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S.1 Sources of censoring and truncation in single-cell data

In the following we provide a list of potential sources of censoring and truncation for different data types.
Depending on the experimental setting, these sources of censoring and truncation might not be present or
there might be additional sources.

Time-lapse microscopy

� Left and right censoring: Limited time horizon of the experiment.

� Interval censoring: Limited image acquisition rate (technical or to reduce cell stress) and digital signal
representation.

� Truncation: Tracking errors or movement of cells out of frame.

Fluorescence microscopy

� Left and right censoring: Background fluorescence and fluorescence saturation. (Visscher et al., 1994)

� Interval censoring: Limited sensitivity and digital signal representation.

� Truncation: Segmentation errors and misclassification of cells.

Flow cytometry

� Left and right censoring: Background fluorescence and fluorescence saturation. (Visscher et al., 1994)

� Interval censoring: Limited sensitivity, automated binning and digital signal representation.

� Truncation: Gating.

Mass cytometry

� Right censoring: Detector saturation. (Nanita, 2013)

� Interval censoring: Discrete ion counts and digital signal representation.

� Truncation: Gating.

Single-cell qPCR

� Left censoring: Detection limit due to limited number of amplification cycles. (Buettner et al., 2014)

� Interval censoring: Digital signal representation.

� Truncation: Gating.

Single-cell RNA-sequencing

� Left and right censoring: Several detection limits. (Shalek et al., 2014)

� Interval censoring: Discrete read counts and digital signal representation.

� Truncation: Gating.
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S.2 Comparison of selected mixture modeling packages

In this section we provide Table S1 for a comparison between the provided features of MEMO, FLAME
(Pyne et al. (2009)), JCM (Pyne et al. (2014)), BayesFlow (Johnsson et al. (2016)), and the algorithms
presented in Lee & Scott (2012).

Table S1: 1The methods used in FLAME allows for the analysis of univariate data, the implementation does
however yield an error with the version available on January 20, 2016. 2The methods used by Lee & Scott
(2012) allows for the analysis of multi-variate data, the comments in the code state however that it is only
correctly implemented for uni-directional sampling in each coordinate. In the README it is furthermore
stated, that the current implementation considers that the truncation is only on the first coordinate. 3JCM
exploit prior knowledge of the subpopulation structure to perform the inter-condition matching, In general
this will not be available. Furthermore, JCM does not allow for a description of the underlying mechanisms
and hypothesis testing. 4Skewed and/or heavy tailed distributions are handled by merging of Gaussian
components into super components.

Properties FLAME JCM Lee & Scott (2012) BayesFlow MEMO

Censoring

left - - X - X
right - - X - X
interval - - - - X
distributed - - - - X
fitted - - - - X

Truncation
left - - X - -
right - - X - -
fitted - - - - -

Distributions

normal - - X X4 X
log-normal - - - - X
gamma - - - - X
skew-normal X - - - -
t X X - - -
skew-t X X - - -
Johnson SU - - - - X

Data dimension
uni-variate −1 X X X X
multi-variate X X ∼2 X -

Multi-sample fitting X X - X X
Multi-experiment fitting - −3 - - X
Simultaneous analysis of all data - - - - X
Automated model selection - - - - X
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S.3 Evaluation of MEMO for censored data

To evaluate MEMO and to illustrate the impact of censoring we used MEMO to infer the population
structure and distribution parameters from simulated data with known structure and parameters. The
evaluation was performed for interval censoring scenarios and right censoring scenarios.

S.3.1 Interval censoring

100 samples were drawn from a single log-normal distribution with parameters µ = 1 and different values
for σ. Data were binned according to different censoring intervals ∆t to simulate interval censoring, yielding
the artificial data. The parameters σ were chosen such that on the main diagonal of the plots in Figure S1
(and of Figure 1B of the manuscript) the ratio between the log-normal standard deviation (calculated from
µ = 1 and σ) and the censoring interval ∆t equals 0.2. Multi-start local optimization with 30 starts was
used to determine the maximum likelihood estimates for models of different complexity.

S.3.1.1 Inference of population structure

Mixture models with 1 to 5 mixture components were fitted to the artificial dataset. The BIC was used to
determine the best model. Results are shown in Figure 1B of the manuscript. Color encodes the number of
times out of 100 realizations a single log-normal distribution was rated to fit the data best.
We found that, when fitting continuous distributions to interval binned data (Figure 1B, left panel, censoring
disregarded) a single distribution can only be identified correctly (regarding the number of subpopulations)
as long as all data lie within one bin after applying interval censoring to the data (Figure 1B, right panel,
censoring considered), which is likely to be the case if the censoring interval ∆t is much larger than the
standard deviation of the log-normal distribution. When data are distributed across different bins, single
bin values are fitted by a narrow distribution, which leads to overestimation of the number of modes. As we
in general do not know a lower limit for the measure of distribution width (σ in our case) of subpopulations,
there is no way to prevent this effect. Even when fitting a continuous distribution to continuous data (∆t=0)
this effect emerges with increasing width of the distribution (increasing σ). By contrast, taking interval
censoring into account by fitting probability mass functions as we propose (Figure 1B, right panel), the
single mode of the source distribution can be identified correctly for a wide range of distribution widths and
censoring intervals.

S.3.1.2 Inference of population mean

In addition to the population structure the quantification of the properties of the individual subpopulations,
e.g., the subpopulation means, can be of interest. To assess the effect of interval censoring on the quality
of the estimated mean we compared the results for the two approaches described in Section S.3.1.1. We
calculated the means from the estimated parameters of models with a single mode for both approaches. We
assessed the relative deviation from the true mean (Figure S1). We find that disregarding interval censoring
results in an overestimation of the population mean with increasing censoring interval. This is reflected by
lager errors in the estimates for larger censoring intervals ∆t (Figure S1, left panel). Taken together with
the results in Figure 1B of the manuscript, left panel, these results show that larger ∆t are favorable for
the correct estimation in terms of the number of subpopulations, but the overall estimate, including the
subpopulation parameters, gets worse.

S.3.2 Right censoring

To evaluate the performance of MEMO in the presence of right censoring we used it to infer the distribution
structure and parameters from simulated data with known structure and parameters. 200 data points were
drawn from a single log-normal distribution with parameters µ = 1 and σ. Data were censored at different
times. Parameter σ are chosen such that the censoring value equals the mean at points on the gray curve
in Figure 2 in the manuscript. Multi-start local optimization with 30 starts was used to determine the
maximum likelihood estimates for models of different complexity. Mixture models with 1 to 5 mixture
components were fitted to the dataset and compared by their BIC.
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Figure S1: Inference of population structure from interval censored data with and without consideration of
interval censoring. Assessment of the accuracy of the estimated subpopulation means. For distributions with
different log-standard deviations and different inter-observation intervals ∆t, the number of subpopulations
is inferred using: (left) A model that does not account for censoring (= standard approach); and (right)
a model that accounts for censoring (= MEMO). The mean percentage deviation from the true mean is
calculated from the different fits of the ’true’ model, namely the model with a single component.

S.3.2.1 Inference of population structure

The results of the model comparison using the BIC are shown in Figure 2 of the manuscript. Color encodes
the number of times out of 100 realizations a single log-normal distribution fitted the data best. We
considered 3 different scenarios to deal with right censored data. In the first scenario data points beyond
the censoring time are omitted and the mixture models are fitted only to the remaining data (manuscript
Figure 2B). For distributions with small standard deviations, identification of the single source distribution
is possible when the censoring time is greater than the distribution mean. The higher the standard deviation
the higher the censoring time has to be to allow correct identification.
In the second scenario data points beyond the censoring value are set to the censoring value (manuscript
Figure 2C). This introduces an artificial second mode in the data that leads to the overestimation of
the number of mixture components for almost all cases. In scenario number three data points beyond the
censoring value are set to the censoring value but modeled separately using MEMO. This approach identifies
the single log-normal distribution reliably over the whole range of settings (manuscript Figure 2D).

S.3.2.2 Inference of population mean

Accuracy of estimated means for models with only one mixture component was calculated as percent devi-
ation from the true mean (Figure S2). Discarding censored data or using the value of censoring leads to an
underestimation of the population mean, while the approach implemented in MEMO is able to accurately
determine the true mean.
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Figure S2: Accuracy of estimated means in the presence of right censoring. Three different approaches were
used to fit a model with one to five subpopulations: (Left) A model that does not account for censoring and
censored data are disregarded, (center) a model that does not account for censoring and censored data are
used, (right) a model that accounts for censoring (= MEMO). The color of the circles encodes the mean
percentage deviation from the true mean, calculated from the different fits of the true model, namely the
model with a single component.

5



S.4 Analysis of SAC data

The applicability of MEMO to real experimental data was assessed by studying data collected by (Hein-
rich et al., 2013). These data provide information about the spindle assembly checkpoint functionality
in several yeast strains. The strains differ in the expression of the amount of certain proteins that have
a crucial role in SAC functionality. SAC activation in these strains was triggered by preventing micro-
tubule formation with a conditional tubulin mutation (nda3-KM311), and SAC functionality was assessed
by measuring the time individual cells stayed in prometaphase, an early phase in mitosis. Measurement was
performed by time lapse video microscopy. The individual cells were recorded every 5 minutes for 17 hours,
leading to datasets containing interval and right-censored data. We denote the interval censored data with
“prometaphase lengths” and the right censored data with “censoring times”. Since cells enter prometaphase
asynchronously, the censoring times are distributed.
Our aim was to analyze the data obtained for each strain with respect to the number and identity of subpop-
ulations differing in their SAC activity and to quantify the cell-to-cell variability in terms of the distribution
of the data points. For the sake of simplicity we analyzed the datasets of strains with altered abundance
of Mad2 and Mad3 separately, although it would be possible to analyze all datasets simultaneously with
MEMO. General conclusions drawn from the analysis for Mad2 and Mad3 datasets are very much alike, but
we provide the results for both datasets for the sake of completeness.

S.4.1 Analysis of wild type data

To demonstrate the relevance of considering right censoring in the analysis of biological data, we analyzed
the population structure of a dataset for a wild type strain. The dataset is shown in Figure S3 and in Figure
5A in the manuscript together with all other Mad2 datasets. We analyzed the dataset with respect to the
number of subpopulations in three different scenarios of treating the right censored data. Interval censoring
resulting from 5 min inter-observation time was considered in all three cases. Since yeast strains are clonal
populations of cells, i.e. genetically identical, and since the SAC is a crucial surveillance mechanism, we do
not expect subpopulations with qualitatively different SAC functionality within this wild type dataset.
The distribution of prometaphase lengths was modeled by a log-normal distribution, or a mixture of two
log-normal distributions. Censoring times were modeled by a Johnson-SU distribution. By comparing a
model with one mixture component with a model with two mixture components via their BICs, we show for
each scenario how many subpopulations are predicted. In the first scenario censored data were completely
omitted and only data of cells with observed end of prometaphase were used. As shown in Figure S3 it
is not possible to decide whether the dataset contains one or two subpopulations, since the BIC does not
differ substantially between the two hypotheses. In the second scenario censoring times are treated as
prometaphase lengths. Figure 4C of the manuscript shows that this leads to the spurious identification of
two subpopulations. In the third scenario, when using MEMO to model prometaphase lengths and censoring
times to be generated by competing processes, the single subpopulation is correctly identified. Moreover,
the unobserved overall distribution of prometaphase lengths can be reconstructed (manuscript Figure 4D).
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Figure S3: Scenario 1: Analysis of the population structure of a wild type (WT) dataset when omitting
right censored data points and exclusively using prometaphase lengths. Circles and black bars indicate cells
in which the entire prometaphase was recorded (prometaphase lengths, interval censored data). Triangles
indicate cells that were still in prometaphase when recording stopped (censoring times, right censored data).
Lines depict models with one (left) or two (right) subpopulations fitted to the data.
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S.4.2 Analysis of microscopy datasets of strains with altered Mad2 abundance

The distribution of prometaphase lengths was modeled by a log-normal distribution or mixtures of those,
whereas the distribution of censoring times was modeled by a Johnson SU distribution. The log-normal
distribution was chosen over the Johnson SU distribution because it yielded a smaller BIC (as shown below
in Figure S5). The analysed dataset includes in total nine different experimental conditions (nine different
Mad2 protein levels) and 934 quantified single cells. The optimization for a single model hypothesis in this
example is relatively fast (< 10 s on average per start in the multi-start optimization).

S.4.2.1 Analysis of mad2∆ data

To assess the relevance of considering interval censoring we analyzed the population structure of the mad2∆
strain. This strain is lacking the gene encoding for Mad2. The lack of Mad2 results in a dysfunctional
SAC (Li & Murray, 1991), hence, subpopulations with different SAC functionality are not expected in this
dataset. The dataset is shown in Figure S4 and in Figure 5A of the manuscript together with all datasets
with altered Mad2 abundance. The dataset solely consists of cells with observed ends of prometaphase. The
data are interval censored as microscopy images are only taken every 5 min. We analyzed the dataset with
respect to the number of subpopulations in two different scenarios. In the first scenario the fact that the data
is interval censored is neglected. In the second case the observation interval of 5 minutes is considered using
MEMO. We compared a model with one mixture component with a model with two mixture components by
the BIC of their MLEs. We find that the naive analysis selects a statistical model with two subpopulations
(see manuscript, Fig.4A), while MEMO selects a model with a single population (see manuscript, Fig.4B).
Biologically no subpopulation structure is expected as all mad2∆ cells have a non-functional SAC, therefore
we conclude that consideration of interval censoring can be important to gain meaningful insights in the
population structure.
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Figure S4: Analysis of the population structure of the mad2∆ dataset: Interval censoring has to be consid-
ered for accurate reconstruction of SAC functionality from fluorescence live-cell microscopy imaging. For
the mad2∆ strain (dysfunctional SAC) unimodal prometaphase lengths are observed. Circles and black bars
indicate cells in which the entire prometaphase was recorded (prometaphase lengths). We used the BIC
to decide upon the number of subpopulations for different settings. (A) Naive analysis selects a statistical
model with two subpopulations, while (B) MEMO selects a model with a single population.

S.4.2.2 Multi-experiment analysis of all Mad2 datasets

MEMO was used to analyze the qualitative and quantitative properties of the population structure for all
datasets of strains with altered abundances of the protein Mad2. All datasets are shown in Figure 5A of
the manuscript. In the following we present the results of the simultaneous analysis of the subpopulation
structure in all datasets. We visualize the agreement between model and data and the model uncertainties.

Hypothesis testing reveals the existence and nature of subpopulations. As described in the
manuscript we assessed the population structure of the different strains with altered abundance of Mad2 in
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Figure S5: Hypothesis testing via automated backward model selection for strains with altered Mad2
abundance. Comparison of the results of two initial model setups for the prometaphase length distributions:
setup 1 – weighted mixture of one wild-type (WT) and one strain specific distribution; and setup 2 – weighted
mixture of two strain-specific distributions. Each column illustrates an alternative model characterized by
its subpopulation structure. For each setup, the structures of the eight most plausible models were recorded,
ranked according to their BIC. Prometaphase lengths were modeled by mixtures of Johnson SU distributions.
Censoring times were modeled by a single Johnson SU distribution.

a hypothesis-driven approach. Therefore, two setups were compared by their BICs:

� setup 1: the initial model assumes two mixture components for the distribution of prometaphase
lengths of each strain (except wild type), in which one component, e.g. subpopulation is equal to the
wild type distribution while the other component/subpopulation is strain-specific.

� setup 2: the initial model assumes two subpopulations in which both mixture components/subpopu-
lations are strain-specific (and unlike the wild type distribution).

Prometaphase lengths were modeled by log-normal distributions. Censoring times were modeled by a
Johnson SU distribution and considered to be equal in all strains. The overall most plausible model was
determined via automated backward model selection as described in Section D.2.4.2 in the MEMO Doc-
umentation. The full optimization problem for this particular model selection study comprises testing of
38 = 6561 model variants, when considering the identity of the two possible subpopulations. Via the im-
plemented backward selection procedure the number of tested model variants was reduced to 42. In this
setting this corresponded to a runtime of 85 min.
We could confirm the existence of two subpopulations in three strains (both 65% Mad2 strains and the 80%
Mad2 strain) which consist of one strain specific subpopulation and a wild type subpopulation. The 200%
Mad2 strain was identified to be statistically identical to the wild type, and the mad2∆ strain, the 10%, the
20% and the 40% Mad2 strains were identified to be a single subpopulation substantially different from the
wild type (Figure 5B in the manuscript). These findings were confirmed assuming the prometaphase lengths
to be Johnson SU distributed (Figure S5). Since the BIC of the most plausible model assuming log-normal
distributions is lower, we conclude that the log-normal distribution is suitable to describe prometaphase
lengths in the Mad2 SAC datasets. This model is referenced as optimal model in the following, and all
further analyses and visualization in this section refers to this model. Figure 5C of the manuscript shows
the estimated distributions for the optimal model. The parameters of the optimal model for the subpopu-
lation structure of the Mad2 datasets are provided in Figure S6 using the output function printmodel.m of
MEMO.
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Type of mixture: log-normal
-----------------------------------------------------------------

| Dataset | component 1 | component 2 |
|---------------------|---------------------|---------------------|
| | w | mu | sigma | w | mu | sigma |
|---------------------|---------------------|---------------------|
| 60% Mad2 P50 | 0.44 | 6.85 | 0.43 | 0.56 | 4.51 | 0.34 |
| 60% Mad2 P188 | 0.80 | 6.85 | 0.43 | 0.20 | 4.90 | 0.32 |
| 80% Mad2 | 0.82 | 6.85 | 0.43 | 0.18 | 4.74 | 0.35 |
| 200% Mad2 P(259bp) | 1.00 | 6.85 | 0.43 | | | |
| Delta Mad2 | | | | 1.00 | 3.77 | 0.14 |
| 10% Mad2 | | | | 1.00 | 3.81 | 0.15 |
| 20% Mad2 | | | | 1.00 | 3.97 | 0.15 |
| 40% Mad2 | | | | 1.00 | 4.09 | 0.16 |
| WT Mad2 | 1.00 | 6.85 | 0.43 | | | |
-----------------------------------------------------------------

Number of parameters: 23
log-posterior: -4.0164e+03
AIC: 8.0788e+03
BIC: 8.1901e+03
Likelihood ration: Lambda = 3.9484e-02, p-value = 4.8676e-01

Type of mixture: Johnson SU
---------------------------------------------------------------

| Dataset | component 1 |
|---------------------|-----------------------------------------|
| | w | gamma | sigma | lambda | xi |
|---------------------|-----------------------------------------|
| 60% Mad2 P50 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| 60% Mad2 P188 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| 80% Mad2 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| 200% Mad2 P(259bp) | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| Delta Mad2 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| 10% Mad2 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| 20% Mad2 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| 40% Mad2 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
| WT Mad2 | 1.00 | 11.57 | 2.61 | 5.27 | 1100.96 |
---------------------------------------------------------------

Number of parameters: 23
log-posterior: -4.0164e+03
AIC: 8.0788e+03
BIC: 8.1901e+03
Likelihood ration: Lambda = 3.9484e-02, p-value = 4.8676e-01

Figure S6: Parameters of the overall most plausible population structure from the analysis of the Mad2
datasets. Model for prometaphase lengths (top), model for censoring times (bottom).
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Figure S7: Model data comparison for a model which explicitly models the distribution of censoring times.
Thick lines show data, thin lines show the cumulative distributions of the conditional probability densities
of prometaphase lengths and censoring times resulting from the model.

Model-data comparison. Figure S7 shows the comparison of model and data for the optimal model
which explicitly models the distribution of censoring times. To facilitate a direct comparison of mix-
ture model and data (without further preprocessing of the data) we plot the cumulative distribution of
prometaphase lengths and censoring times.
In many research projects no explicit model for the censoring distribution is considered. Instead, the like-
lihood of the censored data is set to the tail probability (see Section D.2.1.3 in the Documentation). The
corresponding results are depicted in Figure S8. While comparable parameter estimates are obtained, the
model-data comparison is not straight forward. If the predicted distribution is plotted it diverges from the
measured one for late time points since the distribution including censoring is not accessible.

Goodness of fit. In addition to the visual model-data comparison the goodness of the optimal model was
assessed via bootstrapping the likelihood function (Figure S9). Therefor different datasets were generated
via simulation from the optimal model, and the likelihood value of these datasets was evaluated. The log-
likelihood for the experimental data (red circle) is within the 90 % confidence interval, showing that the
model is plausible.

Uncertainty/Identifiability analysis. To assess the identifiability of the model parameters and the
uncertainty of the parameter estimates, we performed a profile likelihood analysis and MCMC sampling.
For the MCMC sampling we assumed a prior which is constant between the lower and upper bounds of the
parameters and zero outside. Accordingly MLE and MAP agree. The results of the uncertainty analysis
of the optimal model for both approaches are shown in Figure S10. Almost all parameters are identifiable
and uncertainties are small. The means, standard deviations and the 95% percentile interval resulting from
MCMC sampling are shown in Table S2. Figure S11 shows the comparison of measurement data and model,
including the uncertainty of the model predictions. We find that the data are contained in the computed
confidence intervals, supporting the validity of the model.
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Figure S8: Model data comparison for a model without an explicit model for the censoring times. Thick
lines show data, thin lines show the model. Since this model does not describe the censoring its cumulative
distribution does not resemble the data for later time points where the data is dominated by censoring
times.
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Figure S9: Comparison of log-likelihood of the experimental data (red circle) with bootstraps from the
distribution.
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Figure S10: Profile likelihoods and marginal distributions of MCMC sampling for the parameters of the
overall best model of the analysis of the Mad2 datasets (model in leftmost column in Figure 5B in the
manuscript.

parameter name mean std 2.5 percentile 97.5 percentile
µc 6.851 0.026079 6.803 6.9065

log(σc) -0.84057 0.056523 -0.9465 -0.7249
µM2,80 4.7547 0.16344 4.5165 5.0833

log(σM2,80) -0.92626 0.27188 -1.3766 -0.2782
wM2,80 0.1937 0.051134 0.1134 0.2968

µM2,65 P50 4.5058 0.036806 4.4343 4.5795
log(σM2,65 P50) -1.0762 0.080227 -1.227 -0.9139
wM2,65 P50 0.55945 0.038675 0.4846 0.6349
µM2,65 P188 4.9048 0.053405 4.8009 5.0119

log(σM2,65 P188) -1.1144 0.12311 -1.3429 -0.8568
wM2,65 P188 0.20599 0.027587 0.1546 0.2626
µM2,40 4.0917 0.021374 4.0493 4.1328

log(σM2,40) -1.8254 0.09846 -2.0085 -1.6254
µM2,20 3.9746 0.014684 3.945 4.0034

log(σM2,20) -1.8593 0.06528 -1.9843 -1.7279
µM2,10 3.8058 0.02458 3.7579 3.8533

log(σM2,10) -1.8795 0.11815 -2.1023 -1.6406
γcen 7.6208 2.7881 2.7343 12.7188

log(σcen) 0.96818 0.13604 0.7147 1.2546
log(λcen) 3.2428 0.91177 1.7047 4.7636
log(ξcen) 7.0023 0.031556 6.9397 7.0711

Table S2: Means, standard deviations and 95% percentile intervals of the parameters resulting from MCMC
sampling of the optimal model of the Mad2 datasets.
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Figure S11: Comparison of measurement data and estimated mixture model for the overall most plausible
model of the Mad2 datasets. To facilitate a direct comparison of mixture model and data (without further
preprocessing of the data) the cumulative distribution of prometaphase lengths and censoring times are
plotted. The distribution of the prometaphase lengths is shown in black, while the distribution of censoring
times is shown in gray. The thin line represents the median prediction and the thick line represents the
measurement data. Both distributions are scaled with the relative frequency of the event. The light intervals
are the 95% confidence intervals of the prediction.
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S.4.3 Analysis of microscopy datasets of strains with altered Mad3 abundance

The distribution of prometaphase lengths was modeled by a log-normal distribution or mixtures of those,
whereas the distribution of censoring times was modeled by a Johnson SU distribution. The log-normal
distribution was chosen since testing against the Johnson SU distribution yielded a smaller BIC for models
with the log-normal distribution compared to models with Johnson SU distribution (as shown below in
Figure S13).

S.4.3.1 Analysis of mad3∆ data

The mad3∆ strain lacks the gene encoding for Mad3. The lack of Mad3 results in a dysfunctional SAC (Li
& Murray, 1991), hence, subpopulations with different SAC functionality are not expected in this dataset.
The dataset is shown in Figure 4 of the manuscript and in Figure S12A together with all datasets with
altered Mad3 abundance.The dataset solely consists of cells with observed ends of prometaphase. The data
are interval censored as microscopy images are only taken every 5 min. To assess the influence of the interval
censoring on the analysis outcome we used two analysis approaches. In the first approach the fact that data
is interval censored is neglected. In the second case the observation interval of 5 minutes is considered using
MEMO. With both approach we analyzed whether the population structure of the dataset consists of one
or of two subpopulations. The optimal models achieved for both approaches and their BICs are depicted
in Figure 4 of the manuscript. As already observed for the mad2∆ dataset, we find that the naive analysis
selects a statistical model with two subpopulations, while MEMO selects a model with a single population.
Biologically, no subpopulation structure is expected as all mad3∆ cells have a non-functional SAC, therefore
this result further strengthens the importance of considering interval censoring in the analysis of population
data.

S.4.3.2 Multi-experiment analysis of all Mad3 datasets

MEMO was used to analyze the qualitative and quantitative properties of the population structure for all
datasets of strains with altered abundance of protein Mad3 (data shown in Figure S12A).
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Figure S12: Data and MEMO derived distributions for datasets of strains with altered Mad3 abundance.
(A) Measured prometaphase lengths for S. pombe strains with different Mad3 abundance. Circles indicate
cells in which the entire prometaphase was recorded (prometaphase lengths, interval censored). Triangles
indicate cells that were still in prometaphase when recording stopped (censoring times, right censored).
Since cells enter prometaphase asynchronously, the times at which data are censored are distributed. (B)
Fit of distributions for prometaphase lengths (black lines) and censoring times (dashed gray lines) for the
overall most plausible model selected by MEMO. To mimic the bee swarm plots in (A) probability densities
are vertically mirrored.

14



one subpopulation, WT

one subpopulation, not WT

two subpopulations incl. WT

two subpopulations, not WT

alternative models sorted according to BIC

significantly overall most plausible model 

setup 1 setup 2

120% Mad3

60% Mad3

30% Mad3

0% Mad3

WT 

5150

5200

5250

5300

B
IC

 o
f 

m
o
d
e
l 
i

one subpopulation, WT

one subpopulation, not WT

two subpopulations incl. WT

two subpopulations, not WT

alternative models sorted according to BIC

significantly overall most plausible model 

120% Mad3

60% Mad3

30% Mad3

0% Mad3

WT

5150

5200

5250

5300

5350

B
IC

 o
f 

m
o
d
e
l

setup 1 setup 2

A     Log-normal distribution B     Johnson SU distribution

Figure S13: Hypothesis testing via automated backward model selection for strains with altered Mad3
abundance. Comparison of the results of two initial model setups for the prometaphase length distributions:
setup 1 – weighted mixture of one wild-type and one strain specific distribution; and setup 2 – weighted
mixture of two strain-specific distributions. Each column illustrates an alternative model characterized
by its subpopulation structure. For each setup, the structures of the eight most plausible models were
recorded, ranked according to their BIC. (A) Prometaphase lengths were modeled by mixtures of log-
normal distributions. (B) Prometaphase lengths were modeled by mixtures of Johnson SU distributions.
Censoring times were modeled by a single Johnson SU distribution in both setups.

Hypothesis testing reveals the existence and nature of subpopulations. We performed the same
analysis for the Mad3 datasets as described in manuscript for the datasets of Mad2 alterations. Therefore
two setups were compared by their BICs:

� setup 1: the initial model assumes two mixture components for the distribution of prometaphase
lengths of each strain, in which one component, e.g. subpopulation is equal to the wild type distribution
while the other component/subpopulation is strain-specific.

� setup 2: the initial model assumes two subpopulations in which both mixture components/subpopu-
lations are strain-specific (and unlike the wild type distribution).

The optimal models of both setups were compared by their BICs. We could confirm the existence of two sub-
populations in two strains (30% Mad3 and 60% Mad3), which consist of one strain specific and the wild type
subpopulation. The 120% Mad3 strain was identified to be statistically identical to the wild type, and the
mad3∆ strain was identified to be a single subpopulation different from the wild type (Figure S13A). These
findings were confirmed assuming the prometaphase lengths to be Johnson SU distributed (Figure S13B).
Since the BIC of the most plausible model assuming log-normal distributions is lower compared to when
assuming Johnson SU distributions, we conclude that the log-normal distribution is suitable to describe
prometaphase lengths in the Mad3 SAC datasets. Figure S12B shows the estimated distributions for the
overall most plausible model. The estimated parameters for this model are shown in Figure S14.

Uncertainty/identifiability analysis of model parameters and model data comparison. To as-
sess the identifiability of the model parameters and the uncertainty of the parameter estimates we performed
a profile likelihood analysis and MCMC sampling. For the MCMC sampling we assumed a prior which is
constant between lower and upper bounds of the parameters and zero outside. Accordingly MLE and MAP
agree. The results of the uncertainty analysis of the optimal model for both approaches are shown in Fig-
ure S15. Almost all parameters are identifiable and uncertainties are small. The means, standard deviations
and the 95% percentile interval resulting from MCMC sampling are shown in Table S3. Figure S16 shows
the comparison of measurement data and model, including the uncertainty of the model predictions. We
find that the data are contained in the computed confidence intervals, supporting the validity of the model.
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Type of mixture: log-normal
----------------------------------------------------------

| Dataset | component 1 | component 2 |
|--------------|---------------------|---------------------|
| | w | mu | sigma | w | mu | sigma |
|--------------|---------------------|---------------------|
| Delta Mad3 | | | | 1.00 | 3.86 | 0.11 |
| 30% Mad3 | 0.63 | 6.79 | 0.38 | 0.37 | 4.77 | 0.30 |
| 60% Mad3 | 0.90 | 6.79 | 0.38 | 0.10 | 4.83 | 0.22 |
| 120% Mad3 | 1.00 | 6.79 | 0.38 | | | |
| WT | 1.00 | 6.79 | 0.38 | | | |
----------------------------------------------------------

Number of parameters: 14
log-posterior: -2.5216e+03
AIC: 5.0711e+03
BIC: 5.1300e+03
Likelihood ration: Lambda = 2.4839e-02, p-value = 1.1663e-01

Type of mixture: Johnson SU
--------------------------------------------------------

| Dataset | component 1 |
|--------------|-----------------------------------------|
| | w | gamma | sigma | lambda | xi |
|--------------|-----------------------------------------|
| Delta Mad3 | 1.00 | 7.62 | 1.79 | 5.08 | 1053.12 |
| 30% Mad3 (2) | 1.00 | 7.62 | 1.79 | 5.08 | 1053.12 |
| 60% Mad3 | 1.00 | 7.62 | 1.79 | 5.08 | 1053.12 |
| 120% Mad3 | 1.00 | 7.62 | 1.79 | 5.08 | 1053.12 |
| WT | 1.00 | 7.62 | 1.79 | 5.08 | 1053.12 |
--------------------------------------------------------

Number of parameters: 14
log-posterior: -2.5216e+03
AIC: 5.0711e+03
BIC: 5.1300e+03
Likelihood ration: Lambda = 2.4839e-02, p-value = 1.1663e-01

Figure S14: Parameters of the overall most plausible population structure from the analysis of the Mad3
datasets. Model for prometaphase lengths (top), model for censoring times (bottom).

parameter name mean std 2.5 percentile 97.5 percentile
µc 6.7968 0.026231 6.7478 6.8511

log(σc) -0.96439 0.060801 -1.0797 -0.8405
µM3,60 4.8384 0.15601 4.6158 5.0903

log(σM3,60) -1.3259 0.35757 -1.8738 -0.5183
wM3,60 0.11413 0.038459 0.0501 0.1996
µM3,30 4.7691 0.033269 4.7044 4.8347

log(σM3,30) -1.1812 0.08025 -1.3315 -1.0174
wM3,30 0.36869 0.031394 0.3089 0.431
µM3,0 3.8577 0.021173 3.8153 3.899

log(σM3,0) -2.1525 0.10535 -2.2954 -1.9046
γcen 5.9454 2.0389 2.6855 10.395

log(σcen) 0.64285 0.14894 0.3908 0.985
log(λcen) 2.8699 0.76965 1.6731 4.3608
log(ξcen) 6.9697 0.029478 6.9276 7.0443

Table S3: Means, standard deviations, and 95% percentile intervals of the parameters resulting from MCMC
sampling of the optimal model of the Mad3 datasets.
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Figure S15: Profile likelihoods and marginal distributions of MCMC sampling for the parameters of the
overall best model of the analysis of Mad3 datasets (model in leftmost column in Figure S13).
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Figure S16: Comparison of measurement data and estimated mixture model of the most plausible model
for the Mad3 datasets. To facilitate a direct comparison of mixture model and data (without further
preprocessing of the data) the cumulative distribution of prometaphase lengths and censoring times are
plottet. The distribution of the prometaphase lengths is shown in black, while the distribution of censoring
times is shown in gray. The thin line represents the median prediction and the thick line represents the
measurement data. Both distributions are scaled with the relative frequency of the event. The light intervals
are the 95% confidence intervals of the prediction.

S.4.4 Parametrization of distribution parameters

MEMO can also deal with a further layer of parametrization, namely the parametrization of the parameters
of the mixture models. This means that distribution parameters can be functions of the input and so
called meta-parameters (see D.2.2 in the Documentation). This feature enables us to test/include different
hypotheses of input dependency to improve performance.
To analyze SAC datasets independently of the error-prone protein concentrations of different strains, we
did not use this parametrization in the first place. In the following we want to show how parameter
parametrization can be applied. We will show parametrization of the fraction w(u) of cells with functional
(= wild type-like) SAC and for parameter µ(u) of the log-normal mixture component representing the
subpopulation of cells with dysfunctional SAC.
In the SAC dataset the input is given by the protein amount relative to the amount in the wild type strain.
To account for the uncertainty in the protein amount, which was determined via immunoblotting, which
has technical challenges (described in (Heinrich et al., 2013), we included the measurement error of the
input in the optimization problem. We assume the error to be additively normally distributed. For every
experimental condition, with the exception of the ∆-strains and the wild type, an additional error parameter
has to be defined together with its σ (for example see model definition file model Mad2 all fun mu hill.m).
Please note that the automated backward model selection routine (see Section D.2.4.1 in the Documentation)
cannot deal with parametrized mixture parameters in the current version of MEMO.
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S.4.4.1 Parametrization of w(u) to study SAC regulatory mechanisms

We modeled the fraction of cells with a fully functional (= wild type-like) SAC for different Mad2 and Mad3
abundances with Hill-type functions:

WTfracM2(n2,K2, uMad2rel , εMad2) = (1 +Kn2
2 )

(uMad2rel + εMad2)n2

(uMad2rel + εMad2)n2 +Kn2
2

, (1)

WTfracM3(n3,K3, uMad3rel , εMad3) = (1 +Kn3
3 )

(uMad3rel + εMad3)n3

(uMad3rel + εMad3)n3 +Kn3
3

(2)

with measurement errors εMad2 and εMad3 respectively, which are different for the different conditions.
Input and wild type-like fraction are correlated positively. The functions were normalized, so that they take
the value 1 for input values ≥ 1. The model with the parametrized fraction was fitted to all Mad2 and
Mad3 datasets simultaneously.
The integration of the parametrization into the model definition file is simple. Parameters used for
parametrization, from here on called meta-parameters, have to be defined in the same way as all other
parameters, and the parameter to be parametrized is just exchanged by the respective function of the meta-
parameters and the input. The meta-parameters are estimated together with the mixture parameters and
the error parameters.
The parameter values for the MLE are shown in Figure S17. Figure 6A in the manuscript shows the func-
tional dependency of w over u for Mad2 and Mad3 resulting from the best fit of the model together with
the respective data. The fraction of wild type-like cells for Mad2 or Mad3 concentrations lying between
the ones that have been experimentally tested can be calculated from (1) and (2), and assessed visually
from the figures. For the Mad2 datasets the wild type fraction shows a switch like behavior, indicating an
ultra-sensitive dependency of the fraction of the wild type subpopulation on the amount of Mad2. Changes
in Mad3 have a more graded effect on the wild type fraction.

Type of mixture: log-normal
----------------------------------------------------------------------------------------------------------------------------

| Dataset | component 1 | component 2 | input dependency |
|---------------------|---------------------|---------------------|----------------------------------------------------------|
| | w | mu | sigma | w | mu | sigma | u |est. error|sigma error| K2 | K3 | n2 | n3 |
|---------------------|---------------------|---------------------|----------------------------------------------------------|
| 65% Mad2 P50 | 0.44 | 6.82 | 0.41 | 0.56 | 4.51 | 0.34 | 0.65 | -0.01 | 0.02 | 0.65 | | 12.29 | |
| 65% Mad2 P188 | 0.77 | 6.82 | 0.41 | 0.23 | 4.90 | 0.32 | 0.65 | 0.06 | 0.02 | 0.65 | | 12.29 | |
| 80% Mad2 | 0.87 | 6.82 | 0.41 | 0.13 | 4.74 | 0.35 | 0.80 | -0.05 | 0.02 | 0.65 | | 12.29 | |
| 200% Mad2 P(259bp) | 1.00 | 6.82 | 0.41 | | | | 2.00 | 0.00 | 0.02 | 0.65 | | 12.29 | |
| Delta Mad2 | 0.00 | 6.82 | 0.41 | 1.00 | 3.77 | 0.15 | 0.00 | 0.00 | 0.02 | | | | |
| 10% Mad2 | 0.00 | 6.82 | 0.41 | 1.00 | 3.81 | 0.15 | 0.10 | 0.00 | 0.02 | 0.65 | | 12.29 | |
| 20% Mad2 | 0.00 | 6.82 | 0.41 | 1.00 | 3.97 | 0.15 | 0.20 | 0.00 | 0.02 | 0.65 | | 12.29 | |
| 40% Mad2 | 0.00 | 6.82 | 0.41 | 1.00 | 4.09 | 0.16 | 0.40 | -0.00 | 0.02 | 0.65 | | 12.29 | |
| Delta Mad3 | 0.00 | 6.82 | 0.41 | 1.00 | 3.86 | 0.11 | 0.00 | 0.00 | 0.02 | | | | |
| 30% Mad3 (2) | 0.63 | 6.82 | 0.41 | 0.37 | 4.77 | 0.30 | 0.30 | 0.00 | 0.02 | | 0.25 | | 2.11 |
| 60% Mad3 | 0.91 | 6.82 | 0.41 | 0.09 | 4.83 | 0.22 | 0.60 | -0.00 | 0.02 | | 0.25 | | 2.11 |
| 120% Mad3 | 1.00 | 6.82 | 0.41 | | | | 1.20 | 0.00 | 0.02 | | 0.25 | | 2.11 |
| WT fusion | 1.00 | 6.82 | 0.41 | | | | 1.00 | 0.00 | 0.02 | | | | |
----------------------------------------------------------------------------------------------------------------------------

Number of parameters: 38
log-posterior: -6.5152e+03

Figure S17: Maximum likelihood estimate for the parametrization of the fraction w of the subpopulation
with wild type like SAC.

As described in the manuscript we used MEMO to study whether the fraction of wild type-like cells is
independently affected by Mad2 and Mad3 perturbations (Model 1) or whether these two proteins act syn-
ergistically on this fraction (Model 2). To assess these competing hypotheses, we modeled the WT fraction
of cells with a functional (= wild type-like) SAC for different Mad2 and Mad3 abundances using a product
of the two Hill-type functions (1) and (2).

Model 1:

WTfracM2&M3 = WTfracM2(n2,K2, uMad2rel , εMad2) ·WTfracM3(n3,K3, uMad3rel , εMad3)

To take synergistic effects into account, in a second model the threshold parameters Kij of these functions
were described to be inversely proportional to the amount of the other protein (Model 2). For inputs u ≥ 1
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The output of this model equals the output of model 1, while for lower inputs the parameters Ki are in-
creased, which results in lower model outputs.

Model 2:

WTfracM2&M3 = WTfracM2(n2,K23, uMad2rel , εMad2) ·WTfracM3(n3,K32, uMad3rel , εMad3)

with
K23 = K2

a

(a− 1) + uMad3rel + εMad3

and
K32 = K3

a

(a− 1) + uMad2rel + εMad2
.

These models were parametrized by using the MLE of the fit of (1) and (2). The additional parameter a
in Model 2 was determined independently by maximizing the likelihood of the three double perturbation
experiments (65% Mad2 & 120% Mad3, 65% Mad2 & 60% Mad3, and 65% Mad2 & 30% Mad3, data in
Figure S18) given the MLE for all other parameters. It was found to be 7.55. The BICs shown in Figure 6B
and 6C in the manuscript were calculated from the likelihood of the three double perturbation experiments
by taking into account that Model 2 has one parameter more than Model 1.
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Figure S18: Datasets of double perturbation experiments. 65% Mad2 in combination with 30%, 60% and
120% Mad3.
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S.4.4.2 Parametrization of µ(u) of a log-normally distributed subpopulation with dysfunc-
tional SAC

Besides the weights of the mixture distributions also the parameters of the distributions can be parametrized.
In the following this is shown exemplarily for the parameter µ of the log-normal distribution representing
the subpopulation with dysfunctional SAC in datasets of Mad2. In case of Mad2 an increasing amount
of protein positively correlates with SAC functionality and therefore with the length of the prometaphase
time. Thus, we modeled the parameter µ to positively depend on the input u via a hill type function with
an offset,

µMad2(u) = µnull + vmax
(uMad2rel + ε)n

Kn
M2 + (uMad2rel + ε)n

. (3)

According to this function the time spend in prometaphase also increases with increasing protein amount.
Figure S19 depicts the functional dependency of µ(u) resulting from the MLE (Figure S20). The parametriza-
tion of µ enables the prediction of µ for yet unobserved inputs u by inserting the relative amount of protein
in the equation of the parametrization.
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Figure S19: Functional dependency of the log-normal parameter µ on the input u for u = relative abundance
of Mad2. Circles indicate the data for measured abundances, crosses for the protein abundances that result
from estimation.

------------------------------------------------------------------------------------------------------------------------
| Dataset | component 1 | component 2 | input dependency |
|---------------|---------------------|---------------------|------------------------------------------------------------|
| | w | mu | sigma | w | mu | sigma | u |est. error|sigma error| KM2 | mu_null | nh | vmax |
|---------------|---------------------|---------------------|------------------------------------------------------------|
| Delta Mad2 | 0.00 | 6.83 | 0.42 | 1.00 | 3.78 | 0.15 | 0.00 | 0.00 | 0.02 | 1.53 | 3.78 | 1.81 | 4.99 |
| 10% Mad2 | 0.00 | 6.83 | 0.42 | 1.00 | 3.81 | 0.15 | 0.10 | -0.00 | 0.02 | 1.53 | 3.78 | 1.81 | 4.99 |
| 20% Mad2 | 0.00 | 6.83 | 0.42 | 1.00 | 3.96 | 0.15 | 0.20 | 0.05 | 0.02 | 1.53 | 3.78 | 1.81 | 4.99 |
| 40% Mad2 | 0.00 | 6.83 | 0.42 | 1.00 | 4.11 | 0.16 | 0.40 | -0.04 | 0.02 | 1.53 | 3.78 | 1.81 | 4.99 |
| 65% Mad2 P50 | 0.44 | 6.83 | 0.42 | 0.56 | 4.55 | 0.34 | 0.65 | -0.05 | 0.02 | 1.53 | 3.78 | 1.81 | 4.99 |
| 65% Mad2 P188 | 0.80 | 6.83 | 0.42 | 0.20 | 4.78 | 0.34 | 0.65 | 0.07 | 0.02 | 1.53 | 3.78 | 1.81 | 4.99 |
| 80% Mad2 | 0.82 | 6.83 | 0.42 | 0.18 | 4.90 | 0.40 | 0.80 | -0.02 | 0.02 | 1.53 | 3.78 | 1.81 | 4.99 |
| WT Mad2 | 1.00 | 6.83 | 0.42 | | | | 1.00 | 0.00 | 0.02 | | | | |
------------------------------------------------------------------------------------------------------------------------

Number of parameters: 30
log-posterior: -3.7918e+03
BIC: 7.7872e+03

Figure S20: Maximum likelihood estimate for the parametrization of the parameter µ of the log-normally
distributed subpopulation with dysfunctional SAC.
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S.5 Analysis of NGF-induced Erk1/2 phosphorylation data

The parametrization of subpopulation sizes and subpopulation mixture parameters can also be related to
mechanistic models. To illustrate that, MEMO has been used to analyze data presented by Hasenauer et al.
(2014). In this paper a mechanistic population model for NFG-induced Erk phosphorylation in primary
sensory neurons from rat has been derived. Hasenauer et al. (2014) used this model to study single cell
data collected using quantitative automated microscopy. In the following we reexamine their best model
by providing MEMO with the dynamics of Erk phosphorylation and the single cell data on phosphorylated
Erk from kinetic and dose response experiments. Furthermore, we study the effect of interval censoring by
introducing censoring intervals to the originally uncensored data.

S.5.1 Mechanistic model of cell population

We consider modelMH3,3 developed in (Hasenauer et al., 2014). This model accounts for two subpopulations
differing in the total concentration of the receptor [TrkA]0. The signaling in each subpopulation upon NFG
stimulation is governed by

dx1
dt

= k1[NGF]0(k3[TrkA]0 − x1)− k2x1
dx2
dt

= (x1 + k4)(s[Erk]0 − x2)− k5x2

y = x2,

in which x1 = k3[TrkA : NGF] is the effective activity of the receptor and x2 = s[pErk] is the scaled
abundance of phosphorylated Erk. We derived the analytical solution of the model output y = x2(t) and
used it as parametric description of the medians of two log-normally distributed subpopulations differing
in the amounts of the receptor [TrkA]0, as proposed by Hasenauer et al. (2014). The input u is given by
[NGF]0, the concentration of NGF used for stimulation. As the receptor dynamics is fast, we assumed x1
to be in quasi steady state, ẋ1 = 0. Under this assumption it follows that

x1(t) =
k1[NGF]0k3[TrkA]0
k1[NGF]0 + k2

= const.,

x2(t) =

s[Erk]0

(
x1

(
1− k5

exp (−t (x1 + k4 + k5))

k4 + k5

)
+ k4

)
(k4 + k5 + x1)

.

Type of mixture: log-normal
--------------------------------------------------------

| Dataset | component 1 | component 2 |
|----------|----------------------|----------------------|
| | w | mu | sigma | w | mu | sigma |
|----------|----------------------|----------------------|
| 0 min | 0.31 | -0.04 | 0.45 | 0.69 | -0.04 | 0.27 |
| 5 min | 0.31 | 1.11 | 0.45 | 0.69 | 0.06 | 0.37 |
| 15 min | 0.31 | 1.34 | 0.57 | 0.69 | 0.10 | 0.38 |
| 30 min | 0.31 | 1.36 | 0.46 | 0.69 | 0.11 | 0.41 |
| 60 min | 0.31 | 1.36 | 0.52 | 0.69 | 0.11 | 0.43 |
| 0 nM | 0.31 | -0.04 | 0.54 | 0.69 | -0.04 | 0.41 |
| 0.001 nM | 0.31 | -0.01 | 0.71 | 0.69 | -0.04 | 0.45 |
| 0.01 nM | 0.31 | 0.21 | 0.67 | 0.69 | -0.03 | 0.40 |
| 0.1 nM | 0.31 | 0.93 | 0.59 | 0.69 | 0.03 | 0.43 |
| 1 nM | 0.31 | 1.36 | 0.51 | 0.69 | 0.11 | 0.40 |
| 10 nM | 0.31 | 1.43 | 0.48 | 0.69 | 0.12 | 0.36 |
--------------------------------------------------------

Number of parameters: 30
log-posterior: -3.5852e+04

Figure S21: Maximum likelihood estimate for the parametrization of the parameter µ via the analytic
solution of the population median over time.
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S.5.2 Parameter estimation and uncertainty analysis

The unknown parameters of the population model are k1, k2, k4, k5 and s[Erk]0, as well as the effective
subpopulation specific receptor concentrations, k3[TrkA]0,1and k3[TrkA]0,2, together with the parameters
σ1(t, u) and σ2(t, u) of the log-normal distributions describing the two subpopulations in every experimental
condition and the weighting factor w. To improve optimization performance, k1 was rewritten as k2 · KD

and k3[TrkA]0,2 was replaced by k3[TrkA]0,1 · B. KD denotes the dissociation constant of the NGF-TrkA
interaction while B denotes the relative difference of TrkA expression between the subpopulations. Fur-
thermore, we used the base 10 logarithm of the data and therefore fitted normal distributions instead of
log-normal distributions. We estimated the logarithm of the unknown parameters using multi-start local
optimization using lower and upper bounds provided in (Hasenauer et al., 2014).

The MLE of the distribution parameters is shown in Figure S21. Model and data are in good agreement
(manuscript, Figures 7B and 7C, and Figure S22), illustrating the applicability of MEMO in combination
with mechanistic models for which an analytical solution of the model output can be calculated. The profile
likelihoods of the parameters indicate that most of the parameters are well determined (Figure S23).
To evaluate the effect of interval censoring, we repeated the parameter estimation after binning the data
in different numbers of bins. For the accurate handling of interval censoring, we find that the parameter
estimates are consistent over a wide range of censoring levels (manuscript, Figure 7D).
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Figure S22: Mean and standard deviation of measured pErk levels (black) as well as the means calculated
for the model (green: mean of subpopulation 1, blue: mean of subpopulation 2, red: mean of overall
population).
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Figure S23: Profile likelihoods of the parameters parametrizing the medians of the two subpopulations.
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S.6 Case study for right censored and right truncated data with
algorithms published in Lee & Scott (2012)

For a comparison of performance on censored data we applied the algorithms provided in Lee & Scott (2012)
to our setup of right censored artificial data. We did not make the comparison for interval censored data,
since the algorithms of Lee & Scott (2012) do not consider interval censoring. Since the algorithms of Lee
& Scott (2012) can only deal with mixtures of Gaussians we log-transformed the censored and uncensored
datapoints, yielding exactly the same setup as we used to evaluate MEMO. The setup in Figure S24A is the
setup used for Figure 2B in the manuscript. Since data beyond the censoring value were omitted, this setup
corresponds to right truncation. Figure S24B corresponds to Figure 2D in the manuscript. For the right
truncated data we found that the number of subpopulations was correctly inferred only when the censoring
value is much greater than the distribution mean (Figure S24A). This is very similar to the results obtained
with MEMO (manuscript, Figure 2B). In contrast, for right censored data, the EM algorithms developed
by Lee & Scott (2012) robustly detects that the population consists merely of the log-normal distribution
(Figure S24B). This is also very similar to the results obtained with MEMO (manuscript, Figure 2D).
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Figure S24: Inference of a log-normal distribution using (A) right truncated or (B) right censored data.
The color of the circles encodes the frequency with which the correct number of subpopulations, here one,
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mean of the log-normal distribution with µ = 1 and the standard deviation indicated on the y-axis.
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