Supplement 4: Burden analysis of missense variants in the total SYNE1 gene and in the
actin-binding domain of SYNE1

We analyzed whether rare, predicted damaging missense variants in SYNE1 were more
frequent in whole exome (WES) datasets of ataxia cases versus controls. Cases comprised a
consecutive series of n=96 index patients with early-onset degenerative ataxia (age of onset
<40 years) compatible with autosomal recessive inheritance (no ataxia in the parental
generation) and negative for trinucleotide repeat expansions causing Friedreich’s ataxia
(FRDA). Controls comprised a consecutive series of n=250 index subjects with early-onset
Alzheimer’s Disease (EOAD). This disease was selected for control as this condition is not part
of the SYNEL1 disease spectrum, not even of the extended disease spectrum described in this

manuscript.

Exome analysis of both cases and controls was performed at the Hussman Institute for Human
Genomics in Miami, Florida. WES was performed using a SureSelect Human All Exon 50Mb kit
(Agilent, Santa Clara, CA, USA) for in-solution enrichment and a Hiseq2000 and Hiseq2500
instruments for exome sequencing (lllumina, San Diego, CA, USA). Paired-end reads of 100 bp
length were produced. BWA and FreeBayes software packages (Li and Durbin, 2009, McKenna
et al., 2010, DePristo et al., 2011, Garrison and Marth, 2012) were used to align sequence
reads to the reference and call variant positions, respectively. All data were then annotated and
imported into GENESIS, a web-based tool for next generation sequencing data analysis
(Gonzalez et al., 2013, Gonzalez et al.,, 2015). Exome datasets were filtered for non-
synonymous missense variants in SYNE1, with low frequency in public databases (minor allele
frequency in EVS, 1000 Genomes and ExAc each <0.5%, AND variant alleles in GENESIS
<40), at good genotype quality (GQ > 50 OR QUAL > 35) AND depth > 10), and predicted to be
damaging by at least two out of three in silico software predictions (MutationTaster, SIFT,
PolyPhen2).
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201508252706 6 152697692 G C disease causing NULL probably-damaging
201508180967 6 152831401 G A disease causing NULL probably-damaging
201508252705 6 152673440 G A disease causing NULL probably-damaging
201508180975 6 152757129 C A disease causing NULL probably-damaging
201508180946 6 152469377 G A disease causing NULL probably-damaging

Table: Rare missense variants in SYNE1 in ataxia cases (top) and controls (EOAD
patients, bottom) predicted to be damaging by at least two software predictions. Chrom=

chromosome.

This analysis yielded 14/192 (=7.3%) rare missense SYNEL variant alleles in cases and 28/500
(=5.6%) rare missense SYNE1 variant alleles in controls in the whole SYNE1 gene (GRCh37/hg
19: chr6:152442822-152957986), without statistical difference between cases and controls

(p=0.48; Fisher’s exact test, two-tailed).

We next tested the possibility that rare missense variants might be more frequent in ataxia
cases than in controls only in the N-terminal actin-binding domain of SYNE1 (codon 1-289
[transcript NM_0033071, NP_149062]; chromosomal position according to GRCh37/hgl9:
chr6:152823810-152949466). This analysis yielded 0/192 (=0%) rare missense SYNEL variants
in cases and 1/500 (=0.2%) rare missense SYNEL1 variants in controls, without statistical
difference between cases and controls (p=1; Fisher’'s exact test, two-tailed). Please note that
our case cohort for the missense burden analysis comprised only of 96 early-onset ataxia
patients who received WES. The index case with the missense (plus truncating) SYNE1
mutation reported in the main text (family #20) was not part of this cohort as this case received

only panel sequencing and was thus not part of the cohort entered into the burden analysis.

Taken together, these findings do not support the hypothesis that rare missense variants in
SYNE1 are more frequent in ataxia patients than in controls- neither in the total SYNE1 gene
nor in the actin binding domain. This argues against a significant contribution of rare missense

alleles in SYNEL1 to autosomal recessive ataxia.
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