock-out
model for LPA. Their study found no increased morbidity for the
individuals carrying the LPA knockout alleles. The present study
had a considerably stronger genetic instrument for evaluating
co-morbidities linked with Lp(a) in the general population and

thus strengthens the evidence that no strong common disease
co-morbidities are caused by Lp(a). However, these reverse
genetic analyses prevent conclusions for rare disease events or
weak association for common diseases. In addition, the Hospital
Discharge Register Diagnoses are non-validated outcomes and
this may reduce our power to detect associations. However, the
general validity of the Finnish Hospital Discharge Register
Diagnoses has been examined in numerous studies and found
to be good23. Nevertheless, these novel findings support the
notion that lowering circulating Lp(a) levels would be a suitable
therapeutic target to reduce residual CHD risk, and that LPA
targeting therapy could be a beneficial addition to statin
treatment.

Discussion
In this study, detailed molecular profiles of circulating metabolites
were analysed for almost 25,000 individuals to increase
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knowledge on genetic regulation of systemic metabolism. Our
main findings were twofold. First, a discovery of eight new genetic
loci for circulating metabolites and fatty acids. The new associated
loci contained either transporters or enzymes closely involved in
the metabolism or trafficking of the associated metabolite as
shown in Table 2. These new data are now available to be used to
study the potential causality of a plethora of biomarkers and to
better understand the intricate metabolic effects of known risk
factors. Second, in our search for new metabolic pathways in
relation to known disease-associated variants, we found that a
known CHD-associated variant near LPA was linked with
circulating triglycerides and VLDL metabolism. Because of these
new metabolic findings for this particular variant, we focused on
this region and fine mapped the genetic architecture of Lp(a). In
fact, we were able to generate a gene score that explained over
45% of the variation in Lp(a) in the replication cohort. The
metabolic associations were strengthened with the stronger
genetic instrument. Subsequently, we used the genetic risk score
in Mendelian randomization to show that the discovered novel
effects of Lp(a) synthesis on overall lipoprotein and triglyceride
metabolism are causal. Furthermore, as we now had a strong
genetic risk score for Lp(a), we could use it for reverse genetics in
combination with electronic health records. Intriguingly, accord-
ing to extensive electronic health record data, the genetic
variation in LPA appears to be associated with ischaemic heart
disease but not with other common adverse disease events. Thus,
our results provide the first evidence of the potential con-
sequences to lipoprotein metabolism when people are treated
with emerging drugs (a phase 2 trial for LPA mRNA antisense
oligonucleotides is currently active (ClinicalTrials.gov Identifier:
NCT02160899)). Our findings also provide support that the
treatment may well be suitable for CHD risk reduction and is
likely to be free of other strong morbidities. This study also serves
as a proof of concept in terms of how large multiomics biobank
data could be efficiently used to inform drug discovery at an early
stage.

Methods
Metabolite quantification. This work is an extension of our previous
GWA-metabolomics study, in which the quantitative high-throughput NMR
metabolomics platform, used to quantify human blood metabolites, was applied4.
In this study, we have utilized the same platform to quantify 123 metabolite
measures that represent a broad molecular signature of systemic metabolism. The
metabolite set covers multiple metabolic pathways, including lipoprotein lipids and
subclasses, fatty acids as well as amino acids and glycolysis precursors. Most of the
NMR-based metabolomics analyses were performed with the comprehensive
quantitative serum/plasma platform described originally by Soininen et al.24 and
reviewed recently25. This same platform was used here to analyse samples in
Estonian Genome Center of University of Tartu Cohort (EGCUT), Finnish Twin
Cohort, a subsample of FINRISK 1997 (FR97), Genetic Predisposition of Coronary
Heart Disease in Patients Verified with Coronary Angiogram (COROGENE),
Genetics of METabolic Syndrome, Helsinki Birth Cohort Study (HBCS),
Cooperative Health Research in the Region of Augsburg (KORA), Northern
Finland Birth Cohort 1966 (NFBC 1966), FINRISK subsample of incident
cardiovascular cases and controls (PredictCVD), EGCUT sub-cohort (PROTE) and
YFS. Metabolite-specific untransformed distributions and descriptive summary
statistics from the largest cohort, NFBC 1966, are presented in Supplementary
Fig. 3. Chemical shifts and the coefficients of variation for inter-assay variability are
presented in Supplementary Data 3 for each metabolite. Here, the study was
extended with Erasmus Rucphen Family Study (ERF), Leiden Longevity Study
(LLS) and Netherlands Twin Register (NTR) cohorts for which the small-molecule
information was available from another NMR-based method (Supplementary
Table 2 for details)26. Metabolite-specific untransformed distributions and
descriptive summary statistics for these measures from the ERF cohort are given in
Supplementary Fig. 4. Chemical shifts and the coefficients of variation for inter-
assay variability are presented in Supplementary Table 7. The sample material was
mostly serum, except for EGCUT, PROTE, NTR and LLS in which the sample
material was EDTA-plasma. The ERF cohort had additional lipoprotein measures
available through the method developed by Bruker Ltd. (https://www.bruker.com/
fileadmin/user_upload/8-PDF-Docs/MagneticResonance/NMR/brochures/
lipo-analysis_apps.pdf). The terminology of this method utilized for lipoprotein
analyses in ERF was matched based on the lipoprotein particle size with the

comprehensive quantitative serum/plasma platform to enable meta-analyses. The
vast majority of blood samples were fasting, however, if a study did not have
overnight fasting samples, we corrected the fasting time effect by using R package
gam and fitting a smoothed spline to adjust for fasting. All metabolites were first
adjusted for age, sex, time from last meal, if applicable, and ten first principal
components from genomic data and the resulting residuals were transformed to
normal distribution by inverse rank-based normal transformation.

Genome-wide association study. We performed a GWAS for metabolites from
14 cohorts from Europe, totaling up to 24,925 individuals (cohorts are described in
Table 1, Supplementary Table 2 and Supplementary Notes 1) to include as many
samples with NMR metabolite data and genome-wide SNP array data as possible.
Written informed consent was obtained from all participants. Studies were
approved by the following ethical committees: Ethical Committee of Oulu
University Faculty of Medicine for NFBC 1966; Ethics Committee of the National
Public Health Institute for Health2000 and HBCS; Helsinki University Hospital
Coordinating Ethical Committee for FINRISK and Twins; The KORA studies have
been approved by the ethics committee of the Bavarian Medical Association; NTR,
Central Ethics Committee on Research Involving Human Subjects of the VU
University Medical Center, Amsterdam; EGCUT, Ethics Review Committee on
Human Research of the University of Tartu; ERF, medical ethics board of the
Erasmus MC Rotterdam, the Netherlands; LLS, Medical Ethical Committee of the
Leiden University Medical Centre; and Ethics Committee of the Hospital District of
Southwest Finland for YFS. Individuals under lipid-lowering medication or preg-
nant were excluded form the analyses. FINRISK cohorts included genotype batches
PredictCVD, COROGENE, DILGOM and FINRISK97. Estonian biobank had two
genotype batches included in this study: EGCUT and PROTE. Genotype batches
were analysed separately. We used an additive model implemented in analysis
software (Supplementary Table 2) for each cohort. All studies were approved by
local ethical committees. SNPs were imputed up to 39 million markers using a 1000
Genomes Project March 2012 version as described in Supplementary Table 2
(ref. 27). The genomic positions used throughout this study are human genome
build 39. Each cohort was analysed separately and SNPs with accurate imputation
(proper info40.4) and minor allele count 43 were combined in fixed-effects
meta-analysis using double genomic control correction, that is, both individual
cohort results and meta-analysis results were corrected for the genomic inflation
factor as implemented in GWAMA28. Variants, after filtering and meta-analysis,
present in more than seven studies were considered for the final results. A genome-
wide significance level was set to 2.27� 10� 9 correcting for 22 independent tests as
the metabolite data are correlated (standard genome-wide significance threshold of
5� 10� 8/22, the number of principal components explaining over 95% of the
variance in the metabolomics data). The number of independent tests was derived
from the number of principal components that explain over 95% of variation in the
metabolite data. All traits gave genomic inflation factors in the meta-analysis less
than 1.034 showing that there was little evidence of systematic bias in the test
statistics. Quantile plots for measurements listed in Supplementary Table 1 are
presented in Supplementary Fig. 5.

Conditional analyses and proportion of variance explained. We conducted an
initial formal conditional analysis for each of the 62 significant loci. We performed
an association test for all SNP—trait pairs in a 2- or 4-Mb window around the lead
SNP. The 4-Mb window was used for seven loci where the association peak was so
wide that it spanned over the 2-Mb window, as in the case of CPS1 locus. The
associations in each window were first screened in the seven Finnish cohorts only.
The lead SNP-trait pair was then analysed using the meta-analysis summary
statistics and correlation structure from the FINRISK-cohort to adjust for the
correlation between the lead SNP and possible secondary variant using the method
proposed by Yang et al.29. Further association was similarly adjusted for correlation
between preceding variants. The proportion of variance explained was calculated
based on the summary statistics for each trait accounting for all independent SNPs
from the primary meta analysis and conditional analyses that were significant at
the pre-specified threshold (P¼ 2.27� 10� 9) for that trait.

GTEx eQTL analyses. We investigated whether the lead SNPs of our associated
loci were also associated with the expression levels of nearby genes by querying the
multi-tissue gene expression resource from The GTEx project9,30. The project, data
collection and analysis methods were recently described in detail9. Briefly, the pilot
data set of the GTEx Project (dbGaP accession number phs000424.v3.p1) provides
expression data for multiple tissues from up to 156 densely genotyped individuals
per tissue. The eQTL analysis was focused on nine tissues having greater than 80
samples (Adipose—Subcutaneous, Artery—Tibial, Heart—Left Ventricle, Lung,
Muscle—Skeletal, Nerve—Tibial, Skin—Sun Exposed Lower leg, Thyroid and
Whole Blood) and genes expressed at least 0.1 reads per kilobase per million
mapped reads (RPKM) in two or more individuals in a given tissue. For this paper,
cis-eQTLs were calculated for those 57 independent SNPs from the association
analysis that had minor allele frequency (MAF)45% in the GTEx data using a cis
window of 1 Mb up- and down-stream from the transcription start site of a gene.
The analysis was conducted using the Matrix-eQTL R package31 in linear
regression mode correcting for sex, the first 15 probabilistic estimation of
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expression residual factors, and the first three principal components from the
genotype data. The false discovery rate was estimated across the tested SNP–gene
pairs (between 1,933 and 2,269 per tissue) using the Benjamini–Hochberg
procedure.

Gene score for elevated Lp(a). Lp(a) was measured in YFS from serum stored at
–70 �C by the immunoturbidimetric method (Lp(a)-HA reagent, Wako Chemicals
GmbH). Lp(a) was measured in FINRISK97 from serum stored at –70 �C using a
commercially available latex immunoassay on an Architect c8000 system
(Quantia Lp(a), Abbott Diagnostics). The imputed genotype batches PredictCVD,
COROGENE and FR97 were combined to generate as complete a genotyped
sample as possible for the genetic analyses (FINRISK97). We then performed a
GWAS for natural logarithm transformed Lp(a) in FINRISK97 using sex, age
and ten genetic principal components as covariates in linear models. Variants
associated with Lp(a) at genome-wide significance were iteratively added to the
association model for identification of independent variants. SNPs with info 40.7
and minor allele frequency 40.5% were considered. All 18 independent variants
identified in FINRISK97 were replicated in the independent YFS cohort
(Supplementary Data 1).

We used weighted effect estimates from FINRISK97 to generate a gene score for
Lp(a) and tested the proportion of variance explained in the FINRISK97 discovery
and YFS replication cohorts. We also tested the association between the Lp(a) gene
score and metabolites using linear regression adjusted for the same covariates as for
the GWAS.

Causality estimates for Lp(a) on lipoprotein metabolism. We used natural
logarithm to transform the Lp(a) distribution and performed linear regression to
test for association between Lp(a) and metabolites using linear regression adjusted
for the same covariates as for the GWAS. As the effect estimates in FINRISK97 for
circulating Lp(a) were larger than in YFS, we tested if differences in fasting time
could account for the deviations—participants in FINRISK97 were only instructed
to fast 4 h before the blood samples in contrast to overnight fasting in YFS. We
observed no differences in the effect estimates between fasting over 8 h (N¼ 4,269)
or fasting less than 8 h (N¼ 620) subgroups (b¼ 0.40 for both groups) in
FINRISK97.

Causal estimates of Lp(a) on metabolite measures were assessed by two-stage
least-squares regression with the Lp(a) gene score as instrument. To enable
comparison between the observational and causal effect estimates from these
Mendelian randomization analyses, Lp(a) and metabolites had been corrected and
transformed as in the GWAS. Observational associations, genetic risk score
associations and instrumental variable estimates from FINRISK97 and YFS were
combined with inverse variance weighted meta-analysis.

Reverse genetics for LPA with nationwide electron health records. The gene
score for Lp(a) was tested in the FINRISK field studies conducted in 1992, 1997,
2002 and 2007 for association with any disease event leading to hospitalization or
death in Finland during January 1987 to December 2010. PredictCVD, COR-
OGENE, FR97 and additional Illumina core-exome genotyped sample of 9,906
FINRISK individuals were combined after imputation to form as complete
and an unrelated data set as possible from FINRISK-samples. Genetic principal
components were generated from the combined genotyped SNPs to account for
population stratification and also to exclude related individuals. Maximum
relatedness between individuals was set to 0.1 between genotyping batches to
remove related individuals from the combined sample resulting in 17,496 unrelated
individuals. Disease tracking was enabled by uniform diagnosis data obtained from
the Finnish National Hospital Discharge Register and the National Causes-of-
Death Register. These registers cover all events that have led to either overnight
hospitalization or death in Finland. The disease events are linked to study
participants using their social security number, which is assigned to every
permanent resident of Finland. Both direct and side causes of the diagnoses and
cause of death were analysed. Hospitalization and fatal events were combined.

The disease diagnoses were encoded according to the International
Classification of Diseases 10th Revision (ICD-10) from 1997 onwards. Disease
events occurring from 1987 to 1996 were encoded in ICD-9 format across Finland;
these diagnoses were converted to ICD-10 format by the scheme provided by the
United States Center for Disease Control Diagnosis Code Set General Equivalence
Mappings (ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD10CM/
2011/), including combination codes. All diagnosis conversions were further
verified according to the mapping scheme provided by the New Zealand Ministry
of Health, National Data Policy Group (http://www.health.govt.nz/system/files/
documents/pages/masterf4.xls). Manual curation of the conversion was
conducted for diagnoses with mismatch in the conversion to the degree of
three digits.

Testing of the Lp(a) gene score against disease events was conducted by logistic
regression, using the gene score as a predictor and ever-occurrence of a disease
from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-
follow-up, study-collection-year and the first four principal components
accounting for population structure. The cohorts were analysed here jointly.
Similar results were obtained when the cohorts were also analysed separately and

meta-analysed (data not shown). Diagnoses with more than ten events were
analysed. The disease events tested were 18 ICD-10 chapters (for example, Diseases
of the circulatory system: I00-I99), 189 ICD-10 blocks (A00-09 to T90-98, for
example, Ischaemic heart diseases: I20-I25) and 615 ICD-10 codes (from A00 to
T98, for example, Angina pectoris: I20). Overall, 822 outcomes were tested.
We therefore corrected for multiple testing of 822 tests. The total follow-up time
amounted to 429,357 person-years. Disease-specific follow-up for time to event
models are given in the Supplementary Data 2.
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