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ABSTRACT  

Pulse-echo ultrasound and optoacoustic imaging possess very different yet highly complementary advantages of 
mechanical and optical contrast in living tissues. Integration of pulse-echo ultrasound with optoacoustic imaging may 
therefore significantly enhance the potential range of clinical applications. Nonetheless, efficient integration of these 
modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal 
acquisition and image reconstruction approaches. We report on a new method for hybrid three-dimensional optoacoustic 
and pulse-echo ultrasound imaging based on passive generation of ultrasound with a spherical optical absorber, thus 
avoiding the hardware complexity of active ultrasound generation. The proposed approach allows for acquisition of 
complete hybrid datasets with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and 
optoacoustic images at a rate of 10 volumetric frames per second. Real time image rendering for both modalities is 
enabled by using parallel GPU-based implementation of the reconstruction algorithms. Performance is first characterized 
in tubing phantoms followed by in-vivo measurements in healthy human volunteers, confirming general clinical 
applicability of the method. 
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1. INTRODUCTION 
Pulse-echo ultrasound (US) is the most prominent imaging tool applied in modern clinical diagnostics. It is used in 
several fields from obstetrics and gynecology to cancer staging, intravascular and cardiac diagnostics[1, 2]. Its 
specificity and diagnostic value however is limited since the contrast correlates with the amount of acoustic mismatch 
and therefore mainly reveals structural information[3]. Integration of US with optoacoustic (OA) imaging may therefore 
significantly enhance the potential range of applications by bringing the optical contrast advantages of the optoacoustic 
modality such as spectral specificity[4, 5] and functional hemodynamic contrast[6]. 

Several two-dimensional (cross-sectional) imaging approaches have been previously investigated for combining OA 
with US. Commonly, the traditional US linear array is combined with a fiber-guided light irradiation on one or both 
sides of the array[7] and pulse-echo ultrasound and optoacoustic signals are recorded in an alternate order. An alternative 
approach for producing laser-induced US to interrogate the object in a conventional cross-sectional optoacoustic scanner 
consisting in introducing strong absorbers positioned outside the object in the path of the excitation light[8]. In this way, 
ultrasound transmission parameters like the speed of sound distribution and attenuation maps can be extracted along with 
the optoacoustic absorption maps. However, as opposed to the relatively narrowband back-reflected US radiation, 
optoacoustically-generated signals usually have an ultra wide bandwidth and manifold higher tissue contrast. The 
application of acoustic focusing and common US beamforming or synthetic aperture approaches for OA image rendering 
is then generally challenging, leading to poor imaging performance for techniques based on these reconstruction 
approaches[9]. In this letter, we introduce a new concept for combined three-dimensional ultrasound and optoacoustic 
imaging with an acoustic beam excited via transient absorption of the excitation light. The optoacoustically-induced 
signals from the imaged tissues are then simultaneously recorded with the later arriving back-scattered ultrasonic waves 
by means of the spherical matrix array transducer. In this way, we are able to reproduce three-dimensional optoacoustic 
and pulse-echo ultrasound images in real time. 
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