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Abstract

Motivation: The statistical analysis of single-cell data is a challenge in cell biological studies. Tailored
statistical models and computational methods are required to resolve the subpopulation structure, i.e.
to correctly identify and characterize subpopulations. These approaches also support the unraveling of
sources of cell-to-cell variability. Finite mixture models have shown promise, but the available approaches
are ill suited to the simultaneous consideration of data from multiple experimental conditions and to
censored data. The prevalence and relevance of single-cell data and the lack of suitable computational
analytics make automated methods, that are able to deal with the requirements posed by these data,
necessary.
Results: We present MEMO, a flexible mixture modeling framework that enables the simultaneous,
automated analysis of censored and uncensored data acquired under multiple experimental conditions.
MEMO is based on maximum-likelihood inference and allows for testing competing hypotheses. MEMO
can be applied to a variety of different single-cell data types. We demonstrate the advantages of MEMO by
analyzing right and interval censored single-cell microscopy data. Our results show that an examination of
censoring and the simultaneous consideration of different experimental conditions are necessary to reveal
biologically meaningful subpopulation structures. MEMO allows for a stringent analysis of single-cell data
and enables researchers to avoid misinterpretation of censored data. Therefore, MEMO is a valuable asset
for all fields that infer the characteristics of populations by looking at single individuals such as cell biology
and medicine.
Availability: MEMO is implemented in MATLAB and freely available via github (https://github.com/MEMO-
toolbox/MEMO).
Contact: eva-maria.geissen@ist.uni-stuttgart.de, nicole.radde@ist.uni-stuttgart.de
Supplementary information: Supplementary Material is available at Bioinformatics online.

1 Introduction
Cell-to-cell variability is omnipresent in biological systems (Balázsi
et al., 2011). Clonal populations can show quantitative differences
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in gene expression and qualitatively distinct cellular phenotypes and
subpopulations (Eldar and Elowitz, 2010). The magnitude and nature
of variability within a population can differ significantly depending on
the system under consideration (Pelkmans, 2012). Accurate quantification
relies on sophisticated statistical models which have to be tailored to the
characteristics of the measurement technique (Pyne et al., 2009; Duffy
et al., 2012; Bajikara et al., 2014; Brennecke et al., 2013).
One characteristic of experimental data, whose importance is often
underestimated, is censoring (Duffy et al., 2012). Most experimental
devices provide censored data due to limited resolution or experimental
constraints (see Supplementary Material, Section S.1). Left and right
censored data provide upper and lower bounds, respectively, while interval
censored data provide an interval for a quantity of interest (Escobar and
Meeker, 1998). A quantity of interest might be the time to an event. If
the event occurs before the start of the observation, the time to the event
is left censored. Accordingly, the time to an event is right censored if the
event does not occur during the observation or if a mutually exclusive
event occurs before (Duffy et al., 2012). These censoring events may
also be randomly distributed. If the system is observed at discrete time
points, only the time interval in which the event occurs is known. In
concentration measurements censoring can occur due to detection limits
or limited resolution. If the quantity of interest can only be detected above
a certain detection limit, this limit provides an upper bound for quantities
below, leading to left censored data. Similarly, saturation effects of the
detection method lead to right censoring, where the saturation threshold
serves as a lower bound for quantities above. Limited resolution naturally
leads to interval censoring. For example, limited time-resolution in single-
cell microscopy experiments is due to phototoxicity and photobleaching,
requiring long inter-observation intervals to avoid stress (Schroeder, 2011).
Statistical models accounting for censoring are well-established. A
suitable framework is provided by mixture modeling. While most mixture
modeling approaches do not account for censoring (Pyne et al., 2009,
2014; Johnsson et al., 2016) others consider selected types of censoring
(McLachlan and Jones, 1988; Lee and Scott, 2012) (see Supplementary
Material, Section S.2). Unfortunately, the latter do not provide a
comprehensive, easily accessible framework. Therefore, such models
are infrequently applied in a biological context, which entails certain
risks. In the presence of mutually exclusive (competing) biological events,
for example, disregarding right censoring can result in an incorrect
interpretation of experimental data such as correlations between actually
uncorrelated data (Duffy et al., 2012). Hence, there is a need for simple-
to-use computational methods to analyze censored population data.
Besides censoring, another challenge for computational analysis methods
of single-cell data is the integration of data from multiple experimental
conditions (e.g. different strengths of stimuli or multiple sampling times
after an intervention on the biological system at hand) or multiple technical
and biological replicates. Established approaches use a two step procedure
for this purpose. First, individual samples are described independently
with finite mixture models. Thereafter, matching-based methods are
applied to link the different samples (Pyne et al., 2009), e.g. to decide
upon the appearance of identical subpopulations. These methods rely on
similarity between distributions under different conditions. In the case
of large changes in the corresponding distribution between experimental
conditions, matching methods are not able to map the populations.
To address this shortcoming, a Joint Clustering and Matching (JCM)
approach (Pyne et al., 2014) has been introduced. JCM allows for a
more rigorous matching across samples and the consideration of inter-
sample variability. Therefor a template model is fitted to the pooled
samples and the individual samples are modeled as instances of this
template by adding random effect terms to the template parameters.
This approach is well-suited for analyzing the size of different distinct
subpopulations in different samples. In case of small changes due to altered

experimental conditions the subpopulation structure remains however
difficult to quantify. Furthermore, the template is constructed without
considering inter-sample variability and a rigorous comparison of different
biological hypotheses is not straight forward.
In order to cope with these challenges, we introduce MEMO, a Multi-
Experiment mixture MOdeling framework which is able to analyze
samples from different experimental conditions simultaneously, can
account for censoring and compares competing model hypotheses. MEMO
uses maximum-likelihood inference to determine the subpopulation
structure and properties of heterogeneous cell populations. MEMO
is implemented in MATLAB and freely available via github
(https://github.com/MEMO-toolbox/MEMO). We expect that MEMO can
be used for a broad spectrum of univariate, censored single-cell data,
e.g. FACS, CyTOF, qPCR, and time-lapse microscopy data. The data
should – as for other statistical analysis methods – be appropriately
preprocessed and the interesting dimension can be determined using
dimension reduction methods (see, e.g., Angerer et al. (2015)).
In this study, we evaluate our method using simulated and experimental
data. In particular, we analyze time-to-event single-cell microscopy data
from multiple yeast strains. These cells were observed at discrete time
points and only for a certain duration. Hence the data are interval and right
censored. We found that, in contrast to naïve approaches, MEMO inferred
the correct subpopulation structure for cases in which it was known. In
addition, for more complex datasets containing multiple experimental
conditions, MEMO revealed the existence of subpopulations for certain
strains, some of which inherit the phenotypic properties of wild type
cells. We demonstrate that MEMO even enables testing of competing
hypotheses about underlying molecular mechanisms of the phenotype. In
a second application on single-cell protein level data (Andres et al., 2010)
we demonstrate how mechanistic information can be integrated in MEMO.
Overall, our results demonstrate the additional benefit of a multi-
experiment modeling framework and the importance of accounting for
censoring, independent of how little it might be.

2 Approach
Multi-experiment mixture modeling. In the following we introduce
MEMO’s basics and the workflow. For this purpose we denote the quantity
of interest by X . The distribution of X is described by a finite mixture
model,

p(x|θ, u) =
S∑

s=1

ws(u)Φ(x|φs(u)),
S∑

s=1

ws(u) = 1

with subpopulation index s = 1, . . . , S, subpopulation weight ws(u)

and subpopulation mixture parameters φs(u) for experimental condition
u. The distributions Φ can be normal, log-normal, gamma or Johnson SU,
with the latter being extremely flexible. Left, right and interval censoring
of the distribution p(x|θ, u) yields distributions for observed genuine
values (realizations within detection range), and observed censoring values
(realizations out of detection range) (see the MEMO Documentation,
Section D.2). Given a set of data, MEMO infers the mixture weights
ws(u) and mixture parameters φs(u). Hypotheses about the dependence
of ws(u) and φs(u) on the experimental condition u can be incorporated
into functional dependencies ws = fun(θ, u) and φs = fun(θ, u),
parametrized with meta-parameters θ .

Step 1. Formulation of competing model hypotheses. For all competing
hypotheses about subpopulation structures and condition dependence, the
number of subpopulations S is selected and parametrization of ws(u)

and φs(u) is defined. As MEMO exploits symbolic calculations, any
combinations of rudimentary functions are supported. In case of a normal
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distribution with mixture parameters φs(u) = (µ(u), σ(u)), a stimulus
induced shift towards lower values might for instance be described by a
Hill-type function µ(u, θ) = µ0un

0 /(u
n
0 + un) with meta-parameters

θ = (µ0, u0). In a similar way positive dependencies and other
dependencies on the condition u can be modeled. Furthermore, MEMO
also allows for the independent modeling of subpopulations in different
conditions, e.g. µ(ui, θ) = µi for condition index i. For details we
refer to Section 4.2 and 4.3 as well as to the MEMO Documentation,
Section D.2.2. In addition to the subpopulation structure and properties,
left or right censoring distributions can be parametrized. This is not strictly
necessary, since MEMO can also use the tail probabilities. It however
allows for additional linking of data collected under different experimental
conditions and for a more detailed model-data comparison in the presence
of distributed censoring (Supplementary Material, Fig. S7 and S8) and
straight-forward resampling of data, e.g. for a bootstrap based goodness
of fit analysis (see Supplementary Material, Section S.4.2.2).

Step 2. Parametrization of multi-experiment mixture models. For
the model hypotheses, maximum-likelihood estimation is employed
to infer the unknown parameters θ (see Materials and Methods and
the MEMO Documentation, Section D.2.3). MEMO uses an efficient
global optimization method based on multi-start local optimization with
analytically derived gradients (see the MEMO Documentation, Section
D.2.6). This method outperformed other global optimization methods in a
variety of test runs and provided accurate estimates (Raue et al., 2013). The
uncertainty of the estimated parameters can be assessed by using profile
likelihood methods (Murphy and van der Vaart, 2000) or Bayesian statistics
(Haario et al., 2006), both supported by MEMO. The output of Step 2 is
a set of parametrized models that correspond to different hypotheses, and
the corresponding sets of parameters characterizing the subpopulations as
well as model and prediction uncertainties.

Step 3. Testing of hypotheses via model selection. The competing model
hypotheses can be compared in MEMO using model selection criteria,
such as the Akaike information criterion (AIC), the Bayesian information
criterion (BIC) or the likelihood ratio test (see the MEMO Documentation,
Section D.2.4). For an automated analysis of the subpopulation structure
a backward model selection algorithm is implemented, which enables
unsupervised exploration.

Step 4. Interpretation and further analysis. Steps 1-3 provide a multi-
experiment model or a set of mixture models capturing the data. MEMO
supports visualization of these mixture models, as well as a model-data
comparison (see the MEMO Documentation, Section D.2.5). The mixture
model and its parameters can be used for subsequent analysis, e.g. to
identify dependencies on input signals. Furthermore, the parameters may
inform mechanistic modeling approaches (Heinrich et al., 2013).

3 Materials and Methods

3.1 Experimental data

The functionality of the spindle assembly checkpoint (SAC) was
assessed using live-cell imaging on a DeltaVision Core system (Applied
Precision/GE Healthcare), see Heinrich et al. (2013).
The NGF-induced Erk1/2 phosphorylation snapshot data were derived by
quantitative automated microscopy (QuAM) as described in Hasenauer
et al. (2014b).

3.2 Modeling of genuine value and censoring value
generating processes

MEMO models genuine values and censoring values to be outcomes of
different stochastic processes, in the sense of distributions, that compete

for realization. Therefore, it discriminates between the distributions
generating the data and the observed distributions of data, which differ
if the supports of the outcomes of the data generating distributions
overlap. MEMO implements normal, log-normal, gamma and Johnson-
SU distributions to model the data generating distributions. For interval
censored data, the probability of a data point lying within an inter-
observation interval is computed by integrating over the respective part
of the distributions.
The observed distributions are used to compute the likelihood of the data
given the parameters. In the case of right censoring, the likelihood of data
D with parameters θ is given by

p(D|θ) ∝
∏
i

∏
j

p(xj
i , x

j
i ≤ Xi,c̄|θ)

(∏
k

p(xk
i , x

k
i ≤ Xi|θ)

)
,

in which i indexes the experimental conditions while j and k index
the measured cells. Since in this case right censoring is considered
as competing process, the censoring quantity is denoted by Xi,c̄. The
uncensored and right censored data in experiment i are denoted by xj

i and
xk
i , respectively. The likelihood consists of the probabilities of observing

a value xj
i or a censoring value xk

i . These are given by the joint probability
of a certain value together with the probability that this value is smaller
than or equal to a realization of the competing process. For more details and
different censoring types see the MEMO Documentation, Section D.2.1.

3.3 Model calibration

MEMO exploits multi-start local optimization with analytical derivatives
to optimize the likelihood. These analytical derivatives are automatically
derived from the model equations by using the Matlab Symbolic Math
Toolbox. A space filling latin hypercube initialization of the optimization
with at least 100 starting points is used. Convergence is assessed visually
using methods illustrated in Raue et al. (2013). MEMO provides Markov
chain Monte Carlo methods (e.g. via the MATLAB toolbox DRAM
(Haario et al., 2006)) and profile likelihood methods (Murphy and van der
Vaart, 2000) for uncertainty analysis. These methods enable an assessment
of the model reliability and its predictive power in a rigorous statistical
manner. For more details see the MEMO Documentation, Section D.2.3.

3.4 Model selection

To select the most likely subpopulation structure and parametrization,
MEMO implements different model selection criteria. In this manuscript,
the AIC the BIC and the likelihood ratio test are used (and always provide
the same results). As MEMO also implements Markov chain Monte
Carlo methods, Bayes factors can also be calculated. In addition to the
comparison of predefined models, MEMO also provides a backward model
selection algorithm for the subpopulation structure. This enables a simple,
user-friendly exploration of many model alternatives. For more details see
the MEMO Documentation, Section D.2.4.

4 Results
4.1 Evaluation of MEMO for censored data

Initially we evaluated the performance of MEMO using a variety of
simulated test scenarios. In the following the quantities of interest are
event times, such as time to division, differentiation or death. An event
lying outside of the measurement range will be called a censoring time.
We simulated interval censored data from a single log-normal distribution
with known distribution parameters (Fig. 1A). Using these simulated
data, we assessed how well the subpopulation structure, i.e. the number
of subpopulations and their parameters, can be inferred. We used the
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Fig. 1. Inference of a log-normal distribution using interval censored data. (A) Illustration
of interval censoring (left) and resulting observed distribution of 100 interval censored
data points (right). (B) For distributions with different log-standard deviations and different
inter-observation intervals ∆t, the number of subpopulations is inferred using: (left) A
model that does not account for interval censoring (= naïve approach); and (right) MEMO,
which accounts for censoring. The color of the circles encodes the frequency with which
the correct number of subpopulations, here one, is selected.

BIC for model selection and found that naïve approaches that disregard
censoring overestimated the number of subpopulations, in particular for
shorter inter-observation intervals (Fig. 1B, left). The overestimation was
worse for shorter censoring intervals, since the optimization frequently
placed subpopulations at the end of individual censoring intervals. A single
distribution was correctly identified only in case that all data lie within one
inter-observation interval, which is the case when the standard deviation
of the log-normal distribution is small compared to the censoring interval.
In contrast, MEMO accurately reconstructed the underlying distribution
and determined the correct subpopulation structure independently of the
censoring interval. For simple distributions already small samples were
sufficient to achieve an accurate reconstruction from interval censored
data (Fig. 1B, right and Supplementary Material, Section S.3, Fig. S1).
A similar evaluation for right censored data yielded comparable results
(Fig. 2A): Simply omitting the right censored data points as well
as disregarding censoring results in an overestimation of the number
of subpopulations (Fig. 2B and C). In both cases the number of
subpopulations was correctly inferred only when the censoring time is
much greater than the distribution mean. By contrast, MEMO was able
to reproduce the correct results in any case (Fig. 2D and Supplementary
Material, Section S.3, Fig. S2). Thus, statistical models implemented
in MEMO, which account for censoring, are more reliable than naïve
analysis approaches and provide an accurate estimate for the number of
subpopulations.

4.2 Analysis of SAC time-to-event microscopy data

For a realistic evaluation, we considered data from a study of the
functionality of the SAC in Schizosaccharomyces pombe (S. pombe)
(Heinrich et al., 2013). The SAC is a signaling pathway that protects
genome integrity by detecting and responding to errors in chromosome
attachment during mitosis (London and Biggins, 2014). In Heinrich et al.
(2013) the functionality of the SAC was assessed by measuring the time
that cells spend in prometaphase (an early phase in mitosis), after proper
chromosome attachment to the mitotic spindle had been experimentally
prevented. Prometaphase lengths were determined using fluorescence
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Fig. 2. Inference of a log-normal distribution using right censored data. (A) Illustration
of right censoring and resulting observed distribution of data points after right censoring.
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that does not account for censoring and (B) censored data are omitted, or (C) the values of
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Fig. 3. Fluorescence microscopy live-cell imaging of different S. pombe strains to assess
mitosis times. Localization of Plo1-mCherry to spindle pole bodies (SPB) was used to
determine the prometaphase lengths. Cells are imaged every 5 minutes for 17 hours causing
interval and right censoring.

live-cell microscopy with Plo1-mCherry, whose localization to spindle
pole bodies marks prometaphase (Fig. 3). Images were collected every
5 minutes for at most 17 hours, leading to interval and right censoring.
Furthermore, cells entered prometaphase at different time points after the
start of observation, leading to a distribution of right censoring times.

4.2.1 Inference of SAC subpopulation structure from censored data
We used MEMO in a hypothesis-driven approach to assess the properties
of the distributions of prometaphase lengths in strains differing in the
expressed amounts of two proteins (Mad2 and Mad3), which are essential
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Fig. 4. Interval and right censoring has to be considered for accurate reconstruction of SAC functionality from fluorescence live-cell microscopy imaging. Circles and black bars indicate
cells in which the entire prometaphase was recorded (interval censored data). Triangles and gray bars indicate cells that were still in prometaphase when recording stopped (right censored
data). Left panel: For the mad3∆ strain (0% Mad3, dysfunctional SAC) unimodal prometaphase lengths are observed. We used the BIC to decide upon the number of subpopulations for
different settings. (A) A naïve analysis, disregarding interval censoring, selects a statistical model with two subpopulations, while (B) MEMO selects a model with a single population. Right
panel: For the wild type (WT) strain a large portion of right censored data are observed. (C) The commonly used approach to set prometaphase length of censored data to censoring time
selects a statistical model with two subpopulations, while (D) MEMO selects a model with a single subpopulation and Johnson SU distributed censoring times. The pink dotted line depicts
the reconstructed overall distribution of prometaphase lengths (i.e. the distribution that would be observed if the observation time was infinite) obtained using MEMO.
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Fig. 5. Analysis of subpopulation structure of SAC functionality in different strains using MEMO. (A) Measured prometaphase length distributions for S. pombe strains with different
Mad2 abundances. Circles indicate cells in which the entire prometaphase was recorded (prometaphase lengths, interval censored). Triangles indicate cells that were still in prometaphase
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the prometaphase length distributions: setup 1 – weighted mixture of wild type and strain specific distribution; and setup 2 – weighted mixture of two strain-specific distributions. Starting
from these initial models, backward model selection was performed. In each step all possible individual simplifications were performed and the best model was selected. For each setup, the
structures of the eight most plausible models are recorded, ranked according to their BIC. According to the most plausible model, the 200% Mad2 strain is indistinguishable from the wild
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consist of two subpopulations. (C) Model fit of distributions for prometaphase lengths (black lines) and censoring times (dashed gray lines) for the overall most plausible model selected by
MEMO. To mimic the bee swarm plots in subfigure A, probability densities are vertically mirrored.

for SAC functionality. We modeled interval censored prometaphase
lengths as weighted mixtures of two log-normal distributions. Censoring
times were described by a Johnson SU distribution.
Motivated by the results of the simulation study, we initially compared the
performance of MEMO with classical mixture modeling approaches that
disregard censoring using data of two different strains. One strain has a
completely dysfunctional checkpoint. This is reflected in the data set by

tight unimodal short prometaphase lengths (Fig. 4A and B). The other
strain has a functional checkpoint and therefore exhibits much longer
prometaphase times, including a large portion of right censored data
(Fig. 4C and D). Using the BIC as model selection criterion to determine
the number of subpopulations, naïve approaches select a statistical model
with a mixture of two log-normal subpopulations for both data sets, while
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MEMO was able to identify the biologically plausible result of single log-
normal populations (Fig. 4).
In a second step, we used MEMO to assess the qualitative and quantitative
properties of the distributions of prometaphase lengths in the different
strains. Experimental data for all strains in which Mad2 abundance was
altered are shown in Fig. 5A (Mad3 in Supplementary Material, Section
S.4, Fig. S12). The recorded prometaphase lengths indicate the presence of
cellular subpopulations with functional and dysfunctional SAC for certain
strains. Cells with a functional SAC, e.g. wild type cells, have a minimum
prometaphase time of at least 5 hours, while cells with dysfunctional
SAC have shorter prometaphase lengths (Heinrich et al., 2013). For
strains with 65% and 80% Mad2 expression, subpopulations with either
property seem to be present (Fig. 5A). A single parametrization of the right
censoring distribution was used for all strains, as censoring was statistically
identical. The parameters of the distributions of prometaphase lengths are
estimated along with the subpopulation sizes, i.e. the weights ws(u) of
the distributions, and the parameters of the censoring distribution.
The full statistical model possesses many parameters. In order to find the
minimal description of the data, we used MEMO to perform backward
model selection (Fig. 5B, setup 2). The successive simplification of the
initial model resulted in a 33% reduction of the number of parameters.
As the subpopulations with functional SAC seemed to possess similar
parameters, we considered in the next step a weighted mixture of the wild
type prometaphase length distribution and a strain-specific distribution,
and again performed backward model selection (Fig. 5B, setup 1). By
comparing the BIC values for setups 1 and 2, we confirmed that the
subpopulations with functional SAC have the statistical properties of the
wild type. Furthermore, the existence of two subpopulations could be
statistically substantiated for the three suspected strains (Fig. 5B, setup 1,
leftmost column). These results were confirmed for different distribution
assumptions (Supplementary Material, Section S.4, Fig. S5). Moreover,
the parameter uncertainties are small (Supplementary Material, Fig. S10).
The selected model (leftmost column in setup 1 of Fig. 5B) quantitatively
agrees with the observed experimental data (Fig. 5A and C).
Altogether, MEMO provides results that are consistent with the available
knowledge and the apparent structure of the data without being provided
with this information. Together with the outcome observed for simulated
data, these results indicate that MEMO can robustly extract the
subpopulation structure and allows for rigorous hypothesis testing.

4.2.2 Study of SAC regulatory mechanisms using multi-experiment
modeling

Its feature to use functional dependencies of the model parameters on
the experimental conditions, e.g. ws = fun(θ, u), enables MEMO to
compare alternative regulatory mechanisms in addition to the inference
of the subpopulation structure. We exploited this feature to study whether
the fraction of wild type-like cells is independently affected by Mad2 and
Mad3 perturbations or whether these two proteins act synergistically on
this fraction.
To assess these competing hypotheses, we compared two models encoding
these hypotheses. First we modeled the fraction of cells with a functional
(= wild type-like) SAC for different Mad2 and Mad3 abundances using
a product of two Hill-type functions (Fig. 6A). The variables of the
Hill-type functions were relative Mad2 and relative Mad3 abundance,
respectively. To take synergistic effects into account, as proposed by the
second hypothesis, in a second model the threshold parameters of these
functions were described to be inversely proportional to the amount of
the other protein (Supplementary Material, Section S.4.4). To account
for uncertainties in protein quantification, deviations from the measured
amounts were included as unknown parameters in the parametrization of
the model.

Comparing the agreement of the two models with data from three double
perturbation strains, 65% Mad2 & 120% Mad3, 65% Mad2 & 60%
Mad3, and 65% Mad2 & 30% Mad3 (Fig. 6B and C, respectively; data in
Supplementary Material, Fig. S18), the results indicate that a synergistic
influence of Mad2 and Mad3 on the fraction of wild type-like cells is
more likely. This is consistent with Mad2 and Mad3 acting in the same
complex to inhibit Cdc20/Slp1 (Heinrich et al., 2013), thereby inhibiting
cell cycle progression. In cases when the underlying signaling network
is elusive such data-driven hypothesis testing can give new insights into
the signaling mechanism. The use of functional dependencies furthermore
allows for predictions on yet unobserved experimental conditions.

4.3 Mechanistic parametrization of subpopulation
location in NGF-induced Erk phosphorylation

The ability of MEMO to incorporate functional dependencies of the
mixture parameters on the experimental conditions facilitates the use of
prior knowledge on the population and pathways structure. In combination
with the possibility to study multiple experimental conditions – time
points t and stimulations u – simultaneously, MEMO enables mechanistic
modeling of single-cell data. For a realistic assessment of these features, we
considered NFG-induced Erk phosphorylation in primary sensory neurons.
Quantitative single-cell data for Erk phosphorylation and models for the
population dynamics have been presented by Hasenauer et al. (2014b).
We employed MEMO to reevaluate the best model found by Hasenauer
et al. (2014b). This model accounts for two subpopulations differing
in the total TrkA concentration, [TrkA]0 (Fig. 7A). The phospho-Erk
concentrations in the subpopulations are assumed to be log-normally
distributed. The medians of these log-normal distributions are modeled
by ordinary differential equations describing the biochemical reaction
network, i.e. binding of NGF to its receptor TrkA and subsequent Erk
phosphorylation. The state variables are the activity of the receptor TrkA,
x1 = k3[TrkA : NGF], and the scaled abundance of phospho-Erk, x2 =

s[pErk], and the system input is the NGF concentration, u = [NGF]0.
Employing that the receptor dynamics are fast, we derived analytical
solutions for x1(t, u) and x2(t, u) (Fig. 7A). The analytical solution of
x2(t, u) is used as parametric description of the subpopulation medians.
The parameters of the population model are the kinetic parameters of the
biochemical reaction network, effective subpopulation specific receptor
concentrations, the scale parameters of the log-normal distributions, and
the subpopulation size (see Supplementary Material, Section S.5).
The multi-experiment modeling of the Erk phosphorylation data using
MEMO enabled the quantitative description of the population dynamics
as well as the tracking of the subpopulations across time points (Fig. 7B)
and NGF concentration (Fig. 7C). To assess the robustness of parameter
estimates with respect to censoring, the uncensored data as well as
(artificially) interval censored data were considered. We found that the
appropriate consideration of intervals censoring allows for the robust
estimation of kinetic parameters for a wide-range of bin numbers (Fig. 7D).
Hence, censored data allow for the quantitative assessment of kinetic
parameters.

5 Discussion
Mixture modeling of single-cell data is receiving increasing attention
due to a rising number of single-cell technologies (Hoppe et al., 2014;
Grün et al., 2015; Buettner et al., 2015; Crane et al., 2014). Standard
approaches are well established (Wang and Huang, 2007; Pyne et al.,
2009), and several software packages are available. FLAME (Pyne
et al., 2009) and flowClust (Lo et al., 2008) enable Gaussian, t and
skew t mixture modeling of flow cytometry data and can also be used
for other data types. In these implementations, multiple samples are
handled using metaclustering or distribution matching. JCM (Pyne et al.,
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2014) improves upon that by constructing template models and matching
the individual samples to the template models. This approach even
allows for the consideration of inter-sample variability, at least in the
matching step. However, JCM does not facilitate an automatic matching
of subpopulations across different experimental conditions, and - like all
other methods - does currently not incorporate hypothesis testing methods.
Furthermore, these packages do not account for censoring, which might
lead to misinterpretations (Kuchina et al., 2011; Duffy et al., 2012).
In this study we show that disregarding censoring generally results in
an overestimation of the number of subpopulations. In case of interval

censoring the severity depends on the ratio of censoring interval and inter-
cell variability (Fig. 1B).
Multi-experiment mixture modeling using MEMO enables accurate
reconstruction of subpopulation structures and properties from interval,
left and right censored data. Inter-sample variability can be modeled
using sample-specific scaling and offset parameters. By simultaneously
analyzing multiple experiments, MEMO facilitates the comparison
of different regulatory mechanisms. Thus, mixture modeling is no
longer restricted to data analysis, but also allows to formulate and
compare hypotheses how subpopulations are linked across different

 at G
SF Forschungszentrum

 on M
ay 3, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


8

experimental conditions. As demonstrated, MEMO can also be combined
with mechanistic modeling approaches.Furthermore, the characterization
of experiment-dependent subpopulations is improved, since variability
quantification is enriched by the entire dataset from multiple experiments.
The results of MEMO can be used for subsequent modeling (Song et al.,
2010; Heinrich et al., 2013). Applications to a broad range of data types,
e.g. single-cell time-lapse (Section 4.2), and single-cell protein level
snapshot data (Section 4.3) are possible. The approach can also be used
in medical studies, where patients are not observed continuously or may
drop out from the study.
The current implementation of MEMO supports analytical functions to
link experimental conditions. These functions encode hypotheses and can
be derived from measurement data or mechanistic models, such as for
example ordinary differential equation (ODE) constrained mixture models
(ODE-MM) as described in Hasenauer et al. (2014b). ODE-MMs use
mechanistic models of single cell behavior and subpopulation structure to
integrate data collected under different experimental conditions (Thomas
et al., 2014; Hasenauer et al., 2014a), and could be used to reconstruct
differences between subpopulations. MEMO provides an extension to
ODE-MM as censored data can be studied and knowledge about the
signaling pathway is not required. This renders MEMO more flexible
and easier to use for explorative data analysis. The mechanistic modeling
of single-cell snapshot data using MEMO demonstrated its flexibility
concerning the data types and established that causal relations can be
extracted. Furthermore, it revealed that parameter estimates using different
data resolutions are consistent.
For the inference of model parameters, MEMO uses a maximum-
likelihood method along with efficient gradient-based optimization.
Expectation maximization (EM) algorithms suitable for multi-experiment
mixture models with censored data could reduce the computation time
further and add to the robustness. Existing EM methods for censored
data (Lee and Scott, 2012) will have to be extended to a multi-
experiment setting. Model selection criteria implemented in MEMO could
be complemented by deviance information criteria and Bayesian model
selection (Steele and Raftery, 2010).
MEMO is currently restricted to the analysis of censored and uncensored
univariate data. An extension of MEMO to truncated and multivariate data
is possible, the latter poses however several challenges. Among other,
the evaluation of the likelihood for censored data requires the calculation
of multivariate integrals (McLachlan and Jones, 1988), which is already
computationally intensive for the bivariate case (Cadez et al., 2002).
Potential solutions might be provided by sparse grids (see (Burkardt, 2014)
and references therein). As the analysis of multivariate data is currently not
possible with MEMO, MEMO needs to be combined with preprocessing
and dimension reduction approaches (Angerer et al., 2015). Moreover,
depending on the experimental setup, prior to analysis the data may have
to be corrected for experimental biases that mask the biological population
structure (Buettner et al., 2015). To facilitate the biological interpretation of
the results, a hierarchical view on cell populations should be incorporated
in MEMO (Usoskin et al., 2015).
We also note that a full exploitation of the possibilities of MEMO requires
some expertise in the biological system. This concerns the choice of the
number of subpopulations to start with and in particular the generation
of hypotheses on the relations between different experimental conditions.
Furthermore, the user must provide reasonable parameter bounds for the
optimization procedure. In this sense MEMO is an advanced tool that is
not fully automatic. Nevertheless, its modular concept and the symbolic
programming make MEMO’s basic functionality intuitively accessible.
In summary, we introduced a computational method for the efficient and
integrated analysis of censored data that allows for rigorous hypothesis
testing. The implementation of this method, MEMO, can facilitate the
coherent and reliable analysis of single-cell data across experimental

platforms. Such standardized analysis pipelines are essential in the age
of single-cell data (Pelkmans, 2012).
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