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ABSTRACT 

Model-based optoacoustic reconstruction can incorporate the shape of transducers. However, the accompanying memory 

cost will hinder it for high resolution performance. The propose method provides over an order of magnitude reduction 

in inversion time in experiments. Additionally, it also suits for the analysis of inversion stability.  

Keywords: optoacoustic tomography, photoacoustic tomography, reconstruction algorithms, inverse problems, wavelet 

packet, regularization. 

 

1. INTRODUCTION 

Finite-aperture detectors are commonly used in optoacoustic tomography [1-2].  Unlike typical back-projection [3], 

model-based reconstruction incorporating the finite size of transducers will achieve better quantification [4]. However, 

large matrix size and long computational time will hinder it for high resolution performance. In this paper, generalized 

wavelet packet interpolated-model-matrix-inversion (IMMI) algorithm with finite-aperture detectors (GWP-IMMI-FAD) 

is proposed and demonstrated in 2D for line-segment detectors using experimental data. Additionally, our framework is 

demonstrated for the analysis of inversion stability and reveals a new, non-monotonic dependency of the system 

condition number on the detector size. 

2. THEORETICAL BACKGROUND 

In a typical optoacoustic imaging setup, in which nanosecond laser pulses are used and the acoustic medium is assumed 

to be homogeneous, the pressure measured by the acoustic detector ( , )p r t  is often modeled by the following integral 

equation: [2, 5] 
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where   is the speed of sound in the medium;   is the Grueneisen parameter; ( )rH r  is the amount of energy absorbed 

in the tissue per unit volume; s  is the spherical surface; r  equals to   times t . In the case of a finite-aperture 

detector, the response of the detector det ( )p t  is obtained by integrating ( , )p r t  over the surface of the detector S : 

 det ( ) ( , )
r S

p t p r t dS


  . (2) 

The discretization of Eq. (2) leads to the following matrix relation:  

 p = Mz ,  (3) 

where p  is a column vector representing the measured acoustic waves at various detector positions and time instants; z

is a column vector representing the object values; M  is the forward model matrix. 

The reconstruction problem involves inverting the matrix relation in Eq. (3). When M  is well-conditioned, inversion 

may be performed by least squares solution: 
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2
arg minz p Mz  , (4) 

where
2

2
 is a squared 

2l  norm.

Tikhonov regularization is applied by solving the following equation for ill-condition problems: 

 2 2

2 2
arg minz p Mz Lz   , (5) 

where 0   is the regularization parameter and L  is the regularization operator. Since Eq. (6) may be solved using the 

LSQR algorithm, it may be applied to matrices that are significantly larger than those on which truncated-singular-value-

decomposition (TSVD) may be practically applied, facilitating the reconstruction of high-resolution images. The L-curve 

method was used to find the Tikhonov regularization parameter  . [6]  

3. METHODS 

After doing wavelet packet (WP) decomposition to Eq. (3), for a given leaf i  or spatial frequency band in object 

decomposition space, the corresponding relation is [7] 

p M z
i i i
w w w . (6) 

The matrix M
i
w  and vector p

i
w  are calculated out of M

i
w  and p

i
w  for each leaf by keeping only the significant rows.

Then we can obtain 

p M z
i i i
w w w . (7) 

For each frequency band, singular-value-decomposition (SVD) is performed on the corresponding matrix M
i
w  and a set

of singular values is obtained:  
1...

i
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. We introduce for each matrix M

i
w  a condition number that is calculated

globally: 
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The use of  glob M
i i

w  enables classifying the different spatial frequency bands based on their reconstruction robustness. 

We also introduce a single global threshold in this work, defined as follows: 

 glob ,th max
i

i j j   (9) 

Once the inversion of Eq. (3) has been performed for all i , the recovered image coefficients in the WP domain z
i
w  may

be transformed. Mathematically, this reconstruction procedure may use the following equation: 

0
†

z M p , (10) 

where †
M  is the approximated inverse matrix of M , and 0z  is the approximated solution. The initial approximation 

may be improved recursively by using 
†

1 1( )z z M p Mzn n n    , (11) 

where zn  is the solution at the thn  iteration and   is a constant parameter.

4. RESULTS

The ability to perform SVD on the reduced matrices M
i
w  enables us to analyze the reconstruction stability for the

different spatial frequency bands in the image. Two-level WP decomposition is performed, leading to 16 distinct spatial 

frequency bands, as depicted in Fig. 1(a). A  represents the approximation components of the image, which are achieved 

via low-passing, whereas 1D , 2D  and 3D  represent the detail components which are achieved via high-passing. Figs. 

1(b-d) show the value of  glob M
i i

w  for the various frequency bands for a point detector, and line detectors with lengths 

of 6 mm and 13 mm, respectively. As expected, the effect of spatial averaging reduces the reconstruction stability in the
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higher spatial frequencies. Fig. 1(e) shows the value of the maximum global condition number of the reduced modal

matrices  globmax M
i i

i w 
 

 for various detector lengths. Interestingly,  globmax M
i i

i w 
 

 does not monotonically

increase with detector length, but rather reaches a maximum value at a length of 6 mm. 

GWP-IMMI-FAD was demonstrated on experimental optoacoustic data of microspheres (100 m ). The microspheres

reconstruction was set with the size of 2 cm2 cm and 200×200 pixels. All reconstructed images were normalized to its

maximum and negative values in the images were set to zero. Figs. 2(a-d) respectively show the full view reconstructions 

of microspheres obtained by BP, IMMI, IMMI with finite-aperture detectors (IMMI-FAD) and GWP-IMMI-FAD. In 

GWP-IMMI-FAD, TSVD was used where truncation was performed using 0.15   in Eq. (12). After all the matrices 

had been pre-calculated, the reconstruction using GWP-IMMI-FAD with 10 iterations took only 80 s, whereas the 

IMMI-FAD reconstruction required 1646 s. 

Figs. 3(a-d) respectively show the full view reconstructions of the mouse brain obtained by BP, IMMI, IMMI-FAD and 

GWP-IMMI-FAD. The microspheres reconstruction was set with the size of 1.2 cm1.2 cm and 120×120 pixels. TSVD

was used in GWP-IMMI-FAD where truncation was performed using 0.08   in Eq. (12). Clearly, the reconstruction 

achieved by the model matrices which included the effect of the line-segment detectors was sharper than the 

reconstruction of point detectors. In contrast, the difference between Fig. 3(c) and Fig. 3(d) was small and could hardly 

be detected by visually inspecting the reconstructions. After all the matrices had been pre-calculated, the reconstruction 

using GWP-IMMI-FAD with 10 iterations took only 11 s, whereas the IMMI-FAD reconstruction required 197 s. 

5. DISCUSSIONS & CONCLUSIONS 

In this paper we develop GWP-IMMI-FAD, which is the generalization of the WP framework to finite-aperture detectors. 

Under the WP framework, the image is divided into a set of spatial frequency bands that are individually reconstructed 

from only a fraction of the projection data, leading to a set of reduced model-matrices. This approach enables the use of 

TSVD to obtain a regularized inverse matrix to the tomographic problem. In contrast, inversion of the originating model 

matrix cannot be generally performed using TSVD for high resolution images owing to the prohibitively large matrix 

size. Therefore, regularization requires applying iterative optimization algorithms, which are characterized by 

significantly higher run time. One notable improvement in GWP-IMMI-FAD over the original WP framework, 

developed for point detector, is the introduction of a global threshold for TSVD. As a result, GWP-IMMI-FAD applies 

also to cases in which some spatial frequency bands in the imaged object are impossible to reconstruct. 

The application of GWP-IMMI-FAD for image reconstruction was showcased for experimental optoacoustic data. In all 

examples, the model matrix was too large for applying TSVD directly on it, and Tikhonov regularization was used 

instead. However, the reduced matrices in the wavelet packet decomposition were sufficiently small for performing 

TSVD. In case of the full view reconstruction, for both simulation and experimental data, the corresponding 

reconstruction quality obtained using the proposed GWP-IMMI-FAD was comparable to the one obtained using 

Tikhonov regularization IMMI-FAD. In all the examples studied, over an order of magnitude improvement in 

reconstruction time was achieved by GWP-IMMI-FAD. 

The performance demonstrated in this work may prove useful for high-throughput optoacoustic imaging studies, which 

may require the reconstruction of thousands of cross-sectional images. Moreover, the results suggest that the WP

framework is not an approach that is restricted to ideal imaging scenarios, but that it could be rather generalized to 

manage the effects of finite-size aperture and limited-view tomography. Further generalization may be achieved by 

applying this framework to geometries employing focused detectors as well as to 3D reconstruction problems, in which a

greater need exists for acceleration of model-based reconstruction times. Finally GWP-IMMI-FAD may be used as a tool 

for optoacoustic system design. Already in this work, GWP-IMMI-FAD revealed an unknown property of systems with 

finite-aperture detectors: Beyond a certain detector length, further increments in length may lead not only to stronger 

optoacoustic signals, but also to more stable reconstructions.   
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Fig. 1 (a) Decomposition components map with two level wavelet packets, (b)-(d) condition number map of decomposed model 

matrix of the point detector, line detectors with lengths of 6mm and 13mm, (e) maximum condition number of all decomposition 

matrix with different length of detectors. 
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Fig. 2 Optoacoustic reconstructions of microsphere from experimental data using (a) BP, (b) IMMI, (c) IMMI-FAD and (d) 

GWP-IMMI-FAD. 

 

Fig. 3 Optoacoustic reconstructions of a mouse’s head from experimental data using (a) BP, (b) IMMI, (c) IMMI-FAD and (d) 

GWP-IMMI-FAD. 

Proc. of SPIE Vol. 9539  953915-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


