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Abstract

Mouse embryonic stem cells (mESCs) are a useful model for understanding the regulatory
mechanisms underlying embryonic development and cellular pluripotency. A thorough
understanding of the mechanisms controlling pluripotency would therefore afford valu-
able insight into directed differentiation protocols, with applications ranging from cancer
therapies to organ regeneration. Thus, it is vital to achieve a detailed, mechanistic under-
standing of mESC regulation and expression dynamics.

At the heart of the mESC regulatory network is the homeodomain-containing transcrip-
tion factor Nanog. Nanog over-expression prevents differentiation, while down-regulation
increases risk of spontaneous conversion to the endodermal lineage. Furthermore, Nanog
interacts with hundreds of validated pluripotency factors, establishing it as a central reg-
ulator of pluripotency. Interestingly, Nanog expression is heterogeneous in mESC colonies
culture in serum/LIF. However, Nanog heterogeneity is poorly characterized, largely due
to lack of Nanog protein reporters.

In this thesis, I characterize the behavior of mESC colonies using a fluorescent fusion
protein reporter developed by collaborators. I describe the expression dynamics of sin-
gle cells in terms of transitions between mother and daughter cells and onsets of Nanog
protein production from low-sorted subpopulations. I further investigate the possibility
of oscillations previously hypothesized to give rise to the observed Nanog population-level
heterogeneity. Using the single-cell time series, we identify a novel, subpopulation of
mESCs with persistently low expression of Nanog, that yet remain pluripotent. I charac-
terize the mosaic and low Nanog expression subpopulations in terms of their Pearson and
partial correlations, and find that they exhibit unique correlation structures.

These analyses are complemented by the development of a tool for the investigation
of local correlation structures in low-dimensional gene expression datasets, dubbed Mul-
tiresolution Correlation Analysis, that is applied to data obtained from mESC colonies
that have been stained with fluorescent antibodies against the pluripotency factors Oct4,
Sox2 and Klf4. Using this tool we find evidence for differential regulation between Nanog
low/negative and Nanog mosaic colonies.

I investigate stochastic models for describing Nanog expression and regulation. To
this end, I implemented and tested a novel analytical approximation developed by col-
laborators, for the purpose of inferring model parameters in a simple two-stage model of
gene expression. Surprisingly, however, the approximation proved not useful for parameter
inference due to the occurrence of non-physical negative transition densities.

Lastly, I implement an efficient exact Bayesian parameter inference algorithm adapted
to inference for fully stochastic chemical reaction network models. I extend this method



to make it suitable for inference in colonies of proliferating cells. I demonstrate the utility
of the method via testing with simulated data, and show that it is able to consistently
identify the correct model topology when tested on data generated from models with either
negative, positive or no transcriptional feedback control. I then apply the algorithm to
a real cellular genealogy obtained via a Nanog fluorescent reporter. 1 present results for
parameter inference and model comparison for three Nanog autoregulatory models, and
describe possible extensions for future work.

The detailed characterization and analysis of Nanog time series performed in this
thesis reveal that oscillations and excitatory behavior are unlikely to explain the observed
heterogeneity, and that mESCs are capable of prolonged residence in a compartment with
low Nanog expression with differing correlation structure and differentiation propensity
to colonies containing mixed Nanog expression. Furthermore the tools presented provide
new methods for investigating the dynamics of expression in mESCs and thus contribute
to the growing body of knowledge of pluripotency regulation.
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Background






Chapter 1

Introduction

Mammalian life begins with the fertilization of an egg to give rise to the unicellular zygote
which then divides repeatedly during embryonic development. The embryonic cells divide
in a very regulated and predictable sequence of events, and as they divide the cells begin
to take on specialized roles and to differ in their gene expression patterns leading to
irreversible cell lineage decisions. Although the process is regular enough to be predicted
with high accuracy, the fate of individual cells is nonetheless not entirely deterministic.

Embryonic stem cells (ESCs) are cells which are isolated from the early-stage devel-
oping embryo and which can be maintained indefinitely in culture in a suitable medium.
ESCs are pluripotent, i.e. they may give rise to all tissues of the adult organism, and
self-renewing. Thus ESCs are essential not only to normal embryonic function and de-
velopment, but also may be of great clinical relevance. A detailed understanding of the
biological regulation of ESCs and of pluripotency in general is of critical importance for
the development of novel therapies targeted at repairing damaged or dysfunctional tissues,
importantly for cancer, spinal injuries, and organ replacement.

Despite their importance, the mechanisms regulating pluripotency and differentiation
are only poorly understood. Although hundreds of factors are known to play a role in
the establishment and maintenance of pluripotency, the precise quantitative nature of the
interaction between essential elements of this pluripotency network is unknown. How-
ever, designing rational stem cell-based therapies and protocols for directed differentiation
requires a detailed, mechanistic model for ESC function.

In this thesis, I take steps in this direction by developing tools that enable a quan-
titative description of the dynamics of Nanog, a key molecule for the maintenance of
pluripotency in ESCs. I use novel data derived from mouse ESCs (mESCs), a widely used
model organism for studying embryonic development and stem cell function, in order to
describe Nanog dynamics at the single cell level using a collection of deterministic and
stochastic models.

Structure of the thesis

Part I of this thesis contains the Introduction and methods providing the mathematical
foundations for the subsequent material presented in Results. Part IT contains the results of
three investigations conducted during the course of this thesis, relevant to the investigation
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of stochastic models of gene expression at the single-cell level, presented in Chapters 3] and
Chapter [3] and [4] are presented with minor modifications to the respective manuscripts.

In Chapter [5]I present a Bayesian inference algorithm for identifying mechanistic mod-
els from tree-structured, noisy, discrete protein time series. In Chapter [6] I present a
detailed investigation of NanogVENUS expression dynamics and apply the inference al-
gorithm developed in Chapter The thesis concludes with the Outlook in Chapter
Appendices are included containing details for common probability distributions, and a
detailed discussion of a simple gene regulatory model.

For a detailed synopsis of the contributions of this thesis, see Section

1.1 Biological background

1.1.1 Mouse embryonic stem cells

Mouse ESCs (mESCs) are isolated on embryonic day 3.5 from the inner cell mass (ICM),
a collection of cells present in the interior of the blastocyst. The ICM contains cells which
later develop into the embryo, while the exterior cells of the blastocyst develop into the
extra-embryonic tissues which envelop and support the embryo during growth. Evans
et al. demonstrated that the cells they isolated from the mouse embryo are capable of
self-renewal, i.e. sustained replication, and differentiation into all cell types of the adult
organism, a capability known as pluripotency [I]. When injected into donor mice, mESCs
form teratomas, tumors containing a variety of cellular lineages, which serves as a test for
pluripotency [2].

Following isolation, mESCs are separated and grown on a layer of embryonic fibroblast
feeder cells in a medium derived from fetal bovine serum (FBS) which contains growth
factors promoting pluripotency [I, 3], see Figure However, both feeder cells and
FBS exhibit considerable heterogeneity, leading to potential inconsistencies. Williams et
al. discovered that adding the cytokine leukemia inhibitory factor (LIF) improves the
maintenance of pluripotency in mESCs and replaced the soluble factor differentiation
inhibitor activity (DIA) in culture protocols [4]. Smith later showed that it is possible to
culture mESCs in a medium containing FBS and LIF, while dispensing with feeder cells
entirely [5]. Lastly, the factor bone morphogenetic protein 4 (BMP4) has been shown to
suppress differentiation into the neural lineage [0], obviating the need for FBS and thus
rendering mESC culture protocols more controllable and consistent. Hence it is possible to
culture mESCs under feeder and serum-free conditions. Protocols both with and without
feeder cells are in use currently, with choice of protocol a matter of taste, depending e.g.
on the resources and expertise of the research institute; however, feeder-free conditions
have been shown to be more effective at preventing mESC differentiation, see e.g. for
comparison of mESC culture protocols [7].

1.1.2 Regulation of pluripotency

Hundreds of transcription factors and microRNAs are known to be involved in the main-
tenance of pluripotency, see e.g. the PluriNetWork, a database of 574 known interactions
in mESCs for details [§]. In particular, pluripotency is regulated by a set of “master reg-
ulators” that together form a core network consisting of the genes Oct4, Klf4, Sox2 and
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Figure 1.1: Embryonic stem cells are isolated from the inner cell mass of the blastocyst
on embryonic day 3.5. After isolation, mESCs are grown in culture with feeder cells in
a medium containing growth factors that inhibit differentiation. More recent protocols
permit the culture of mESCs without feeder cells or serum, using the cytokines LIF and
BMP4, which help prevent differentiation. Image copyright of Terese Winslow, reproduced
with permission.
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Nanog [9], as well as a host of peripheral regulators of differentiation such as Esrrb [10],
Stat3, Tcf7, Sall4, LRH-1 and others [111 [12].

At the heart of the network is the factor Nanog, a homeodomain-containing transcrip-
tion factor, essential for the maintenance of pluripotency. Nanog deficient cells differentiate
into extraembryonic endodermal lineages [13], while Nanog over-expressing cells are capa-
ble of maintaining self-renewal in the absence of LIF /Stat3, suggesting a pathway for the
maintenance of pluripotency distinct from other core pluripotency factors such as Oct4
and Sox2 which interact with the LIF/Stat3 pathway [14, [I5]. Moreover, cells for which
Nanog is low or absent possess a higher propensity for differentiation into the endodermal
lineage, leading to the so-called ’ground state’ hypothesis that Nanog is inherently highly
expressed in mESCs, and only upon (transient) excursion into a low-expression state due
to extra-cellular signaling or inherent stochasticity, are the cells at risk of differentiation
[16].

Nanog binds to the promoters of many downstream lineage-determining genes (often
together with Sox2 and Oct4) [I7], and interacts physically with many proteins in the
coordinated regulation of pluripotency in mESCs [I§], see Saunders et al. [19] for a
concise review of mESC regulation via Nanog. Nanog itself is regulated by a collection of
pluripotency factors, including Oct4, Sox2, Klf4, Tcf3, Genf, Cdx2, Esrrb and many others
[8]. Furthermore, Nanog is known to bind its own promoter [20], although the mechanism
of autoregulation is yet unknown with evidence both for positive autoregulation [17, 2]
and negative autoregulation [22] 23].

1.1.3 Nanog heterogeneity

Interestingly, although Nanog is a core regulator of pluripotency in mESCs, it is not
uniformly expressed in mESC colonies as shown by Chambers et al. [24], see Figure
Chambers et al. further showed that flow-cytometry-sorted subpopulations with low
Nanog expression were able to regenerate the unsorted distribution after several days of
culture; the same is true for subpopulations sorted for high Nanog expression. Collectively,
these results suggest that Nanog is heterogeneously expressed in mESCs, and that this
heterogeneity arises via dynamic transitions through the range of possible expression levels.

Although Chambers et al. utilized a transcriptional reporter, the observed hetero-
geneity extends to the protein level. Indeed, recent studies have revealed that individual
mESCs are capable of stochastically exploring the Nanog expression landscape, possibly
potentiating the response of mESC colonies to extra-cellular differentiation cues [25], 26].
Meanwhile, Nanog low cells may be more prone to differentiation, and express markers for
primitive endoderm [27].

The origin of Nanog heterogeneity is unclear. For instance Nanog heterogeneity can
be a result of a hard-wired “epigenetic landscape” which gives rise to phenotypically-
varying clonal subpopulations as a consequence of the underlying gene regulatory network
[28]. Alternatively, Nanog heterogeneity could be due to periodic fluctuations in expres-
sion level due to a negative feedback loop [29]. Others have hypothesized that “chaotic
oscillations” provide a mechanism whereby pluripotent cells randomly transit through
meta-stable attractors corresponding to different cell lineages [30]. Moreover, mESCs can
undergo epigenetic modifications such as histone acetylation and methylation which lead
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Figure 1.2: Nanog is heterogeneously expressed in mESCs. Immunohistological staining
(left) of Oct4, Nanog and DAPI (a marker of chromatin), and expression of GFP under the
control of the Nanog promoter reveal a subpopulation of cells for which Nanog/GFP is not
expressed. This is in contrast to the mESC marker Oct4 which is highly homogeneously
expressed. The color overlay (right) reveals many (blue) cells which are high in Oct4 but
which do not express Nanog. Image taken from Chambers et al. [24].

to changes in promoter accessibility and overall expression levels of affected genes, giving
rise to population-level heterogeneity [31H33]. Hence, Nanog heterogeneity emerges due
to the complex interaction of multiple regulatory and epigenetic factors.

1.1.4 mESC subpopulations and heterogeneity

Heterogeneous expression is not unique to Nanog. On the contrary, it may be the case
that Nanog is no more variable than other pluripotency genes [34]. Indeed heterogeneity
of Nanog seems to be largely induced by the choice of culture medium and perhaps ir-
relevant to in vivo cellular decision-making [35]: culturing cells in a medium containing
a two-inhibitor cocktail (2i), blocking glycogen synthase kinase 3 (GSK3) and mitogen-
activated protein kinase (MAPK) seems to greatly decrease the propensity for differen-
tiation, while upregulating the expression of pluripotency factors including Nanog [36].
Nanog heterogeneity is greatly reduced under 2i conditions, which has led to the hypoth-
esis that mESCs exist primarily in a “ground state” that is perpetually self-renewing in
the absence of extra-cellular differentiation cues mediated via the Stat3 pathway [16].

Other transcription factors have been previously shown to delineate undifferentiated
mESC subpopulations, including endodermal lineage marker Hex [37], Gata6 [27], Rex1,
Oct3/0ct4 [38], Stella, Pecaml, and SSEA1 [32], among others [39]. Moreover, mESC
subpopulations potentially show qualitatively differing regulatory motifs evidenced by dif-
ferential correlation networks [40]. Heterogeneous expression is hypothesized to afford
plasticity to the cell in terms of subsequent fate determination—thus, the ultimate fate
of the cell may be the consequence of a stochastic tug-of-war among competing lineage
determining factors, orchestrated by extra-cellular signaling cues [41), 42].
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This paradigm has given rise to a resurgence of interest in the hypothetical “epige-
netic landscape”, or Waddington’s Landscape [43], in which cells “roll” down a potential
energy surface, with local minima—or attractors—corresponding to cell lineage fates, see
Figure [1.3] The pluripotent cell then rests upon a hill and is easily disturbed via internal
stochasticity or external perturbation leading to the ultimate lineage commitment. This
differentiation metaphor has been codified mathematically in a series of recent papers
[44-50]; see e.g. Wu and Tzanakakis [51] for a review of mathematical and computational
approaches for stem cell population heterogeneity.

Figure 1.3: The epigenetic landscape posited by C.H. Waddington [43]. Cell lineage
determination emerges by stochastic fate decision according to a predefined probability
landscape.

1.1.5 Experimental techniques

The role of stochasticity in gene expression has been revealed in large part due to the
advent of a slew of single-cell technologies, summarized in Figure [1.4, For example, fluo-
rescent proteins including green fluorescent protein (GFP) and derivatives, make it pos-
sible to label individual molecules in single cells [52, 53]. Antibodies can be conjugated
to fluorescent proteins and used to detect multiple surface proteins simultaneously using
fluorescence activated flow cytometry (FACS). In FACS, the fluorescent probes are excited
with a laser and the resultant emission is recorded for each cell individually. This is useful
for both quantifying the surface protein abundance of individual cells (e.g. for determining
cell type) and for sorting cells by their respective expression levels into various subpop-
ulations. Analysis of the fluorescence intensity of various markers also makes it possible
to identify unique populations with heterogeneous multidimensional expression profiles
[54]. However, FACS is limited by the need for fluorescent probes with distinct emission
spectra; significant spectral overlap leads to ambiguity among probes, and can lead to a
false signal, see e.g. Oremord et al. for overview of FACS and probe design [55].

While FACS is thus limited to a small number of channels, another technology known
as mass cytometry provides the means to quantify the abundances of many intracellular
proteins with high accuracy. Mass cytometry works by conjugating rare metal ions to anti-
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Figure 1.4: Single cell technologies allow investigation at the genomic, transcriptomic, and
proteomic levels.

bodies against proteins of interest, followed by single-cell time-of-flight mass spectrometry.
The rare metal ions can be quantified with high precision leading to an accurate estimate
of the number of bound antibodies, and thus of the target protein abundance [56]. Mass
cytometry hence provides a high-dimensional (currently up to about 100 proteins) snap-
shot of target protein abundances within single cells, and is useful for revealing cellular
heterogeneity in tissues or clonal populations, especially in conjunction with likelihood-free
clustering and dimensionality reduction methods such as tSNE [57], viSNE [5§], SPADE
[59], GPLVM [60], diffusion maps [61].

Although technologies such as FACS and mass cytometry provide quantitative protein
information at the single-cell level, they do not permit the unique identification of each
cell. That is, it is not possible to uniquely label the cells so as to maintain continuity from
one measurement to the next. Moreover, in the case of mass cytometry, cells are destroyed
during the measurement process making it impossible to gather longitudinal information
about individual cells. Hence, both FACS and mass cytometry yield population snapshots,
i.e. distributions at a fixed point in time. In contrast, time-lapse fluorescence microscopy
(TLFM) facilitates longitudinal observations while maintaining information about cellular
identity [62, 63]. Briefly, in TLFM one uses one or more lasers of different frequencies to
excite the electrons of light-sensitive fluorophores within the cells. Fluorophores can be
either endogenous, i.e. native to the cell, such as various metabolites, or exogenous such
as quantum dots [64] or derivatives of GFP. The latter fluorophore is useful in conjunction
with transgenic cell lines wherein a gene of interest is “knocked in”, i.e. stably integrated
into the genome with a functional promoter. Using this strategy one may derive tran-
scriptional reporters where activation of the transgene promoter leads to the synthesis of
a fluorescent protein, and translational reporters, where the functional gene product of
the transgene is synthesized fused to a fluorescent protein thus maintaining a one-to-one
ratio of fluorophores and transgene protein products. The laser-excited fluorophores spon-
taneously relax to more stable energy states generating photons at characteristic frequen-
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cies. Using optical filters, it is possible to detect light of these wavelengths specifically and
by quantifying the fluorescence intensity, it is possible to ascertain the total fluorophore
concentration and thus that of the fused protein of interest as well.

Using TLFM, it is possible to gain information about processes with intrinsic hetero-
geneity within cellular populations, e.g. for the regulation of cell division [65], or cell cycle
control [66]. TLFM has been successfully applied to reveal the underlying gene regulatory
motif (such as positive autoregulation), in a system for which data generated from ex-
periments using only bulk assays lead to the erroneous conclusion of no positive feedback
[67]. TLFM can also be used to provide information about the spatial organization of
proteins and transcripts, useful e.g. for understanding complex formation within single
cells [68]. Moreover, the correlations among expression levels of fluorescently-labeled pro-
teins within individual cells can be exploited to reveal information about the underlying
regulatory mechanism, e.g. through the use of temporal cross-correlations [69) [70]. Thus,
TLFM can be used to provide longitudinal information about mRNA and protein quantity
and localization, which provides insight into intracellular regulation and organization. For
an excellent review of single-cell TLFM, the reader is referred to the article by Muzzey
and Oudenaarden [71].

Flow cytometry, mass cytometry and time-lapse fluorescence microscopy all provide
information at the protein level. I note, however, that heterogeneity exists also at the
transcriptional level as reflected by varying transcript counts of a particular gene through-
out a cellular population. Transcriptomic heterogeneity can be analyzed via a suite of
technologies enabling the quantification of the mRNA content of single cells. These tech-
nologies include single-cell quantitative reverse transcription polymerase chain reaction
(qRT-PCR) which measures the relative abundance of a small number of genes targeted
with gene-specific probes [72]; Fluorescence In Situ Hybridization (FISH), a biochemi-
cal method utilizing fluorescent probes which agglomerate with high-specificity to target
mRNA molecules, rendering them visible as blobs which are detectable using standard flu-
orescence microscopy [73), [74]; and a collection of RNA sequencing (RNA-seq) methods for
detecting single transcripts and associated polymorphisms without gene-specific probes.
The latter can be combined with various along with various single single-cell setups such as
microfluidic chips [75, [76] or droplet-based devices [77, [78] allowing very high throughput
single cell transcriptomic profiling. Cellular transcriptomic contents can also be profiled
using non-destructive techniques such as the MS2 system for detecting single transcripts
as they are synthesized in living cells [79]. For further information on modern single-cell
transcriptomic technologies, the reader is referred to Wang et al. and others [80H83].

1.1.6 Stochastic gene expression

Gene expression heterogeneity at the single-cell level is at least in part due to molecu-
lar stochasticity. Fundamentally, gene expression is a stochastic process modulated by
the availability of transcription factors, polymerases, etc. involved in the transcriptional
machinery [84]. Copy number variations in the components of the transcription process
contribute to “extrinsic” variability, and affect the expression dynamics of all genes in
the cell. In contrast, “intrinsic” stochasticity emerges due to the inherently probabilistic
events, such as transcription factor binding events, that lead to eventual gene expression.
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Contributions from intrinsic and extrinsic stochasticity, sometimes called “noise”, can be
quantified via the use of two-color dual knock-ins for a gene: covariance in the signal
of the two reporters indicates synchronous fluctuations in gene activity, and is thus at-
tributable to extrinsic stochasticity [85]. The residual variance in the expression of each
gene is thus of intrinsic origin. However, initial investigations with two-color reporters
were likely incorrect in their analysis of the intrinsic and extrinsic noise components, due
to e.g. cell-cycle induced correlation of gene expression levels, thus care must be taken
with this assay [86].

Noise seems to be a fundamental and essential phenomenon in cellular function [87].
It might for example help to coordinate regulation among large sets of genes, prime pop-
ulations of cells for response to variegated stimuli, or potentiate evolution e.g. in bacterial
colonies [88]. Noise may also facilitate “stochastic state switching”, e.g. in development,
stress response and cancer, and thus may be crucial for effectively targeting cancer ther-
apies to tumors composed of heterogeneous subpopulations [89, [90].

Recent studies using FISH [74], which facilitates the quantification of individual mRNA
molecules in single cells, have highlighted the bursty nature of gene expression: mRNA
is not synthesized continuously, but rather in punctuated bursts. Bursty production of
mRNA can give rise to highly variable distributions of proteins in cellular populations,
which may in turn lead to differing phenotype. Hence, intrinsic noise plays a substantial
role in the ultimate expression dynamics of individual cells, see e.g. Raj et al. for a review
of the role of stochastic gene expression [84]. However, not all “variability” is due to
stochastic effects: cells may respond predictably to various stimuli, environmental cues,
spatial effects, etc. [91], all of which may generate non-stochastic variability which must
be properly accounted for.

1.2 Models of stochastic gene expression

Due to the small numbers of DNA and mRNA molecules involved in the regulation of genes,
it is typically necessary to devise models which explicitly account for stochasticity, see e.g.
[92]. For example, deterministic models are insufficient to predict the dynamic behavior
of distributions pertaining to lactose uptake in E. coli cells, a task which is made possible
by the addition of a noise process, capturing inherent cellular variability [93]. Moreover,
deterministic models of are typically qualitatively incorrect when blithely applied to small
reaction volumes where stochastic effects due to discrete molecule numbers dominate, such
as for gene expression at the single-cell level [94].

Gene expression is often modeled using chemical reaction networks (CRNs), a formal-
ism which describes a collection of chemical species, the reactions that may take place
between them, and their respective reaction rates which depend on the reaction stoi-
chiometry and chemical kinetic constants [95], see Section As for the stochastic
gene regulation models, CRNs are described by a Markov jump process (MJP), and the
evolution of the probability density describing the instantaneous configuration of the sys-
tem in terms of molecular copy numbers obeys a (potentially infinite) differential-difference
equation, known as the chemical master equation (CME) [96]. Solving the CME exactly
is generally impossible except for very simple systems, and thus necessitates the use of
numerical or analytical approximations. As an example, consider a CRN containing two
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species X and Y. X is produced with a constant rate, reversibly dimerizes to form Y, and
degrades at another rate:

p oy x
X+Xx™My
Yy "2 x4 x

X F0

where the constants ko, ... indicate the associated reaction rates. The dynamics of this
CRN can be approximated using ordinary differential equations where the concentration
of each species evolves deterministically as

%[X} = ko + ka[Y] = (2k1 + k3)[X]

d

@[Y} = k1 [X]* — ko[Y].

Alternatively, the reaction could be modeled stochastically such that only the probability
of a particular configuration of molecules of X and Y at time t is known. In the stochas-
tic formulation, the probability of each reaction occurring within infinitessimal time dt
depends on the present state of the system:

P(x+1,y,t + dt|z,y,t) = koQdt
P(x —2,y+1,t + dt|z,y,t) = krz(z + 1)/(2Q)dt
Pz +2,y—1,t+dt|x,y,t) = koydt

Pz —1,y,t + dt|x,y,t) = kszdt

where each expression is to be understood as the probability of a certain configuration at
time t + dt conditional on the configuration at time ¢; the term 2 denotes the reaction
volume, which is important for the stochastic CRN description. Finally, by combining the
above equations, Taylor expanding in the arguments x and y, and setting dt — 0, one
arrives at the CME formulation:

d

kao(y+ 1) P(x — 2,y + 1,t) + ks(x + 1) P(x + 1,y,t)
— [koQ2 + krz(x + 1) /(2Q) + koy + ksx] P(x,y,t)

In principle the CME has to be solved for all states X, Y of interest. In this case the state
space is potentially infinite since no constraints or conservation relationships exist.

Over the past few decades, a wide variety of stochastic models have been developed
for describing gene regulation and biochemical reaction networks utilizing various analyt-
ical simplifications. Due to the discrete nature of molecules, the dynamics of stochastic
biochemical reaction networks are typically modeled as a continuous-time, discrete-space
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trajectory corresponding to a MJP, see Section [2.3.:2l The time-dependent probability
distribution of the system may be approximated many ways. For example, one may treat
the MJP as a diffusion process with the Fokker-Planck approximation, a second order
partial differential equation for the probability density, see Section If one assumes
a memoryless noise process, then one may approximate the stochastic system using the
Chemical Langevin Equation, a stochastic differential equation, see Section [2.4.2} sam-
ples from this approximate process can be generated with numerical routines such as the
Euler-Maruyama algorithm [97]. The system size expansion (see Section expands
the operator describing the evolution of the system’s probability distribution in terms of a
power series in the parameter describing the system’s reaction volume, thus providing an
approximation with asymptotically bounded truncation error. Moment equations capture
the dynamics of statistical features of the true stochastic system, potentially reducing com-
putational overhead [98]. Thus many mathematical and computational techniques exist
for tackling stochasticity at the cellular level, see e.g. Wilkinson et al. [92] for a high-level
review of stochastic models for chemical reaction networks.

Besides approximations for generic MJPs and CRNs, much analysis has been done for
gene expression models in particular. For example, models have been developed which
explicitly account for bursty transcription and/or translation and positive or negative au-
toregulation [99H108], see e.g. [109, [110] for an overview. However, such models typically
only solve for the (approximate) steady-state distribution of the stochastic system since
this is more tractable analytically than the full time-dependent solution. For some sys-
tems, analytical approximations are possible for the time-dependent dynamics, such as a
system with constitutively active DNA, and mRNA and protein undergoing a birth-death
process. If one assumes very fast degradation of mRNA relative to the degradation of
protein, then the associated (approximate) probability distribution is computable [111],
see Section Extensions to this method relax the assumption of infinite scale sepa-
ration between mRNA and protein degradations, and thus lead to asymptotically more
accurate expressions for the probability distributions [112), 113]; inference with such a
system is investigated in Chapter [ Furthermore, beyond intrinsic heterogeneity arising
from the probabilistic evolution of the system according to the MJP, variability is also
introduced e.g. by asymmetric cell division, which is difficult to distinguish from intrinsic
noise [114HIT6].

Exact samples of trajectories of the process described by the CME—including the
sequence of reaction firings and their respective times—can be generated by the Stochastic
Simulation Algorithm (SSA) [117]. Many exact and approximate variations of the SSA
exist which e.g. exploit algebraic tricks to expedite computation [I18-121], approximate
the Markov jump process using Poisson statistics [122-124], approximate discrete species
by continuous variables [125] [126], exploit time-scale separation between fast and slow
reactions (or species) [I127H129], etc., in order to accelerate the SSA. For a thorough
overview of approximate stochastic simulation algorithms, see e.g. [130].

Alternatively, instead of drawing samples from the (approximate) solution of the CME,
one may directly solve it using numerical algorithms. If the state space is unlimited (i.e.
the molecular copy number vector is unbounded) then solving the CME numerically is
impossible. However, if one introduces an artificial upper bound, then the evolution of the
CME on the reduced state space can be solved by simply integrating the resulting linear
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equation [I31]. Recent algorithms have been developed that exploit a factorization of the
probability tensor of the system, which reduces storage requirements and the computation
necessary for the direct solution of the CME [132]. Other approaches solve the CME not
for the complete state space, but rather for a high probability density subregion, reducing
computational effort [133], [134].

1.3 Inference for gene regulation models

The methods described in the previous section provide the means to either sample from
the underlying stochastic process, compute the (approximate) time-dependent probability
density of a fully-specified CRN, or derive analytical approximations to the steady state
distribution of simple gene regulatory models. Thus each of these approaches is a means of
solving the “forward problem”, that is, predicting the (probabilistic) behavior of a system
where the mechanisms and the associated model parameters are given.

However, one is typically more interested in the “inverse problem”: inferring the correct
model and parameters from partially observed, noisy data. If the (transient or steady-
state) probability distribution can be computed, then the likelihood of the data for a
particular parameter set can be evaluated, assuming a particular model structure. The
problem then reduces to estimating the set of parameters for which this likelihood is
greatest (the maximum likelihood estimator). Moreover, the likelihood function provides
a mechanism by which to compare different parameter assumptions, i.e. parameter sets
for which the likelihood does not greatly differ have roughly equal explanatory power,
allowing one to generate confidence intervals for parameter estimates, see e.g. [135]. If
prior information (codified as a probability distribution for model parameters) is included,
one arrives at Bayesian inference, which provides the full “posterior” probability densities
for model parameters—that is, the distributions after observed data are included [136].
Some variants of Bayesian inference, e.g. based on particle filtering approaches [I37H140],
also provide a framework for simultaneously inferring the trajectories of latent variables
and parameters.

Parameter inference for stochastic systems is hard, particularly in the context of CRNs.
It is complicated by the fact that the CME cannot generally be solved, thus, the system’s
probability distribution is generally unknown and must be approximated. For example,
one can approximate the dynamics of the stochastic process using a diffusion equation,
wherein one replaces the discrete variables by continuous ones undergoing a Langevin
diffusion [I41]. Or one can compute instead the statistical moments of the system [98], [142],
which may necessitate approximating higher order moments in order to break the infinite
hierarchy of dependencies among moments [143-145]. Inference can then be performed by
attempting to match the statistical moments of the trajectories with those of the observed
data. However, such an approach is limited in the domain of small molecular counts where
moment equations cannot accurately describe the true probability distribution, leading
sometimes even to nonphysical descriptions such as negative variances, etc. [145].
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1.4 Modeling of Nanog expression dynamics

Nanog dynamics have been the subject of heavy investigation since early studies revealed
both heterogeneous expression and a critical role of Nanog in the maintenance of pluripo-
tency [24]. Many attempts have been made to elucidate the mechanism underlying Nanog
heterogeneity and for transcription factor expression dynamics of early embryonic tissues
in general. For instance, an early model by Chickarmane et al. attempted to capture the
cellular decision-making process and emergence of trophectoderm and endoderm lineages
in the early embryo [146], using a set of ordinary differential equations (ODEs) for relevant
transcription factors. Glauche et al. suggested a generic model that would reproduce the
observed bimodal Nanog expression distribution observed by Chambers et al. [24], either
via stochastic transitions between two meta-stable attractors, or via oscillations induced
by an unknown third species “X” [29]. Kalmar et al. proposed an excitatory model that
would give rise to transient excursions into the Nanog “low” state [25]. Ochiai et al. pro-
posed that observed Nanog transcription frequencies are consistent with a simple telegraph
model where DNA can assume active and inactive states [147]. Herberg et al. propose
an ODE model of Nanog dynamics with explicit regard to culture conditions (LIF /serum
and 2i) [14§].

Despite these efforts, no definitive model has emerged that is sufficient to explain the
underlying mechanism giving rise to heterogeneous Nanog protein expression and dynam-
ics. Many models, for example the 2006 model by Chickarmane et al. [149], include the
three “core” pluripotency factors Oct4, Sox2 and Nanog in a mutual positive feedback
configuration, and predict the dynamics by further assuming deterministic behavior and
Hill functions for transactivation/inhibition. In contrast, the actual regulatory action of
Nanog is controversial—for example Fidalgo et al. and Navarro et al. have both provided
evidence that Nanog may in fact be involved in negative autoregulation [22, 23]. While
the proposed model can give rise to bistability with suitably chosen parameters, with a
state with a high pluripotency factor state corresponding to mESCs, and a state with low
expression corresponding to differentiated cells, the model is never fit to real data and
thus is purely hypothetical. Moreover, the model does not account for Nanog expression
heterogeneity, specifically, for ES cells which are high for pluripotency factors but low for
Nanog expression. A later model by Chickarmane et al. extends [I49] by including Cdx2
and Gata-6 which serve as proxies for the trophectoderm, and endoderm lineages, respec-
tively [146], and Genf, a downstream target of both Cdx2 and Gata-6, which inhibits Oct4
expression. The model thus contains a negative feedback loop leading to down-regulation
of pluripotency factors in conjunction with the expression of differentiation markers. How-
ever, the model again makes no attempt to fit real Nanog data, oversimplifies by assuming
deterministic ODE dynamics for each factor, fails to explain Nanog heterogeneity, and
does not account for potential subpopulations, thus providing at most qualitative insight
into potential regulation mechanisms in cell fate determination.

Glauche et al. present two potential mechanisms tailored for generating bimodal dis-
tributions similar to that observed for Nanog transcripts: a stochastically bistable system
and an oscillator involving negative feedback via some unidentified additional factor [29].
In principle both mechanisms are capable of generating a bimodal distribution compatible
with observed Nanog heterogeneity. However, both models are obviously highly ideal-



14 CHAPTER 1. INTRODUCTION

ized. The stochastically bistable system gives rise to dynamics that are clearly unrealistic
compared to real time series: the model generates dynamics with very separate high and
low states (in real data the division is much less clear), and too rapid of transitions be-
tween compartments (compare with e.g. [26] 150]). The model parameters were tuned
to achieve a stochastically bistable system, and thus it may be possible to adjust them
to more closely agree with observed Nanog protein dynamics. Unfortunately, however,
no published system currently exists which expresses reporters for all three markers si-
multaneously, making fitting such a model to real data very difficult. Furthermore, the
model makes an ad hoc assumption about the mechanistic regulation of the pluripotency
factors, whereas in principle one would like to infer the correct model in a more principled
way, e.g. using model comparison, for example. Lastly, mRNA dynamics are completely
neglected which could be a fatal shortcoming if e.g. post-transcriptional control proves to
be an important regulatory mechanism for mESCs, see e.g. [I51].

Several other models have been proposed for Nanog expression dynamics. Wu and
Tzanakakis proposed a stochastic model incorporating random partitioning and random
monoallelic expression which led to heterogeneous expression dynamics [152]. However,
the assumption of monoallelism is based largely on a study by Miyanari et al. [153],
which is contradicted by two later studies [34, [154], raising doubt as to the validity of
such a model. Singer et al. surmise that Nanog protein heterogeneity may arise in part
due to switching between states with differing translation rates [31]. This is consistent
with the “telegraph” model espoused by Ochiai et al. , wherein they claim that observed
Nanog transcription time series (as quantified via a fluorescent reporter) are well explained
by a simple fluctuation between active and inactive chromatin configurations without
requiring regulatory control via feedback [147]. The “stochastically bistable” model of
Nanog dynamics was further characterized by Zhang et al. who derived equations of
motion for Nanog expression from its probability landscape [I55]. Other quantitative
Nanog models were proposed by Herberg et al. [29, 148], and summarized in a recent
review by the same author [156].

Thus, while many stochastic and deterministic models of Nanog regulation have been
proposed in recent years, no definitive, quantitative model of Nanog regulation has emerged.
In particular, no group has yet attempted to fit real Nanog protein time series using a
stochastic model encompassing DNA, mRNA and protein, nor has a rigorous model com-
parison been performed. Rather, previous attempts have assumed simple models based
on presumed topologies, and shown that such a model is hypothetically compatible with
heterogeneous Nanog expression, if properly tuned via the model parameters. Thus it is of
great interest to continue investigating the long-term dynamics of Nanog expression, with
single cell resolution, with the aim of achieving a detailed description of observed Nanog
dynamics, and potentially repudiating proposed models.

1.5 Overview of this thesis

In this thesis, I address the problems presented in the previous sections, which can be
summarized as:

e Nanog heterogeneity is poorly understood. In particular it is unclear:
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whether Nanog expression in ESC colonies is generated by different subpopu-
lations with differing expression levels

how to identify subpopulations with different qualitative behaviors
— how Nanog undergoes transitions between low and high states
— the stability of such states, and

— the underlying mechanism driving these transitions
e Quantitative, data-driven models of Nanog are lacking in the literature, due to:

— lack of long-term time-lapse fluorescence microscopy data

— difficulty in deriving approximate models for Nanog behavior at the appropriate
scale

— lack of methods for fitting stochastic models to tree-structured data

This thesis is concerned with the development of quantitative methods for providing
insight into the behavior of mESCs, particularly in terms of the expression and regulation
of Nanog, a key pluripotency regulator. However, the methods developed are applicable
to any single-cell expression data. While much investigation has been performed on the
mESC regulatory network, relatively little is known about the mechanistic regulation of
Nanog, a keep regulator of pluripotency. Indeed it has yet to be shown definitively if Nanog
undergoes positive or negative autoregulation. The majority of models presented are
purely theoretical, with no rigorous attempt made to fit fully stochastic models, addressing
DNA, mRNA and protein dynamics, to single cells or colonies of cells. Furthermore, no
investigation has attempted to identify the correct regulatory model via model selection.

I present a detailed investigation into the dynamical behavior of individual mESCs, as
characterized by their expression of a fluorescent Nanog protein reporter, NanogVENUS.
In particular, I provide evidence that suggests that previously hypothesized models under-
lying the observed Nanog heterogeneity are incorrect. I specifically investigate oscillations,
transitions between mother and daughter cells, memory/correlation between related cells,
the behavior of other pluripotency factors in sister cells, onsets of NanogVENUS expres-
sion in low-sorted mESC populations, and the existence of subpopulations of mESCs which
differ in their expression levels of pluripotency factors and in the correlation network of
pluripotency factors. These analyses are largely contained in the manuscript (for which I
am second author):

Filipzyck, A., Marr, C., Hastreiter, S., Feigelman, J., Schwarzfischer, M.,
Hoppe, P. S., et al. (2015). Network plasticity of pluripotency transcription
factors in embryonic stem cells. Nature Cell Biology. http://doi.org/10.1038 /ncb3237.

As a part of the aforementioned analysis, I developed a graphical analysis technique,
Multiresolution Correlation Analysis (MCA), useful for the investigation of subpopulations
in low-dimensional gene expression data, e.g. from qPCR or from fluorescence microscopy.
This method is applied to the mESC data for investigating the existence of unique subpop-
ulations with different partial correlation structures. I further applied MCA to published
mESC qPCR data, as described in the published manuscript:
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Feigelman, J., Theis, F. J., & Marr, C. (2014). MCA: Multiresolution Corre-
lation Analysis, a graphical tool for subpopulation identification in single-cell
gene expression data. BMC Bioinformatics, 15(1), 1-10.

While investigating Nanog regulation, I attempted to utilize a new analytical technique
employing a geometric singular perturbation approach applied to a simple two-stage model
of gene expression. The two-stage model is a commonly used approximation of gene
expression, and the method [I12] provides an analytical approximation to the transition
density probability distribution of the stochastic system in terms of proteins and mRNAs.
The method had not previously been applied to the problem of parameter inference, thus
I investigated its utility in a case study, comparing it against the previous zeroth-order
model which assumes infinite scale separation between mRNA and protein degradation.
The results are published in the following manuscript, and reveal that the new method
is surprisingly not appropriate for parameter inference due to the frequent occurrence of
negative transition densities arising from the approximation used:

Feigelman, J., Popovi¢, N., Marr, C. (2015). A case study on the use of
scale separation-based analytical propagators for parameter inference in models
of stochastic gene regulation. Journal of Coupled Systems and Multiscale
Dynamics, 3(2), 164173. http://doi.org/10.1166/jcsmd.2015.1074

Lastly, I implemented a Bayesian, fully stochastic single-cell inference algorithm cap-
turing DNA, mRNA and protein dynamics, based on the bootstrap particle filter, see
Chapter |5l I present the mathematical underpinnings of the algorithm, and applications
to simulated data generated from three regulatory models: no regulation, and positive or
negative transcriptional autoregulation. The algorithm presented is the first method to di-
rectly perform fully exact, Bayesian inference on noisy, partially- and discretely-observed,
tree-structured protein time series. Using the synthetic data, I show that the method
provides a better estimate of model parameters than possible without the additional mod-
eling of the cell division process, and substantially improves the accuracy of the model
identification over single-cell based methods. Finally, I applied the inference algorithm to
real data obtained from a fluorescent Nanog protein reporter mESC line and report the
findings of model selection using Bayes factor analysis and the particle filtering inference
algorithm.

I have also contributed to the following manuscripts which are not discussed in this
thesis:

e Michael Schwarzfischer, Oliver Hilsenbeck, Bernhard Schauberger, Sabine Hug, Adam
Filipczyk, Philipp S. Hoppe, Michael Strasser, Felix Buggenthin, Justin Feigel-
man, Jan Krumsiek, Dirk Loffler, Konstantinos D. Kokkaliaris,, Adrianus J. J.
van den Berg,, Max Endele, Jan Hasenauer, Carsten Marr, Fabian J. Theis, Timm
Schroeder. Reliable long-term single-cell tracking and quantification of cellular and
molecular behavior in time-lapse microscopy (in preparation)

e Strasser, M. K., Feigelman, J., Theis, F. J., Marr, C. (2015). Inference of spa-
tiotemporal effects on cellular state transitions from time-lapse microscopy. BMC
Systems Biology, 9(1), 61. http://doi.org/10.1186/s12918-015-0208-5
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e Thomas Blasi, Christian Feller, Justin Feigelman, Jan Hasenauer, Axel Imhof,
Fabian J. Theis, Peter B. Becker, Carsten Marr. Combinatorial histone acetylation
patterns are generated by motif-specific reactions. (submitted)
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INTRODUCTION



Chapter 2

Methods

2.1 Introduction

In this chapter I present the tools necessary for understanding the results presented in
later chapters. In particular, the results largely derive from the application of probability
theory to identify models and sets of model parameters that provide the best fit to observed
data. Thus, I present basic results from probability theory necessary for understanding
the inference techniques used in the study of Nanog time series. I then present results
from dynamical system theory which are necessary for understanding the deterministic and
stochastic models derived. Lastly, I rederive results from chemical kinetic theory to provide
the theoretical basis for chemical reaction networks and their probabilistic description via
the chemical master equation.

Modeling

Modeling is typically used to gain insight into the mechanism underlying observed data and
to predict the results of future experiments. The same modeling strategies can be applied
to data from very diverse sources, spanning from turbulence in jet engines to cellular
growth and gene expression. A wide range of mathematical and computational techniques
are used for modeling experimental data. At the core however, the essential goal remains
the same, namely to devise a system to predict the value of some observable variables
which can then be compared with experimental results. Hence, a good model is one that
agrees with experimental results, does not contradict known facts, and has reasonable core
assumptions. Moreover, a model should be falsifiable in the sense that it should be possible
to validate the model by making predictions, for example by varying model parameters,
and that these predictions can be compared with the results of additional experiments.
A model consists of variables corresponding to experimental covariates, and a set of de-
terministic or probabilistic rules describing the relationship among these variables. Models
can be static or dynamic, depending on whether the variables are time-dependent: static
models describe the relationship among covariates whereas a dynamical model describes
the deterministic or probabilistic evolution of the system. Whereas a model is partly de-
fined by the statistical or dynamical relationship amongst covariates, it is also described
by the set of model parameters, i.e. a set of variables in addition to the covariates of the
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model, necessary for the evaluation of the state of the system. The performance of a given
model and parameter choice can be assessed on the basis of the power of model parameters
to explain the observed data, requiring a measure of goodness of fit. This measure can be
any arbitrary score related to the discrepancy between model prediction and actual ob-
servation. A common choice is the sum of the square of residual errors, i.e. the difference
between the observed data and the model prediction. More sophisticated methods rely on
a measure of the probability of observing a particular outcome or observation based on
the assumed model and parameters; good models will produce outcomes that resembled
the observed data with a high probability.

2.2 Probability, statistics, and parameter inference

2.2.1 Probability basics

In this section I provide a very brief summary of basic probability. For a more thorough
treatment, see for any textbook on elementary probability theory, e.g. [I57]. It is assumed
that the reader is familiar with sets and basic set operations such as unions, intersections
and set differences.

We define a state space (2 to be some set of possible outcomes of a random event.
For example when flipping of a coin, the possible outcomes are heads or tails, denoted H
and T, respectively. Thus the state space for this system is Q = {H,T'}.

An elementary event w € (), is a single element of the state space. For the coin,
the elementary events are H and T. More generally, an event is some subset of the state
space that satisfies a given condition. For example, when tossing a die with outcome
weN=1{1,2,3,4,56}, an event A might be defined as A = {w > 3} = {3,4,5,6}.

An event is measurable if it is possible to determine from an event w € 2 whether
w € A. Events can be combined via and/or relationships. The compound event consisting
of event A or event B, (A,B € Q) is given by the union AU B. The event A and B
is given by the intersection, A N B. The complement of an event is the event which
corresponds to the “opposite” of an event. For example, for the dice if A = {X > 3}, then
the complement A° = {X < 3}, and in general is given by the set difference A° = Q\ A.

A o-algebra A of Q is a subset of 29, the set of all subsets of Q, with the following
properties:

e The empty set ) € A

e The state space Q € A

e If an event A € A then the complement of the event A € A
e The set A is closed under countable set operations

The state space €2 and the o-algebra A together constitute a measurable space
(Q, A, P). The probability measure P gives the “size” of each element of the o-algebra, a
number between 0 and 1, with P(Q) = 1 and P(f)) = 0; the events () and § are sometimes
referred to as the impossible event and certain event, respectively. For a countable state
space {2, the probability measure assigns to each w € A a number P, € [0, 1]. Moreover, the
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probability of any union of disjoint elements X,Y € A, i.e. XNY = (), is given by the sum of
the two probabilities: P(XUY) = P(X)+ P(Y). More generally P(U2,A,) => 02 Ap
for a series A, of pairwise disjoint elements of A. If X and Y are not disjoint, the
probability is given by P(X UY) = P(X)+ P(Y) — P(X NY).

A random variable (RV) is a function of an outcome w € €2, therefore its value
is determined by the outcome of the event. The probability of a RV X (w) assuming a
particular value z is the summed probability of all events yielding that value: P(X = x) =
> weq P(W)1x )=z, where 1 is the indicator function.

If the outcome is not countable, e.g. Q C R, then the probability P(X = x) is obtained
by integration: P(X = z) = [, (X (w) — z)u(dw), where p is the measure of the set w,
and §(X) (the Dirac delta function) is one if X = 0 and zero otherwise.

Joint and marginal probability

The joint probability of a two disjoint events A and B (A, B € Q) is the probability
of the intersection of the two events: P(A, B) = P(AN B). For example when tossing a
die, the probability that the random variable X (w) = w is both even-valued and larger
than 3, is given by the probability P(X even and X > 3) = P({X even} N {X > 3}) =
P({4,6}). If X1, X5 are two random variables of the random outcome, i.e. X;2:Q — T
(for some space T'), then the joint probability of X, Xs is given by P(X; = x1,Xo =
r2) = Y, P(W) (X, (w)=21,Xs(w)=2s}» and similarly for multiple random variables.

The marginal probability of the RV X; = x; is the summed probability all events
w € Q for which X;(w) = 7. The marginal probability can be obtained from the joint
probability via summation over the other random variables of the joint probability, e.g.
P(X,) = ngeT P(X; = x1, X2 = x2), where T is the range of the RV X,. For instance,
if X is the result of one coin flip, and X5, X3, ... the results of subsequent coin flips, then
the probability P(X; = H) is computed by summing the joint probabilities of all events
for which the first coin toss resulted in heads, regardless of the outcomes of the remaining
coin tosses:

P(Xy=H)=> Pw)lix,—m
we
= Y PXi=HXy=m,. .., Xy=ay)

T2,..0, TN

Conditional probability and conditional independence

A pair of random variables X,Y are conditionally independent if the joint density of
X and Y satisfies P(X = z,Y =y) = P(X = 2)P(Y =Y), i.e. the joint probability is
the product of the two marginal probabilities. If Y is not conditionally independent of
X, then the probability of Y will change depending on the value of X. The conditional
probability of Y given the value of X, or conditional on X, is denoted P(Y'|X). Thus
conditional independence implies P(Y|X) = P(Y'). Conversely, if Y is not conditionally
independent of X, then it is conditionally dependent. For example, if X and Y are the
outcomes of two consecutive coin flips, then Y is conditionally independent of X, and the
probability of the outcome X = H AND Y = H is given by P(X = H) x P(Y = H).
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Factorization

The joint probability can be factorized as :
P(X,)Y)=PX|Y)P(Y)=PY|X)P(Y) (2.1)

which can be intuitively interpreted as the probability that both X and Y occur is the
probability that Y occurs and that X occurs, given that Y has occurred, or vice-versa.

2.2.2 Bayes’ rule
From the factorization of the joint density (2.1)) it follows that

P(x|y) = DEEIR) (Yggf; &)

(2.2)
This simple formula is known as Bayes’ Law, and forms the basis of Bayesian statistics.
In the context of parameter inference, it is commonly written as P(©|D) = %,
where O are the model parameters and D the observed data. P(©|D) is known as the
posterior probability of the model, i.e. the probability of the model parameters after
considering the data; the model parameters can become more or less probable depending
on the agreement between model prediction and observed data. The term P(D|O©) is
known as the likelihood of ©, i.e. the probability that the data D would be observed if ©
were true. The term P(0) indicates the probability of the model parameters in the absence
of observed data, and is known as the prior probability. P(D) is the marginal likelihood
of the data, also known as the evidence, obtained by summing the probability of the data
for all possible values of the model parameters, weighted by the prior probability of those
model parameters.

The term P(©) plays a critical role in Bayesian statistics, since it represents prior
knowledge about the probability of model parameters, for example from literature, exper-
imental results, or physical feasibility. The prior reflects our knowledge of the true values
of the parameters before the inclusion of the data D. Hence, the posterior likelihood
P(©|D) represents out knowledge about the parameter values after including the data D.

2.2.3 Continuous random variables

In the case of a continuous RV X : 0 — T', we define the probability density function
(PDF) of X, denoted ¢(X) as the probability per unit volume (in the range space T') of
X. That is, for a region A C T, P(X € A) = [, ¢(x)dx = [,6(X(w) € A)p(dw). For
example, if the range of X is T' C R, then

b
P(X € [a,b]) = / 6(x)dx (2.3)

Unlike for discrete variables, the PDF need not be bounded above by one. By convention
¢(0c0) =0, and ¢(x) =0,Ve ¢ T.

Probabilities of events involving multiple continuous variables can be computed anal-
ogously to by utilizing higher-dimensional integrals.
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The cumulative probability density of a univariate random variable X : Q — T C
R is defined as:

O(x) = o(s)ds. (2.4)

Using (2.4)), one sees that P(X € [a,b]) = fb @(s)ds = ®(b) — ®(a).

a

2.2.4 Statistical moments

One is frequently interested in knowing the likely outcome of a random variable. For a
discrete RV, one can compute the most likely outcome, i.e. the outcome for which P(X)
is maximal. For continuous random variables, the peak (or mode) of the probability
density provides some indication of a likely outcome, however, one must also take into
consideration the width of the peak, i.e. the relative uncertainty in the outcome. In
particular, the expectation of a RV X with PDF ¢(z), is defined as:

E[X] = / 2 6(x)da (2.5)

where the integral extends over the the range of X. For symmetric, unimodal probability
distributions, the expectation coincides with the peak of the distribution. The expectation
of a function f(X) is defined analogously as E[f(X)] = [ f(z)¢(x)dz. If X is discrete-
valued, then the expectation is computed using the probability mass function: E[X] =
S, aP(x).

More generally one may compute any statistical moment of the (univariate) distri-
bution described by ¢(x). The k" statistical moment (k = 0,1,...) is defined as:

My =E[X*] = /x%(x)dx (2.6)

where My = [ ¢(z)dz =1 and the expectation is given by E[X]| = M;.

The variance of X is defined as var[X] = E[(X — p)?] = E[X?] — u?, where u = M;.
The variance provides an indication of the spread of the probability density function and
relates to the variability or uncertainty of the random variable. The standard deviation

is defined as o = y/var[X].

Multivariate moments

If X = (X1,Xo,...,Xn) is a vector of random variables, i.e. a multivariate RV, then
probability density of X is given by the joint probability P(Xi, Xo,..., Xn).

Analogously to the moment equation , moments Mjy, can be defined for the
multivariate RV as:

77777 N

N
My, iy = E[[ [ (X = EIX:])*]. (2.7)

=1

The order of the moment Mj, . 1, is given simply by Zf\;l k;.
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Covariance

The covariance of a pair of RVs, or of a multivariate RV, is defined as cov(X,Y) =
E[(X — px)(Y — py)], where ux and py are the expectations of X and Y, respectively.
If X and Y are conditionally independent, the covariance vanishes:

E[(X — ux)(Y — uy)] = / / @ — 1)y — 10 ) )y
= //(a: — ux)(y — py ) o (z) oy (y)dzdy

= [@=woe@rs [-moay
= (px — px)(py —py) =0
where ¢,(x) and ¢y(y) are the densities of X and Y, respectively. The same holds

for discrete RV (i.e. 2 is countable), for which E[X] = )  xP(z), and cov(X,Y) =
>, Y, #yP(,y) — EX]E[Y].

The covariance between two variables is a measure of the interdependence between the
two variables, and zero covariance indicates no (linear) relationship between the variables,
as shown in (2.§). The covariance matrix ¥ = {aij}ﬁfj:l of a set of random variables
has entries o;; = cov(X;, X;), and 0;; = var(X;).

Correlation and partial correlation

The correlation between two random variables X, Y is equal to the covariance scaled by
the respective univariate standard deviations, ox and oy:

cov(X,Y)  cov(X,Y)
var[X] var[Y] oxX0oy

cor(X,Y) = (2.9)

While the range of the covariance cov(X,Y) is (—o0, 00), the correlation is bounded by -1
and 1, with -1 indicating complete anti-correlation, i.e. a negative, linear dependence of
X and Y. For example, if Y = —AX for some A € R, then

cov(X,¥) = E[(X — jux) (~AX + Mix)]
= =AE[(X — pux)(X —pux)] = —Avar X
varY = E[(—=AX + A\uy)?] = A var X
cov(X,Y) (2.10)

vVvar X varY
—Avar X

VXZvar X var X

hence Y is perfectly anti-correlated with X; if Y = AX, A\ € RT then cor(X,Y) = 1.

Eq. defines the so-called Pearson correlation. However, correlation can be
defined in other ways using other statistical measures such as Spearman or Kendall cor-
relation, each having to do with the extent to which value of one variable depends on the
value of another [I58]. However, it is easy to see that correlation suffers transitivity, i.e.

cor(X,Y) =

—1
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random variables that are not directly interrelated may nonetheless show correlation due
to indirect associations.

For example, consider a system of three linearly-related continuous random variables,
X,Y and Z, such that X « Y and Y o« Z. Obviously X « Y, and thus cor(X, Z) = 1.

Thus, although X does not directly depend on Z in this trivial example, it nonetheless
shows perfect correlation due to the dependence on the intermediate Y. However, if one
conditions on the value of Y, then X and Z are no longer correlated.

More generally, one may compute the partial correlation between any two variables
Xi, X; € V for some system V = {X1,..., Xy} of random variables as:

Pij|V\{X:,X;} = —\/% (2.11)
where p;jjv\(x; x;} is the partial correlation of X; and X; conditioned on the remaining
variables in the set V [I59]. The term p;; indicates the (i, j)** entry in the matrix P = R™*
where R is the correlation matrix defined as in . Alternatively, the partial correla-
tion may be understood as the residual correlation between two variables X;, X;, after
subtracting a linear regression upon the remaining variables V' \ {X;, X;}; if the residuals
correlate, it indicates the presence of a correlation component that is not explained by the
other variables in V.

2.2.5 Hypothesis testing and p-values

In inference, it is frequently necessary to decide whether a given model or hypothesis is
consistent with the observed data. One may define a null hypothesis, Hy, representing
a certain model assumption, e.g. that the mean p of the observed data is equal to a value
1o, and a mutually-exclusive alternative hypothesis, H 4, such as u # po or pu > uo.
Assuming that the probability of the observed data (assuming the Hy to be correct) can
be computed, the null hypothesis is rejected if the probability of the observed data is less
than a particular, small value, i.e. P(D|Hp) < « for some small but arbitrary a. The
value « is known as the significance, and the probability P(D|Hp) is known as the p-
value, p. Typically, « is set to 0.05 for a “significant” result, and 0.01 or 0.001 for a
“very significant” result, indicating a low probability of the data being observed if the null
hypothesis were true. Thus, if p < « one can reject the null hypothesis in favor of the
alternative hypothesis.

2.2.6 Parameter inference

In addition to identifying a model which is compatible with the observed data, one may
also attempt to learn, or infer the set of model parameters © which are compatible with the
data. The inference procedure may yield a single best estimate, or point estimate, for the
parameters, or, as is often the case there may exist many possible sets of parameter values
which could possibly give rise to the data, in which case the aim is to infer all possible
parameters compatible with the data and their respective probabilities. For a given set
of model parameters 6, and set of (multivariate) observations X = {Xj,..., Xy}, the
likelihood of @, L(0), is given by the probability of observing the data, assuming those
parameters: L(0) = P(X|0).
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If the residual errors are entirely due to the measurement process, then the errors
are conditionally independent from one another and the likelihood factorizes as L(6) =
P(x10) = Hfi | P(X;]0). Furthermore, if one assumes normal measurement errors with
variance o2, then the likelihood function is the product of the normal densities (see Ap-

pendix [A.1]):

A (X; — ,)>
L(X|0) = exp(— -t _ i)
e HW o 20° : (2.12)

N 2
_ (27T02)7N/2 eXp(_Zz_1(2X02 ;) ).

Thus the maximizer of the model likelihood L(0) minimizes Zf\i 1(X; — p;)?; hence the
solution with the least squared error is the maximizer of the likelihood for independent
and identically distributed measurement errors.

Maximum likelihood and maximum a posteriori estimators

The most likely estimate given experimental data is known as the maximum likelihood
estimator (MLE). The MLE, denoted 0 is typically computed via optimization of the
likelihood function L(8) = P(D|8), i.e. @ = argmax L(0), for data D.

The sensitivities of the likelihood function gre the gradients of the likelihood function
with respect to the model parameters, i.e. age(f), e E)BLT(J\?). The gradients are useful for
improving the performance of numerical optimization algorithms for obtaining the MLE.
If the gradients cannot be obtained analytically, they are typically estimated numerically
instead.

An alternative to the MLE is the maximum a posteriori estimator (MAP), which is

the maximizer of the posterior probability given by (2.2)), i.e. MAP = argmax %.
(7]

In the event of an “uninformative” prior, that is, P(8) = C (for some constant C'), the
MAP reproduces the MLE.

Confidence intervals

Both the MLE and the MAP represent point estimates of the parameter set most in agree-
ment with the observed data, i.e., they represent single best (possibly multidimensional)
point in the possible parameter space. However, one is usually also interested in the con-
fidence interval (CI) of the parameters. That is, one would like to know the region of
parameter space, for which there is a high probability that the parameters are contained
within this region. The significance level, « is the probability that the (unknown) true
value of parameter does not lie within this region. For example, one commonly looks at
the 95% CI (significance o = 0.05): the probability of the model parameters not being
contained within this interval is estimated to be 5%.

In some cases, it is possible to derive the asymptotic distribution of the sample
estimator, i.e. the distribution of the sample estimator converges to this distribution as the
number of samples increases indefinitely. In other cases, the distribution of the estimator
is known exactly regardless of the sample size. If the distribution of the estimator of
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the parameter is known, then the CI can be straightforwardly computed. For a univariate
parameter, the Cl is given by the region 6, < 6 < 6, such that ®(6,) = § and ®(0,,) = 1-5,
where ®(6) is the CDF of 6, given by (2.4). If the distribution is not known, then one can
approximate the CI based on the empirical distribution, e.g. using a bootstrap estimator,
see e.g. [160].

In higher dimensions, instead of a confidence interval one speaks of a multidimensional
confidence region.

Profile likelihoods

If a parametric function for the likelihood is not known, it is possible to instead use
profile likelihoods to estimate the region most likely to contain the correct parameters
for a given model. For parameters 8 = (01,60, ...,60,), the profile likelihood of parameter
0i. is computed by fixing the value of 6, to a value ¢, while simultaneously maximizing the
likelihood using the remaining parameters, 6 \ 0y:

PL(0x;c) = max (0, = ;0\ 6) (2.13)
6\0,

Intuitively, the profile likelihood is an indication of the identifiability of a single model
parameter #: if the profile likelihood decreases in both directions away from the max-
imum likelihood estimator, it indicates that the likelihood cannot be increased by some
perturbation to the other model parameters. In such a case 6 is said to be identifiable.
Conversely, if the profile likelihood is flat in either direction it indicates a lack of identifi-
ability, since perturbing 8, away from the MLE does not cause the likelihood to decrease.
In other words, there are other parameter combinations which agree equally well with the
data.

Bayesian parameter inference

Although profile likelihoods give an estimate of the region containing individual model
parameters, they do not show how parameters estimates relate to each other. For example,
model parameters which are not identifiable may exhibit strong correlations, which can give
rise to manifolds in parameter space for which the likelihood does not change appreciably.

If the evidence integral P(D) = [(D|0)P(0)d@ is tractable, then it is possible to
directly compute the posterior probability P(8|D), see (2.2). However, it is generally not
possible to compute the normalizing factor P(D) in closed form.

Markov chain Monte Carlo sampling

If the evidence integral cannot be computed directly, one may instead approximate the
posterior distribution P(6|D) = P(D|0)P(6)/P(D) using Monte Carlo (MC) sampling.
If one can generate a series of samples G(k), k=1,...,N from the posterior, then it can
be approximated by a mixture of Dirac delta functions, centered on the N points:

N
P(OD)~ Y 56 —oW). (2.14)
k=1
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Thus with Monte Carlo sampling it is not necessary to compute the model evidence. The
PDF of an arbitrary point not in the support of the Delta mixture can then be obtained
by applying kernel density estimation to the sampled points.

To guarantee that the points 0%) are sampled from the target density, they must
be chosen in a particular way. Many techniques exist for drawing MC samples from a
distribution, for example slice sampling, importance sampling, rejection sampling, etc.,
see e.g. [161]. However, if the normalizing factor P(D) is not known, one may instead
use Markov chain Monte Carlo (MCMC). MCMC works by constructing a “chain”,
i.e. a series of samples, which satisfy the Markov property, i.e. the distribution of the
next sample depends only on the current sample, see Section The Markov chain
constitutes a random sequence in the parameter space. If the chain is carefully constructed,
the distribution of samples in the chain will converge eventually to the target distribution,
P(6|D).

The Markov chain is initialized to some value 6, and at each iteration i of the MCMC
algorithm, a new sample 6, is generated from conditional distribution given the current
sample, P(6;11]0;,D). The goal is to construct a chain such that the distribution of a set
of samples drawn from chain (after the chain has converged to its stationary distribution),
is equal to the target density, i.e. the posterior density.

The MCMC algorithm consists of two stages:

1. proposal of a new parameter set 6;,1 with probability density Pyrop(@it1/6:)

2. acceptance or rejection of the new proposal according to an acceptance probability
Paccept(0i+1 ‘917 D)

Hence the probability of generating a new sample 6,1, conditional on the current state

0; is given by the product of these two probabilities: P(0;11|0;,D) = Pprop(0i+1|0;) X
Piccept (041103, D). Thus, the marginal probability of 6;,1|D is given by:

P(6:41]D) = [ P(6:11/6:. D)P(6.[D)d,

(2.15)
_/PPYOP( H—l‘o) accept( i+1’0i,D)P(9i’D)d0

Assuming that the current state 0; is a sample from the target distribution, i.e. P(68;|D) =

P(D 0
| , - ) becomes

P(8:111D) = [ Pog(811110 Pacrs 01016, D) P08 ae, (2.0

If we propose new parameters ;.1 according to some arbitrary proposal function ¢
such that Pyrop(0i+110i) = ¢(0i41]0;), and accept with probability

P(D|6i+1)P(0i11) q(6i|6i1)
P(DI[6;)P(0;) q(6:11]6;)

Paccept (92'-1—1 |0u D) = (217)
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then the probability of the sample 6,1 given by (2.16|) reduces to

/ Porop (0::1110;) Paccept (85+1]0:, D) P(6:|D)d6);

_/ (6::116:) [P(DWHI)P(@H) q(0;10;+1)] P(D|6;)P(6;)

= q\vi+1|Y; P(D’Oz)P(OZ) q(0i+1]0i) P(D)

= [ PPy oo,

_ P(D|0;r(1]))1)3(0¢+1) /Q(eiwz'ﬂ)d@i

_ P(D6i41)P(0i41)
P(D)

deo;

= P(0;11/D)
(2.18)

Hence, 0,41 is a sample from the target, posterior density.

Whenever the acceptance probability is larger than 1, the new sample 6;,1|D
should be accepted with probability 1. Thus, by proposing according to ¢(6;11/6;), and
accepting according to , the probability density of the samples generated is exactly
that of the target density. The MCMC algorithm with the proposal and acceptance proba-
bilities presented in this section is known as the Metropolis-Hastings (MH) algorithm
[162].

The Markov chain is initialized from an arbitrary point 6y, and thus does not repre-
sent a sample from the target density. Nonetheless, it is possible to show that the target
distribution is an invariant distribution of the process defined by the MH algorithm. To
see this, let P*(0) denote the invariant or steady-state distribution of 0, i.e. the distribu-
tion P*(0) is unchanged when performing the proposal and acceptance steps of the MH
algorithm. For each step of the MH algorithm, the expected change in the density for a
state 0 is given by the difference in flux into and out of that state from all other states 0':

E[AP*(0)] = / P*(61)P(6|67) — P*(8)P(6/6)d6’' (2.19)

where P(6'|0) = Pprop(60'10) X Paccept (6']0).
Thus, for the distribution to be unaffected by the MH sampling procedure, the expected
change must be zero for each state, giving the so-called detailed balance equation:

P*(0')P(8]0') = P*()P(0')0) (2.20)

We can easily verify that ([2.20)) is satisfied by the proposal density Ppop(6']0) = q(6']0),
and acceptance probability defined by (2.17)), by substitution:

P(6")P(0]0') = P*(6')q(6]6') Paccept (6]6)
P(D[6)P(0)q(0'6) (2:21)

= P8040 5 5167 P8)g(01)

where we have assumed that the Pyecept (0]0") < 1, hence Paceept(6']0) = 1.
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By setting P*(0') = % (2.21]) reduces to

P(D[6)P(0)q(6'6)
P(D|6')P(6")q(6|6")

_ P(D[6)P(9)
- P(D)

= P"(0)q(6'6)
— P*(9)P(0)0)

q(616")

q(6'|6) (2.22)

where the last line follows from the assumption (2.17). Thus, P*(0) = %

P(0|D), and the invariant distribution of the MH algorithm is the posterior probability
density of 6.

Convergence can be checked via a number of criteria, e.g. by checking for stationarity
of the distribution of the chain over a sufficiently large interval using e.g. a t-test, or the
Geweke spectral density diagnostic for convergence of a Markov chain [163]. Typically
one discards the initial portion of the Markov chain since during this “burn-in” phase, the
samples are not being drawn from the target distribution. Deciding which fraction of the
samples to discard, however, is generally a matter of preference.

One final important consideration, is that due to the Markov nature of the sample
generation, a strong degree of autocorrelation can be induced amongst generated samples.
Thus, the chain is not guaranteed to produce samples that are statistically independent
from one another and can lead to biased results for any function estimated from the Markov
samples, as compared to the true target density. To counteract the high autocorrelation of
the Markov chain, thinning is sometimes advocated, wherein only a fraction of the samples
are retained such that the autocorrelation of the thinned samples is minimal. However, the
duration of the burn-in phase, the width of the proposal function ¢(6’|@) and the degree of
thinning generally must be carefully hand-tuned to get enough samples, limit the degree
of autocorrelation, and ensure convergence to the steady state of the Markov chain.

2.3 Dynamical systems

It is quite obvious that more can be learned about a system from studying its time-
dependent behavior than by studying information gleaned only at fixed time-points. We
refer to a system that evolves in time as a dynamical system, or process. We further
differentiate between deterministic and stochastic processes where the former is entirely
predictable given initial conditions and parameters, and the latter must be described
instead in terms of probability distributions.

2.3.1 Deterministic processes

Deterministic processes provide a framework for analyzing the time-dependent behavior
of any system for which the “equations of motion” for arbitrary time-dependent quantities
of the system are known.
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In general, one may consider the instantaneous configuration of a system to constitute
a “coordinate” in the state space of all possible configurations of the system, i.e. the so-
called state space, and the evolution of the system constitutes a trajectory through this
state space. In some cases it may be possible to write down an equation capturing the
configuration of the system, z, at any time t. However, for many systems a closed-form
solution for the configuration of the system is not possible.

Ordinary differential equations

While it may not be possible to derive the closed-form solution of the exact configuration
of the system at all points in time, it is often possible to describe the instantaneous change
in the system’s configuration. Systems for which the rate of change depends on only the
current state of the system obey ordinary differential equations (ODEs), written as:

X = fa.t.0) (2.23)
where f(x,t,0) is the instantaneous change of x, or derivative of z, and all relevant model
parameters are contained in the vector 8. The configuration of the system at an arbitrary
time can be computed via the integral fg f(z,s,0)ds either analytically if possible, or
numerically otherwise.

Importantly, the evolution of a system defined by an ODE depends only on the instan-
taneous configuration of the system, thus it is Markovian. If the system depends on its
past configuration, its evolution must either be modeled using a different mathematical
framework, such as delayed differential equations, or the state space must be expanded to
incorporate past configurations of the system as additional dimensions, upon which the
Markov property is restored.

Sensitivity analysis

For the purposes of model fitting and parameter inference, one is often interested in
knowing how the solution of the model depends on the model parameters. This dependence
is captured by the rate of change of the state per change in the model parameters, and is
known as the sensitivity. If z(¢) is a (univariate) deterministic process, given by the ODE
‘fl—f = f(z,t,0), where @ = (01,...,04)" is a vector of model parameters influencing the
equations of motion, then the sensitivity of 2(¢) with respect to the k** model parameter
is given by:

o
00y,

Eq. captures the variation in z(t) in response to perturbation to parameters 6
about a point of interest; thus it represents a “local” sensitivity analysis. Alternatively,
the variation in z(¢) can be evaluated over a range of allowable parameter values of 8 (e.g.
using Monte Carlo sampling), a strategy referred to as “global” sensitivity analysis [164].

Sk (2.24)

Sensitivity equations If 2(¢) can be computed analytically, i.e. if the integral fg f(x,s,0)ds
is known, then the sensitivity (2.24) can be directly computed by partial differentiation.
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However, since the integral is often unknown, one typically computes the sensitivities nu-
merically instead. It is straightforward to see that by differentiating the ODE with respect
to the model parameters, one arrives at a new set of ODEs for each of the sensitivities:

od _ dov
00y, dt dt 00y,
d

0
d ELf oxr Of
dt Ox 00, 00
~—~
Sk

(2.25)

where the last line follows from the chain rule of differentiation. Thus, in addition to
integrating the equations of motion for the state of the system, one integrates the
system of ODEs as well in order to obtain the sensitivities with respect to model
parameters. Higher order sensitivities, e.g. %2861%’ are defined analogously and obtained
by further partial differentiation. Similarly, sensitivities for a multivariate variable x =

(1,22, ..., 29T with derivative X = f(x,t,0) = (f', f%,..., fHT are defined component-
wise as:
d oftox?  Of°
—S5 = - —— 2.26
ik ; 027 90, 06, (2:26)

with S’,i = %.

Finite difference approximations If the sensitivity equations cannot be computed,
or if the integration of the sensitivity equations is prohibitively costly, one may instead
utilize the finite difference approximation in order to estimate the sensitivities (2.24)).

The forward finite difference of a function f(x) is computed via the Taylor expansion
about the point x:

Flath) = F(a) + hf'(@) + 5h*F"(x) + (2.27)

where f'(z) = L f(z).
Rearranging ([2.27)), we see
fl@+h) - f(z)

fl(x) = - + O(h). (2.28)

Thus f’(x) can be approximated by the difference (2.28), if the perturbation A is
sufficiently small, for which higher order terms are negligible.
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A more accurate approximation of given by the central finite difference approximation
as follows:

Fla+h) = f() + /() + 27" () + .

1
flo=h) = f@) = hf'(@) + Sh*f"(2) + ...
flx+h)— f(x—h)=2hf(x)+...
oy J@th) = fle—h)
The finite difference approximation to higher order derivatives is computed analogously.

The central difference approximation to the second derivative of a function f(x,y) is
computed as:

dxdy 4hk

for some small perturbations h and k. We note that the finite difference approximation is
generally inferior to the sensitivities obtained via integration of the sensitivity equations

(2.25)), see e.g. [165] for discussion.

+ O(h?)

(2.29)

2.3.2 Stochastic processes

In many systems, it is not possible to predict the time-dependent behavior exactly, due
to either lack of sufficient knowledge of the system, or due to the inherent randomness,
e.g. arising from quantum mechanical effects. For such systems, it is necessary instead to
model the behavior probabilistically using knowledge of the system’s statistical features.
Systems for which the configuration evolves according to probabilistic rules are known as
stochastic processes.

Markov processes

The simplest example of a stochastic process is the so-called Markov process. Markov
processes obey the Markov property, namely, that the future state of the system depends
only on the current state of the system. For this reason, Markov processes are said to be
memoryless. Consider a stochastic process whose state at time t is denoted by X;. The

configuration of the system at a series of timepoints t1,%2,...,tx is denoted by Xy, , Xy,,
etc. The Markov property is thus equivalent to the statement
P(Xy, | Xty Xtgy oo s Xy, ) = P(Xe, | Xy, ,)- (2.30)

That is, the probability density of the system at the next timepoint ¢;41 is conditionally
independent of the configuration of the system at all timepoints prior to t;.

Due to the Markov property , Markov processes have the additional convenient
feature that the joint probability density of the series Xy, , Xy,, ... can be factorized as

P(Xtuth""vXtN) = P(Xh)P(XtQ|Xt1)P(Xt3|Xt2)"‘P(XtN‘XtN—l)

N
= P(th) HP(Xti‘Xti—l) (2‘31)
=2
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Higher order Markov processes The Markov property is in general an ab-
straction of a physical process. In reality, almost all systems possess some “memory”,
and thus a Markov process is generally only approximately valid. However, in many cases
it may be possible to restore the Markov property by expanding the configuration of the
system to include the past states of the system as additional dimensions in the state space.
Similarly, one may define a higher-order Markov process to be a Markov process that de-
pends not just on the current configuration of the system, but also on some number N
of the previous states of the system. For example a second-order Markov process has a
probability density

P(Xti|Xt0ﬂ s 7Xti—1) = P(Xti‘th’—17Xti—2) (2'32)

Markov jump processes So far the configuration of the system X was not rigorously
defined. If the state space is a subset of the d-dimensional integer lattice, Q C Z¢, then the
system may only change by discrete quantities, or jumps, within the state space. Hence,
the Markov process is said to be a Markov jump process (MJP). One common application of
MJPs is in the context of chemical physics, where the number of molecules of each chemical
reactant is of course non-negative integer-valued, and the probabilistic evolution of the
system depends only on the current configuration, thus obeying the Markov property.

For MJPs, one may define a vector of probabilities, P(¢;), comprised of the probabilities
for each point in the integer lattice corresponding to the state space of the system at time
t;. For example, for a one-dimensional state space with minimal value 0 and maximal
value N, P(t;) = (P(Xy, =0), P(Xy, = 1),..., P(Xy, = N))T.

For such a finite-dimensional MJP, the evolution of the system can be described by
the matrix-vector equation:

P(tit1) = W(t) - P(t:) (2.33)

where W(t) is the stochastic matriz of the process, and is defined as
(W)l = P(Xt,y = k| Xs, = 1) (2.34)

that is, the (k,1)"" entry of W corresponds to the probability of transitioning from the
state [ at time t; to the state k, at time ¢;11. For this reason, W (t) is also known as the
transition matriz of the process. If W(t) = W for all times, then the process is said to
be homogeneous.

Continuous time Markov chains In Section we defined a series of times ¢;,7 =
1,..., N for which the configuration of the system was evaluated. Such a discrete time
setting is natural for some systems. For example the configuration of a turn-based game
like chess might be modeled using a discrete time Markov process, where the “times”
correspond to the turn number. However, many systems do not possess a natural, discrete
time scale but rather evolve continuously through time. A Markov process defined over a
continuous time variable ¢ is said to be a continuous time Markov process, or continuous
time Markov chain (CTMC). The CTMC evolves probabilistically, and the probability
of the system realizing configuration x at time ¢ is denoted P(X; = x). Its evolution is
given by the transition rate matrix Q: %P(t) = Q(t) - P(¥).



2.3. DYNAMICAL SYSTEMS 35

Properties of stochastic processes

Steady state A stochastic process is said to be in steady state if the probability

density describing the system is time-invariant:

OP(xy)
ds

For a homogeneous MJP, this implies Q - Pgs(t) = 0. A stochastic process is stationary

if the distribution of a sequence of samples from the process is invariant for arbitrary
time-shifts.

P(l‘t) = P(.’L't_t,_T),VT = =0 (235)

Moments The value of the random variable X; at time ¢ is only known probabilistically.
Its moments are defined in analogously to the case of a simple experiment, see Section
Briefly, the expectation of a univariate X; following a stochastic process is defined
as:

E[Xy] = /ac P(X; = z)dx. (2.36)
and the N*"-order moment by
My = E[(X,)N] = /xN P(X; = z)dz. (2.37)
This is generalized to the N*'-order cross-moment by

E[Xy, Xty .. Xiy] = /331.'E2 N P(Xy, =21, Xy, =20, ., Xiy =2N)dry .. day

(2.38)
The moments of discrete valued X are given analogously, using summation over the
state space of X instead of integration.

Moment generating function The moment generating function (MGF) of a dis-
crete valued stochastic process X; is defined as:

G(Z,t)=E[Z2¥]=> P(X;=2)Z" (2.39)
=0
using an auxillary variable Z. The probability of a particular state P(X; = n) can be

recovered by differentiating (2.39)) n times with respect to Z, and evaluating the resulting
derivative for Z = 0:

8” - r—n
aZnG(Z,t) = ;0 PX;=x)z(x—1)...(r—n+1)Z
= x!
= E P(Xe) 2" (2.40)
n!
=0
a’l’l/

o z! r—n
577 C01) = ;:(:)P(Xt =)0

= P(X; =)= = P(X; = n) (2.41)
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Here only the x = n term of the sum remains after setting Z = 0.
To compute the N** central moment of the process, (2.37)), first change the auxiliary
variable Z such that Z = eF, for which the MGF becomes

G(k,t) = E[e"¥]

> 2.42
= P(X; =) (2:42)
=0
Differentiating G/(k,t) N times with respect to k, and evaluating at k = 0 yields:
oN N & .
WG(k,t) == W Z P(Xt = 33)6
= P(X; = z)zN et
;:(:) (% =2) (2.43)
oN > N
S G0 = ;)P(Xt =)z

Autocorrelation and cross-correlation The autocorrelation of a univariate stochas-
tic process X; at times s and s + 7 is defined as the function

E[(X, — E[X,])(Xesr — E[Xos,])]
V/var[X] var[Xs -]
In the literature, the term “autocorrelation” is sometimes used to denote the quantity in
without the normalizing factors in the denominator.
The function R(s,s + 7) measures the degree to which fluctuations in the stochastic
process at time s are dependent on fluctuations at a time lag of 7. If the process is

stationary such that the mean ; and variance var[X;] = o2 are time-invariant, then (2.44])
depends only on the time shift 7

R(s,s+7T)= (2.44)

E[(Xs — ) (Xsgr — )]
o2 ‘

R(r) = (2.45)

For multivariate systems, the cross-correlation between two random variables X and
Y, observed at times s and s + 7 respectively is define analogously to (2.44)) as:

E[(Xs — px(8)Yorr — py(s + 7))
V/var[X,] var[Ys -]

Rxy(s,s+71) = (2.46)

Ergodicity A stationary stochastic process is said to be ergodic if its time average is
identical to its expectation:

t+At L
lim - / X, df' L E[X]

_ / 2P(X; = 2)da
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requiring that the expectation E[X] be time-invariant, i.e. the process is stationary.
Intuitively, if the process is ergodic, it implies that the statistical features (moments,
etc.) of the process may be estimated by collecting sufficiently many samples from a
single realization of the process instead of through an ensemble of replicates (i.e. repeated
measurements under identical conditions).

2.4 Chemical physics

2.4.1 Chemical reaction networks

Cells must continually perform chemical reactions in order to meet their metabolic needs
and process signals from the extracellular environment. Thus, the cell can be described
in terms of its time-varying chemical composition which may evolve according to physic-
ochemical interactions subsuming all cellular activities such as enzymatic reactions for
cellular metabolism, post-translational modification of proteins in signal transduction,
binding of transcription machinery to DNA, etc. To model the possible interactions of
a system of chemical species, we use chemical reaction networks, which constitute a
framework for concisely describing a set of possible reactions between educts (consumed
during a reaction) and products (produced), for each reaction.

Definition

A specific state of the intracellular chemical system is specified by the instantaneous
number of molecules of each chemical species, e.g. transcripts of particular genes, proteins,
transcription factors, or metabolites. The state of the system is described by a vector
X = (z1,29,...,zN5)T € NéVS consisting of the copy numbers of all Ny relevant chemical
species. Due to the discrete nature of molecules, the cellular state can only change by
integer amounts, coinciding with the set of possible chemical reactions that may take
place.

In particular, the j** chemical reaction, denoted R;, has associated to it a “net change
vector”, v; € ZNs . such that one firing of reaction j changes the system state by vj:

Rj X = X+ V; (2.48)
The stoichiometric matrix,
S = [1/1 vo ... VR] (2.49)

is the matrix composed from the change vectors of all reactions j = 1...R. The (4,5)"
entry of the stoichiometric matrix gives the net change in species i for one firing of R;. If
we define a vector n = (ng,...,ng)’ to be the number of times each reaction fires, then
the product S - n is the total change in X: X - X 4+ S - n.

Reaction rates

Each reaction may take place at any point in time, providing that sufficiently many
molecules of the educt are present for the reaction to take place. The probability for
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each reaction to take place depends on the instantaneous quantity of the educts and on ki-
netic constants which are physical properties of the interacting molecules and the reaction
environment, such as temperature.

Stochastic treatment Consider a reaction taking place between molecules of two hy-
pothetical species 57 and S; with abundances of 1 and x2 molecules, respectively. It can
be derived from a microscopic physics argument, under the assumption of thermal equi-
librium, that the probability of collision (and thus potentially of reaction) depends on the
probability that S lies within the collision volume of molecule Sy [I17]. The collision vol-
ume can be interpreted as the volume of the subspace in which the spatial positions of the
two molecules overlap. The collision volume of S; depends on the sum of the two molec-
ular radii (r1 + r2), the instantaneous velocity vi2 along the intermolecular axis 72, and
the infinitesimal time window under consideration At. The probability of Sy lying within
this volume, assuming the reaction volume to be “well-mixed”, is simply proportional to
the fractional volume of the collision volume. Computing v, the expectation over the
velocity vio at thermal equilibrium, and thus of a Maxwellian velocity distribution, leads
to the following estimate of collision probability:

Pooy(X = x, At) = z120Q 2w (ry + 19)? T2 At (2.50)
. . — 8kpT mi+ 1/2
where () is the reaction volume, and 713 = (TB %) the thermal average veloc-

ity, which depends on the molecular masses m; and my of S; and S5, respectively, the
Boltzmann constant kg, and temperature.

The total probability of a reaction occurring within a time interval of length At is
thus the probability of a collision occurring within At times the probability of a reaction
occurring following collision, which is given by a chemical kinetic constant specific to each
reaction, i.e. Preget(x, At) = k - Poy(x,At). The propensity of a reaction is the in-
stantaneous probability of that reaction occurring, denoted a(x) = lima¢—0 Preact (X, At).
Note that the assumption of thermal equilibrium in Eq. is not essential; for any
non-equilibrium velocity distribution the appropriate mean relative velocity v12 can be
computed and substituted. Equilibrium is assumed here for clarity of exposition.

Typically only three possible rate laws are considered, covering the cases of zeroth-
order, unimolecular, and bimolecular reactions; reactions involving three or more species
have negligibly small probability and are thus broken into a series of bimolecular reactions.
The rate laws appropriate for each of the three cases are summarized in Table In each
case, the parameter k serves as the kinetic constant, which depends on the chemical
nature of the reaction educts, as well as environmental properties such as pressure and
temperature. The constant Q describes the system reaction volume (e.g. the cellular
volume, or nuclear volume); intuitively, second order reactions proceed at a rate inversely
proportional to the system volume, as it becomes increasingly unlikely that the molecules
will encounter one another by chance. The fourth case is that of a bimolecular reaction
involving two molecules of the same species with copy number X, for which %X (X —-1)
possible distinct reaction pairs exist:

The vector of molecular copy numbers at time t, X;, is a random variable described by
a stochastic process, in particular by a continuous time Markov chain, see Section [2.3.2
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Table 2.1: Stochastic Reaction Rate Laws

Reaction Order Example Propensity Function (a)
Zeroth (I kQ
First S1 K, So kxq
Second (different species) | Sy + S LN S5 kapxyQt
Second (same species) 28 -5 S, %azl (v —1)Q !

Deterministic treatment Chemical systems consist of discrete numbers of molecules
and are intrinsically noisy due to the underlying stochastic processes which dictate their
probabilistic evolution. However, they may be approximated by deterministic processes
under certain conditions. If the number of molecules is large, one may approximate the
molecular copy number of each species by a molecular number density, or concentration,
defined as ¢ = X/, where 2 is the reaction volume.

When the number of molecules is sufficiently large, the propensity functions in Table
do not change substantially in a small time window At. Thus, the probability of each of
the reactions occurring is approximately constant over the time interval At, and therefore
the waiting times for each reaction firings are given by an exponential distribution (see
Section with parameter A\ = a(X)At, for a propensity function a(X). The number of
times Rj; fires in this time interval, N;, is therefore Poisson-distributed (see Section :

N; ~ Poiss(aj(X)At)
(a,(R) A X021

nj!

P(Nj = nj|X, At)

(2.51)

where a;(X) is the reaction propensity for reaction j, as in Table Moreover, the
expectation of N; is E[N;] = a;(X)At. Each firing of reaction j changes the molecular
copy number vector X by the change vector v;: AX = v;N;. Thus the expected change
in the molecular copy number vector in time At is given by:

E[AX] = v,E[N]

=S-E[N] (2.52)
=S-a(X)At
E[AX]
N S -a(X)

where S is the stoichiometric matrix (see Section [2.4.1), N = (N7, Na, ..., Ny,)?, and
a(X) = (a1(X),a2(X),...,an,(X))T. Finally, we see that by dividing by the reaction
volume €2 we obtain

EAX/9] E[A¢] ¢ a(X)
At At Q

In the limit of infinitesimal time,

(2.53)

CEAY] d o o aX)
Am=Ar T gt =8 g

(2.54)
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Thus, the average concentrations evolve according to the ODE , with rates given
by the volume-normalized reaction propensities, summarized for elementary reactions (i.e.
at most bimolecular) in Table using the convention ¢; = G, etc., for the concen-
tration of species S;. This ODE is known as the reaction rate equation (RRE) or
macroscopic rate equation (MRE). Moreover, deterministic rate laws of the form in
Table i.e. the product of the concentration of each reaction educt exponentiated to
its respective coeflicient, are said to follow the law of mass action. The macroscopic
rates correspond exactly to the renormalized stochastic reaction propensities in Table
except for the bimolecular reaction involving two molecules of the same species, for which
the approximation z;(z; — 1) ~ (;)? is used.

The deterministic approximation is valid in the limit of large molecule numbers. Specif-
ically, the number of firings for each reaction is Poisson-distributed , and thus the
variance of the number of firings is equal to the mean, var(NV;|X, 6t) = a;(X)At. Hence,

the “noise”, defined as the ratio of the standard deviation to the mean number of reaction
. o var[N;] 1 . ) .
firings, n; = TENT T Vao06 tends to zero as the propensity a;(X) grows. Since
the propensity for all first and second order reactions grows proportionally to the concen-
tration (Table , the noise shrinks accordingly. For zeroth order reactions, where the
propensity is independent of the number of molecules, the approximation is valid whenever

the chemical kinetic constant k is sufficiently high, since n oc k—1/2.

Table 2.2: Deterministic Rate Laws for Elementary Reactions

Reaction Order Example Propensity Function (a)
Zeroth 0 LN S k
First S i) So k ¢1
Second (different species) | S1 + S2 LN Ss k o109
Second (same species) S1+ S LN So k ¢?

2.4.2 Chemical master equation

A system of interacting chemical species can take on a potentially infinite number of
configurations, depending on constraints or conservation relations which might limit the
possible state space. Ignoring the spatial arrangement of molecules within the system, the
state of the system can be characterized by the molecular copy number vector, denoted
X, as above. The probability of the system occupying the state x at time ¢ can be written
as P(X = x,t). The state of the system can only be changed via the “firing” of various
reactions of the CRN, and hence x be reached from any feasible neighboring state x — v,
by exactly one firing of reaction j with associated state change vector v;. Thus, the
probability density of state x, P(x,t), can change via flux in to and out of the state
x. The probability flux Jx7x_l,j (t) from state x — v; to state x, in an infinitesimal time
interval At, is proportional to the probability of the system being in state x — v; and to
the probability of the reaction R; firing within time interval At given that the system is in
that state: Jxx—v,(t) = P(x—v;j,t)a;(x—v;)At. Conversely, the firing of reaction j when
the system is in state x results in flux to the state x +v;: Jxiw, x(t) = P(x,t)a;(x)At.
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The total change within At to the probability density of state x, at time ¢ is given by:

R
Z P(x—vj,t)aj(x —v;) — P(x, t)aj(xz At (2.55)
Jj=1

J. . J; )
X, X— u] x+u],x

for a CRN with R reactions in total. In the limit At — 0, we obtain the so-called chemical
master equation (CME):

R

%P(x t)=>_ P(x —vj,t)a;(x — v;) — P(x,t)a;(x) (2.56)
j=1

Equation describes the probabilistic evolution of the random variable X, and de-
pends on the instantaneous configuration of the system and the reaction propensities
aj(X),j = 1,...,R.

If there is only one chemical species, then we can construct a vector

P(t) = (Po(t), Pi(t) .., Prpa (£)"

where Py(t) = P(X = k,t), describing the probability of each possible molecular copy
number at time ¢. The quantity Nnax is potentially infinite depending on the constraints
of the system, see Section The rate of change of the probability density of the k"
state, is given by:

8 Nmax R
apk ; ;%l VPI(t)6(k — 1 — vj) — aji(t) Pr()

where aj(t) is the reaction propensity of reaction j when the system is in state . Thus,
the rate of change of the entire vector P(t) is given by the simple linear equation:

=Pt =A(t)-P() (2.57)

where the propensities matrix A is given by
Sty a®)a(k —v; = 1), k#L
- Zf:l ajk(t)v k=1

Thus for a single species, the CME takes the form of a simple matrix-vector multipli-
cation, and can be solved analytically if the dimensionality of the system is finite:

P(t) = e/ 40P (0) (2.58)

(A = {

or P(t) = eAP(0), if A(t) = A.

For a system with Ng > 1 species, the probability density of the system is described
by a tensor, rather than a vector. Similarly to , a linear ODE can be defined for
the evolution of the probability density tensor over a subspace of the lattice of all possible
copy numbers of each species. Hence, it becomes increasingly difficult to solve the CME
directly via e.g. numerical integration as the dimension of the state space increases. In
most cases, no analytical solution is known for the chemical master equation. Thus one
either needs to numerically integrate , or use approximations to improve tractability.
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Finite state projection A method known as the Finite State Projection (FSP) provides
a good approximation to the solution of the CME, even when the number of molecules
is potentially unbounded [166]. If the CRN is allowed to take on states X € Q (usually
Q C N4 for a d-dimensional system), then the FSP defines a subspace Q C Q which is
presumed to contain the majority of the probability density of the system. With this
subset, the submatrix A of the propensity matrix A corresponding to Q is computed
simply be retaining the rows and columns corresponding to the states in Q. Then, the
(approximate) solution of the CME at a future timepoint is computed by computing the
matrix exponential of A as in . The approximate probability of any state in Q is
obtained simply by solving the ODE using the truncated transition matrix A. The error of
the FPS can be ascertained by summing the probability density of the approximate solution
to the CME, and taking the difference from 1 (the total density should of course be 1). If
the error is too great, the approximate state space Q should be expanded. The FSP has
the advantage of being simple to compute (as long as Q is reasonably small), and the error
can easily be computed. However, it may become difficult to predict which Q provides an
adequate approximation a priori, which might lead to additional computational overhead
as the optimal subspace is identified. The matrix exponentiation necessary for the solution
of the ODE may also quickly become very expensive, although fast numerical methods
have recently been proposed [132].

Fokker-Planck approximation

The firing of reaction j with change vector v; changes the state of the system from x
to x — v;. If the molecular copy number vector is sufficiently large, then the firing of a
single reaction does not appreciably change the propensity functions or state probability
densities. Hence, the function P(x — v}, t)aj(x — v;), found in the CME can be
Taylor-expanded using the so-called Kramer-Moyals expansion:

0
P(x = vj,t)a;(x = vj) = P(x,t)a;(x) = vj o [P(x,1)a;(x)]
L g (2.59)
v P D) -
Substitution of (2.59)) into (2.56|), and retaining only the first two terms of the expan-
sion gives rise to the so-called Fokker-Plank equation:

2

0 N r 0 1 .0
EP X, t) ~ ; —V; a—[ (x,t)aj(x,t)] + Vi @[P(x,t)aj(ac,t)]l/j (2.60)

Additionally, if we construct the stoichiometric matrix S as in (2.49), then (2.59)
becomes

2
;P(x,t) = —ST;X[P(x,t)a( t)] + 2ST88 5[ P(x, t)a(x,1)]S (2.61)

Thus, under this assumption, the CME (2.56]) reduces to a second order partial dif-
ferential equation. If the system configuration is initially known with certainty, i.e.
P(x,0) = §(x—x0), then can be solved analytically to give a Gaussian distribution,

see e.g. [167]. We note also that the retention of higher order terms in the expansion
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(2.59) has been shown to lead to logical inconsistencies, and thus do not improve the
approximation [168§].

Langevin approximation

Instead of a partial differential equation for the probability density, the Fokker-Planck
equation may alternatively be formulated in terms of its equation of motion, as
follows. If a stochastic process X; evolves according to the CME, then the state of the
system at time t + At is given by Xy a; = Xy + S - n, where n is a random vector
corresponding to number of reaction firings during the interval At. If the time interval At
is sufficiently small such that the propensities are approximately constant over At, then
each entry n; of n is Poisson-distributed (see Section [A.4)), nj ~ Poiss(a;At).

The vector n can be decomposed into a deterministic part n and a stochastic part &,
asn = n+¢§, where n = E[n] = aA¢ with propensities vector a = (a1(x), az(x),...). Thus

Xitar =X +S-(n+§)

= X; +S - (aAt + £) (2:62)

where E[¢] = 0 and var[¢] = aAt. We then approximate the distribution of the fluc-
tuation € by a multivariate Gaussian distribution with mean 0, and covariance aAt:
& ~ N(0,aAt). For large aAt, Poisson distributions are well approximated by a nor-
mal distribution, motivating this simplification. Finally, we derive

Xt+At—Xt:S'aAt+S'£
=S - aAt + Sy/diag(a) AW

for a Wiener process W, i.e. AW ~ N(0,At). In the limit At — 0 this leads to the
so-called chemical Langevin equation (CLE):

(2.63)

dX; = lim X - X
t A?Bo t+At t

=S -adt+ Sy/diag(a)dW

where dW = lima;_,0 AW. Eq. resembles an ODE with the addition of a stochastic
term &, and is known as a stochastic differential equation (SDE). The Wiener pro-
cess W represents a Brownian motion, i.e. the instantaneous displacements are Gaussian
distributed, with a variance that grows linearly in time. Using the formulation (2.63),
approximate samples from the CME can be generated by sampling a series of Gaussian
increments AW for a fixed time step of size At and updating the state X; — X1y
accordingly, a procedure known as Euler-Maruyama integration of the SDE [169].

(2.64)

System size expansion

The following subsection details the system size expansion of the chemical master
equation, as introduced by Van Kampen [167]. This expansion has been studied extensively
since its inception, including several recent papers by Grima and coworkers, see [170].
Let n € Név denote the vector of molecular copy numbers, with probability density
P(n,t) at time t, and let Q denote the volume of the reaction system, e.g. the cellular
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volume if the CRN describes intracellular chemical reactions. The concentration is given
by the ratio ¢ = n/(, see Section [2.4.1]

The canonical “linear noise” ansatz assumes that the fluctuations of the state of the
system about the macroscopic mean are small, of the order v/Q, such that the state of the
system is given by:

n = ¢Q + nQz (2.65)

where the fluctuation n € RV, and ¢ € Ré\j . is the macroscopic mean concentration, i.e.
in the limit of vanishing stochastic fluctuations. The macroscopic mean for each species
i=1,..., N evolves according to the MRE, see Section [2.4.1}

dfm

Zsm fi(#,t,0) (2.66)

where R is the number of reactions, S is the stoichiometric matrix of the chemical reaction
network and f is the vector of reaction fluxes. This can also be simply written as % =
S - f(¢,t,0), where f(¢,t,®) depends on the macroscopic means ¢ and the reaction
constants ®. Note that the MRE is identical to the deterministic part of the CLE (| ,
with f = a.

The term n plays the role of the stochastic fluctuation about the mean. Using the
transformation , the CME can be written in terms of a new probability density
in m, II(n, ), since the stochasticity of the system is entirely due to the fluctuation:

OP(n.t) _ 9l(n.1) , ZN: OTI(n, t) On;

oo ot —~  On; Ot
= (2.67)
31—1("77 Q-1/2 Oll(n,t) 0
Z on; Ot

utilizing %—? = —Q_%%—‘f which follows from differentiating the ansatz , assuming
constant n.

We next introduce the step operator E2 (A € Z), which acts on a function g(n) by
incrementing the value of ny by A: EkAg(n) =g(ny,...,npg+A,...,ny). Using the linear
noise ansatz , we see that the step operator EkA acts on a function of the stochastic
fluctuation i by raising 7, by Q~1/2A. Hence, repeated application of the step operator
with A = S;; to a function g(n) yields:

N
~S,; _ _ _
[1E " 9(m) = g(m — Q71?81,m — Q728 ..oy — Q712S) (2.68)

= g(n - Q')

where v = (Slj7 S2j, s SNJ')T-
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The CME (2.56|) can then easily be rewritten in terms of the step operator as follows:
8
=Q Z P(n—vj,t)a;j(n—v;) — P(n,t)a;(n)
- QZHE Y [P(n,t)aj(n)] — P(n,t)aj(n) (2.69)

R N
=0y (HE?S” - 1) P(n,t)a;(n)
j=1 \i=1

The prefactor 2 is a matter of convention, and can also be absorbed into the propensity
functions aj(n). By computing the action of the compound step operator on the
test function g(n) and Taylor-expanding about 7, we observe that E;Sij can be recast as
a differential operator in terms of n:

N
(H E; 9 - 1) g(m) = g(m —Q vy) —g(n)
i=1

=g(n)—Q '/ ]Taa g(m)+...—g(n)

(2.70)
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Next, we similarly expand each rate function a;(n) about the macroscopic mean ¢

using (2.69):

aj = fj(¢,t,0) + Q /2 i %W
w=1 w
D Spe CALINE s AUAL) @.1)
T wél wnzM;%
+ 07?2

which holds for all elementary chemical reactions involving at most two molecules, see
[170] and Section for details. Here fj(¢,t, ®) is the macroscopic rate equation as in
(2.66|).

Finally, by combining the expression for the CME in operator form , the Taylor
expansion of the step operator in inverse powers of 1/2 , and the expansion of the
microscopic rate equations in terms of the macroscopic concentration ¢ , we achieve
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the partial differential equation for the time evolution of the probability density of the
stochastic fluctuation n:
N

_ 921/2 szf\;l %‘zj;}m(ﬁwmn) igvjl %88‘:;;”8?%{[ (2.72)
: Q61/2 z,gilDikra za(?;kam 0@
ith
) Jiw=>_ SUW (2.73)
j=1 v
and
Dig...r Zszjsk] Srjfi(#,t,©). (2.74)

The matrix J is the Jacobian of the macroscopic rate equation, and D is a generalized
diffusion matrix.

The result of this rather complicated derivation is an expression for the evolution of the
probability density II(n,t) of the stochastic fluctuation 1. Keeping only the zeroth-order
term in Q2 leads to the so-called “linear noise approximation” (LNA), as first introduced
by Van Kampen [167]:

N

oIl ,t Q)
(77 Z Z Dy 3771

i,w=1 i,k=1

(2.75)

The LNA has the form of a linear Fokker-Planck equation, see Section [2.4.2l Computing
the expectation (denoted using angular brackets) of the stochastic ﬂuctuatlon, (n) =

[ nll(n,t,®)dn, gives

o(m)
5 =J-(n). (2.76)
The second moment of the stochastic fluctuation (nn”), evolves as:

W) _ 3 tom®) + (") - 37 + D (277
where D = Sf(¢,t,®)S”. Hence the covariance matrix V(t) = (nn?) — (n)(nT) has
derivative

T
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Taken together, and yield a set of ODEs for the mean and covariance of
the stochastic fluctuations, from which the probability distribution can be recovered.

Finally, if one retains the next higher order terms in the expansion of order Q~1/2,
one may compute more accurate expressions for the evolution of the first two moments
of the stochastic fluctuations, (1) and (nn”). These expressions constitute the so-called
empirical mesoscopic rate equations, (EMRE) and are generally more accurate than
the LNA since they include higher order corrections; for example EMREs were recently
used to discover the existence of a novel inversion effect that under certain circumstances
can reverses the relative order of concentrations of chemical species when applying the
macroscopic rate equations to systems with subcritical reaction volumes [94]. Details for
computing the EMRE are found in [I70]. We also note that the LNA (and SSE in general)
provides an accurate approximation to the true probability distribution only for systems
which possess a unique, globally stable macroscopic solution, i.e. for monostable systems,
see e.g. [167]. For systems possessing locally stable solutions other approaches must be
employed.

2.4.3 Stochastic simulation

The CME is often analytically intractable due to its infinite dimensionality. Luckily,
in addition to various approximations, a number of numerical methods have also been
developed for exact simulation of the chemical master equation. Essentially, using the
propensities defined in Table[2.1], one may draw exact samples from the underlying Markov
jump process described by the CME. The stochastic simulation algorithm (SSA) is
a procedure for simulating trajectories such that each realization occurs with frequency
proportional to the probability of that trajectory as given by the CME.

The SSA (a.k.a. the Gillespie Algorithm) [117] is conceptually quite simple. It was
conceived using a simple physical argument, assuming a well-mixed reaction environment,
and thermal equilibrium; it was later rederived in a more rigorous manner [96]. The start-
ing point is a chemical reaction network with R possible reactions, and the corresponding
set of reaction constants. The propensities are then computed for each reaction, see Ta-
ble and Section [2.4.1] with reactions involving species with insufficient molecules for
the reaction to take place having zero propensity. So long as the configuration of the
system (i.e. the number of molecules of each species) does not change, the propensities
remain constant. Hence, the waiting time 7; until the 4t reaction occurs is exponentially
distributed with parameter equal to the reaction propensity: 7; ~ Exp(a;(X)).

The individual reaction firings are exponentially distributed, and thus collectively form
a system of competing exponential processes, see Section Hence, it is easy to com-
pute the probability that reaction k& will be the next reaction to fire: the probability of
reaction k with propensity ax(X) occurring next is simply Pi(X) = ar(X)/ap(X). with
ap(X) = ZkR:1 a;(X). Of course the probabilities and propensities are functions of the
instantaneous configuration of the system, and the kinetic constants of the CRN.

The time of the next reaction is also determined as in Eq. . The waiting time
until each event is exponentially distributed, and the waiting time until the first event is
distributed as 7 ~ Exp(ao(X)). Some computational effort can be avoided by computing
only the waiting time until the first reaction occurs, and thus avoiding further sampling
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of exponential random variables. The variant of the SSA implementing this strategy is
known as the “next reaction” SSA [I71].

The SSA described above generates exact samples from the CME, and thus has been
a tremendous asset to the chemical kinetic community. However, the SSA is often very
computationally intensive. For instance, in the case of fast isomerization reactions where
species interconvert, millions of reactions may take place in a short amount of time, before
any “interesting” dynamics take place, involving slower (i.e. lower propensity) reactions.
Thus, SSA may be impractical for the study of dynamics of systems involving disparate
time scales. However, many variations of SSA have been developed since the 70’s for
accelerating the SSA, see e.g. [118-122] 124, 128, 172H174] .
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Chapter 3

Multiresolution Correlation
Analysis

In the following chapter, I present a new method for investigating the local correlation
structure of low-dimensional datasets, e.g. as may arise during qPCR or image-based
quantification of transcription factors using immunohistological staining. The tool has
been published in the following original research article:

Feigelman, J., Theis, F. J., & Marr, C. (2014). MCA: Multiresolution Corre-
lation Analysis, a graphical tool for subpopulation identification in single-cell
gene expression data. BMC Bioinformatics, 15(1), 1-10.

The method was initially developed as a graphical tool to address the question of
robustness of inferred partial correlation networks arising in the analysis of mouse embry-
onic stem cell colonies. In particular, we were interested in understanding whether the
expression level of Nanog played a role in the network, and whether subpopulations that
differ in the expression of one of several pluripotency factors showed differential correlation
networks. During the development of this tool, it became clear that it was more versatile,
affording insight into the structure of the correlation networks, stability of inferred cor-
relations, detection of novel subpopulations, and identification of potentially outliers that
can skew correlation estimates.

We present the method and the application to previously published mESC data. In
Chaper [0, we apply the method to novel mESC data sets.

3.1 Introduction

Heterogeneity in cellular populations has been the focus of many recent publications in
areas such as embryonic stem cells [24], induced pluripotency [175], transcriptomics [176],
and metabolomics [I77]. In biological experiments, data often originate from a mixture of
qualitatively differing subpopulations corresponding to e.g. distinct phenotypes in assays
of cellular populations. [I78]. For example, whole blood samples contain a mixture of
distinct cell lineages which can be identified based on the presence of lineage-specific cell
surface markers [179]. Embryonic stem cells have also been shown to exhibit heterogeneous
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expression of pluripotency factors critical for the maintenance of pluripotency in culture
[24][39]. Indeed, there is increasing evidence for the existence of cellular subpopulations
with possible noise-induced transitions between phenotypic attractors [I80]. Thus it is
clear that traditional techniques, which provide only population averages, may fail to
resolve the true population heterogeneity.

Technologies such as flow cytometry, single-cell qPCR, mass cytometry and time-lapse
fluorescent microscopy are uniquely positioned to answer questions regarding the makeup
of cellular populations. Each is able to yield quantitative measurements of cellular state,
i.e. mRNA expression or protein copy number, which may be representative of the under-
lying subpopulations.

If the subpopulations are not already known, various methods exist to attempt to learn
them on the basis of the data distribution. Classical techniques such as clustering may
be useful for subpopulation identification if the subpopulations are readily separable in
terms of expression levels [I81]. Alternatively, more sophisticated machine-learning based
approaches such as mixture models, (fuzzy) k-means clustering, multilayer perceptrons,
self organizing maps, support vector machines, regression trees, and many others have also
been applied to subpopulation identification (see Lugli et al. [54] and Bashashati et al.
[182] for a review of subpopulation identification approaches applied to flow cytometry).

However, existing methods for subpopulation identification predominantly rely on het-
erogeneous expression levels. If the distributions overlap, identification of individual sub-
populations based on expression alone may be difficult. In the case where subpopulations
exhibit differential regulation motifs, they may be identifiable based on their distinctive
correlations. Examining the local, state-dependent correlation of covariates provides ad-
ditional information regarding the underlying distributions attributable to distinct sub-
populations. In particular, we expect correlations to change for regions of state space
(i.e. the space of possible gene expression levels) containing predominantly samples from
a single subpopulation. Correlation analysis in subspaces of high dimensional data have
gained attention over the past several years, particularly in the context of data mining e.g.
in databases. For instance, algorithms such as MAFIA [183], CURLER [184], ¢-Clusters
[185] , ENCLUS [186], etc. have been proposed for automatic identification of clusters using
lower-dimensional subspaces. However, automatically identified clusters may be difficult
to interpret biologically, and it may be difficult to assess their relative robustness.

We introduce a complementary method, Multiresolution Correlation Analysis (MCA)
for systematically examining the dependence of local correlation upon location in state
space. Using MCA, the correlations of pairs of variables are examined for regions of state
space subdivided with varying granularity. The analysis can be summarized using MCA
plots, which provide a visual representation of the pairwise correlation as a function of
expression of a third variable.

MCA plots simultaneously visualize the correlations of data subsets of all sizes, centered
at all locations in the distribution of a sorting variable, making it possible to distinguish
regions with robust correlations which may be indicative of distinct subpopulations. Lastly,
they provide the ability to identify observations which contribute disproportionately to
the overall correlation structure, and hence skew the estimated correlation of the entire
population.
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3.2 Results

3.2.1 MCA reveals differential regulation of subpopulations in simulated
gene expression data

To evaluate the MCA approach, we simulated gene expression data using a simple three
species gene regulatory motif, given by Equation as described in Methods. In this
system, Z activates X and X activates Y (Figure , left) via Hill-type activation func-
tions, and population-level heterogeneity is introduced via the use of stochastic differential
equations which approximate the intrinsic noisiness of gene expression [187][188][29].

The steady state distribution resulting from a typical simulation (Figure A, center)
shows a significant positive Pearson correlation (p < 0.05) between Z and X, and between
X and Y (Figure , right), and no significant correlation between Z and Y, as would
be expected from the underlying regulatory motif.

Similarly, we simulated a biological system for which Z activates X, but where X
inhibits Y (see Figure [3.1B, left) and Equation of Methods). The resulting steady
state distribution (Figure [3.1B, center) appears similar to that of the activation model.
However, correlation analysis reveals that Z and X show significant positive correlation,
and X and Y significant negative correlation (Figure , right), in accordance with the
underlying biological motif. The Pearson correlation also indicates significant negative
correlation between Y and Z in the inhibition model, an indirect effect.

When combining the steady state distributions from activation and inhibition models
(Figure ), the net Pearson correlation between X and Y is significantly negative
(Figure, I). Absent of subpopulation analysis, we would conclude that the relationship
between expression levels of X and Y is antagonistic, implying an inhibitory motif.

In contrast, performing the same analysis on the subpopulation with Z expression
levels in the lowest 30% of the Z-distribution (Figure , IT) yields a significant positive
correlation between X and Y. Likewise, performing correlation analysis on the samples in
the top 30% of the Z-distribution shows just the opposite, a significant negative correlation
between X and Y (Figure 3.1C, III).

We can combine all of the Z-sorted subpopulations of varying size together using the
MCA plot (Figure ), constructed as described in Methods. Briefly, the MCA plot
shows the correlation of a pair of factors, for subpopulations defined by a sorting variable.
The abscissa indicates the median value of the sorting variable for that subpopulation
and the ordinate indicates the fraction of the population included in that subpopulation.
Thus, higher points indicate larger subpopulations, points to the left indicate lower overall
expression of the sorting variable, points to the right higher overall expression, etc. The
regions where the computed correlation is statistically significant (p < 0.05) are indicated.

By systematic inspection via the MCA plot, we can conclude that subpopulations with
low Z values indeed show significant positive correlation between X and Y (Figure ,
blue region), and subpopulations with high Z values show significant negative correlation
between X and Y (Figure , red region, see Methods for details).
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Figure 3.1: MCA reveals the presence of subpopulations with differential regulation. A.
A three species activation motif (left), its steady state distribution (center) from an SDE
simulation, and the resultant correlation network (right), showing positive correlation
for species with an activating interaction. B A three species activation/inhibition motif
induces positive correlation corresponding to activation and negative correlation corre-
sponding to inhibition. C. I. Mixture of the activation and inhibition steady state data
depicted in A and B. II. Correlation analysis of the subset from the lowest 30% of the
Z-distribution shows significant positive X, Y correlation. ITI. Correlation analysis of the
subset from the highest 30% of the Z-distribution shows significant negative X,Y corre-
lation. D. Combining all subpopulations sorted by median Z value and subpopulation
size into an MCA plot reveals robust separation of positive and negative correlations for
subpopulations with low or high Z values, respectively.
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3.2.2 MCA plots as a diagnostic tool for transcriptomic analysis

MCA plots can be used to provide a multiresolution view of the correlation structure
of real transcriptomic data. This allows us to confirm previous conclusions regarding
heterogeneous subpopulations, detect potential novel subpopulations, and provides insight
into the origin of the observed correlations.

We used MCA to analyze previously published single-cell transcriptomic data obtained
from mouse embryonic stem cells (mESCs) [40][32]. There, microfluidic single-cell gPCR
was used to obtain the relative expression of mRNAs for eight transcription factors known
to be involved in regulation of pluripotency in mESCs: Fgf5, Nanog, Oct4, Sox2, Rexl,
Pecaml, Stella and Gbx2, and Gapdh, a housekeeping gene against which all other tran-
script copy numbers were normalized. Analysis of subpopulations showed difference in the
correlation networks of Nanog+ /- and Fgf5+-/- subpopulations, as well as clear separation
of subpopulations using principal component analysis.

After data cleaning and normalization according to the method of Trott et al. [40],
we generated the MCA plots for all pairs of genes, for all possible sortings, using Pearson
correlation and a significance cutoff of p < 0.05. All points with p > 0.05 are colored white
in the MCA plot.

Detection of robust correlations

In an MCA plot, correlations that are globally robust with respect to changes in the sorting
variable are easily distinguished by uniform coloration. For example, the correlation of
Rex1 and Sox2 is robust with respect to changes in Pecaml expression (Figure ,
top). The scatter plot of Rexl and Sox2 is shown for reference (Figure [3.2]A, bottom).
The robust positive correlation of Rex1 and Sox2 is consistent with current models of
transactivation of Sox2 by Rex1 [189].

Outlier detection

Correlation analysis can be sensitive to one or a few samples which substantially alter
the estimated correlation of the entire population. In such a case, all subpopulations
including these samples show a significant correlation, whereas their exclusion results in
no significant correlation or potentially correlation of the opposite sign. MCA plots are
able to detect such samples and identify them as sources of the detected correlation. For
example, when sorting by Sox2, all subpopulations which do not contain the sample with
the highest Sox2 expression do not show statistically significant correlation between Rex1
and Gbx2, whereas all subpopulations that do include this point show significant positive
correlation (Figure [3.2B, top). Upon inspection of the data (Figure [3.2B, bottom) it is
obvious that this single point, indicated by the arrow, is an outlier. Exclusion of this point
renders the Rex1, Gbx2 correlation insignificant.

Subpopulation identification

MCA plots are useful for identification of interesting subpopulations as shown for synthetic
data (Figure ) Regions exhibiting a robust correlation may indicate the presence of
differential regulation or a distinct cellular phenotype. For instance, sorting by Stella
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Figure 3.2: MCA plots reveal important features of the correlation structure in single-
cell transcriptomics data. A. MCA plots with uniform appearance (top) reveal robust
correlations amongst pairs of variables (scatter plot, bottom) like Rex1 and Sox2, sorted
by Pecam1. B. Outliers can easily be detected via characteristic diagonal stripe patterns.
Here a single sample with the highest value in the Sox2 distribution is enough to induce
an overall positive Gbx2, Rex1 correlation (bottom, arrow). C. Robust subpopulations
can be identified. The presence of a large triangular region with uniform correlation or
lack of correlation between Rex1 and Nanog may indicate a subpopulation, seen here for
cells from the highest 40% of the Stella distribution (top). The cells from the high Stella
compartment (open boxes) are not significantly correlated for Rex1 and Nanog, in contrast
to those from the low Stella compartment (filled boxes, bottom).
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reveals the presence of a large region (the highest 40% of the population) for which the
correlation between Nanog and Oct4 is not statistically significant (Figure , top).
Conversely, including the cells from the lowest 60% of the Stella distribution is sufficient
to induce a significant positive correlation (Figure , top). Inspection of the scatter
plot of Nanog and Oct4 (Figure , bottom) confirms that the lower 60% is noticeably
more correlated than the top 40%. Hayashi et al. [32] note that mESCs with low or
absent Stella expression may be more representative of epiblast-derived stem cells, and
thus are expected to show differential regulation from the high Stella cells, which are more
embryonic stem cell-like. Interestingly, the possibility of antagonistic regulation between
Oct4 and Nanog in mESCs has recently also been raised [190].

3.2.3 MCA provides additional insight into previously described sub-
populations

In order to identify subpopulations with different co-expression networks, Trott et al.
[40] grouped cells according to normalized pluripotency gene expression. Networks are
constructed on the basis of significant Pearson correlation between nodes, and subdivided
into groups based on the presence of two heterogeneously expressed transcription factors,
Nanog and Fgf5. The high Nanog (Nanog+) compartment was defined such that Fgf5
expression is absent for all cells with Nanog expression at or above the minimum level of
this compartment.

MCA plots confirm differential Gbx2, Sox2 correlation for high Nanog cells

As in their study, we find that the Nanog+ subpopulation indeed has a significant positive
Pearson correlation between Gbx2 and Sox2 (Figure [3.3]A, I). Also in agreement, the
remaining cells (Nanog-, 0! — 74" percentile), show no significant correlation between
Gbx2 and Sox2 (Figure [3.3A, II). However, we learn from the MCA plot that in fact only
the top 10% contribute to the observed positive correlation; the subset of the high Nanog
subpopulation between the 74" and 93"? percentile (Figure ‘ , I1I) is not significantly
correlated (p = 0.57).

MCA plots show that Gbx2, Sox2 correlations are not robust for Fgf5- cells

The authors found that the 15 of 83 cells (18%) expressing Fgfb (Fgf5+ compartment)
do not correlate for Gbx2 and Sox2, whereas the remaining 68 Fgf5- cells (82%) show
a significant positive correlation [40] . Using an MCA plot we see that this indeed true
(Figure [3.3B, I and II for Fgf5+, Fgf5-, respectively). However it is also evident that the
Fgf5+ cells with Fgf5 expression between the 90" and 100" percentile of the distribu-
tion are in fact positively correlated for Gbx2 and Sox2 (Figure [3.3B, III). Likewise, the
majority of the cells in the Fgf5- compartment are not significantly correlated for Gbx2
and Sox2. Indeed most subpopulations consisting of cells with expression between the 0"
and 75! percentile of the Fgf5 distribution are not significantly correlated for Gbx2 and
Sox2 (p > 0.05). Thus, MCA provides the means for a detailed and robust subpopulation
identification, superior to ad hoc compartmentalization.
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Figure 3.3: MCA plots identify interesting biological subpopulations in mouse embryonic
stem cells. A. MCA analysis reveals insight into the influence of Nanog on the Gbx2,
Sox2 interaction. Gbx2 and Sox2 are significantly positively correlated when considering
the entire Nanog+ compartment (quantiles 74% to 100% of Nanog, I). When considering
the remaining Nanog- cells, the correlation is no longer significant (quantiles 0% to 74%,
IT). MCA plots reveal that the positive correlation in the Nanog+ compartment is due
to just half of the compartment; the rest is uncorrelated (III). B. Gbx2 and Sox2 are
uncorrelated when considering the whole Fgf5+ compartment (quantiles 82% to 100%, I).
However, the top 10% are significantly positively correlated when considered alone (IT).
The Fgf5- compartment is significantly positively correlated (III), however, the majority
of subpopulations in the Fgf5- compartment are not significantly correlated. See main
text for a comparison of our findings with the previous report of Trott et al. [40].
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3.3 Discussion

Fueled by newly developed single-cell technologies such as single-cell transcriptomic [84] [191],
genomic [83] and proteomic [56] analysis, many new methods have emerged which attempt
to shed light on cellular heterogeneity [192][51][193][194].

Previous methods for the detection of heterogeneous subpopulations in biological data
have largely focused on grouping observations according to expression level, and thus
requires that subpopulations be readily separable. For instance, in FACS cellular subpop-
ulations are often identified with manually determined compartments [195][196][197]. If
the data are easily separated, clustering methods such as Gaussian mixture modeling and
k-means clustering have proved well suited to this task [I8T].

Alternatively, methods such as principal component analysis attempts to identify the
principal directions, along which the data are maximally separated [198]. Data which
cluster together in the reduced dimensional subspace spanned by the first few principal
components are thought to be representative of subpopulations. A similar method was
employed by Trott et al. when analyzing the Fgf5+/- and Nanog +/- compartments
[40]. Non-linear alternatives to PCA including Gaussian Process Latent Variable Modeling
have also recently been shown to be useful for the identification of cellular subpopulations
[194] [60].

None of the previously mentioned methods utilize correlation information in the iden-
tification of cellular subpopulations, with the exception of Gaussian mixture modeling
which attempts to learn the correlation matrices of Gaussian distributions thought to
have generated the data. However, as shown here, the local correlation structure provides
additional insight into the existence of differentially regulated subpopulations and hence
should not be disregarded.

To date, relatively few methods have addressed the possibility of local, state-dependent
correlations. Chen et al. [199] developed a method for analyzing the effect of local non-
linear correlations in gene expression data, and applied it to a microarray dataset; a similar
method was recently developed by Tjgstheim et al. [200] for estimating local Gaussian
correlation in the context of econometric data. However, these methods required the
definition of a interaction scale for the computation of local correlations or consider only
the relative distance between data points and not their absolute levels when computing
local correlations.

Recently Cordeiro et al. [201], developed a sophisticated algorithm for identifying clus-
ters of arbitrary orientation, also in a multiresolution context. MCA is not as general in
that it does not consider clusters aligned along arbitrary projections of the data but pro-
vides instead a comprehensive, multiresolution view of the correlation structure according
to the measured covariates, preserving expression-level dependencies while not requiring
any predefined bandwidth or interaction distance, and thus may provide more biological
insight into the role of individual factors in differential regulation motifs.

MCA has the advantage of being easy to compute and intuitively interpretable; it is
in effect a moving window correlation analysis simultaneously over many window sizes.
The MCA plot provides a graphical diagnostic for detection of subpopulations points that
contribute inordinately to the overall correlation, or outliers, and may provide biologi-
cal insights that serve as hypotheses for further experimentation. Finally, although we
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have focused on biological data and in particular cellular subpopulations in single-cell
transcriptional data, the method is more general and applicable to any multivariate data.

While the simplicity of MCA plots makes them easy to interpret, there are nonetheless
shortcomings that must be mentioned. MCA plots are a graphical representation of the
interaction of only two factors, sorted by a third. If there are many covariates, many
such plots are possible, and it becomes increasingly more difficult to generate and search
through all possible plots as the dimension increases. In such cases it is helpful to consider
only those plots which may be of biological interest such as sorting variables thought to
have a regulatory role, or pairs of factors that are suspected to interact. However, one
may also use alternative sorting variables, such as products of covariates representing
potential interactions, principal directions as determined by PCA, or even arbitrary non-
linear functions of the covariates.

In the case of many variables, one may wish to sort the resultant plots according to
arbitrary functions of the estimated correlation structures; i.e. one could filter for only
those plots showing large significant regions or for plots for which a significant region of
both positive and negative correlation are present. Although preliminary tests with such
methods are successful in identifying such interesting plots, the results are not shown here
as they are unnecessary when the number of dimensions is still manageable via manual
inspection.

The correlation becomes difficult to estimate when the number of samples is small,
or when the number of variables is relatively large compared to the number of observa-
tions. If the resolution is fine, then the MCA plot will contain many points for which
the corresponding subpopulation only contains one or a few observations. Such points
are omitted from the plot since the correlation cannot be robustly computed. This can
sometimes give rise to small regions near the bottom of the MCA plots for which there
are too few observations to compute the subpopulation correlation. These regions do not
have biological significance.

Similarly, the stochastic nature of the data may give rise to "noise” in small subpop-
ulations, leading to interspersed points on the MCA plot which are not part of a large,
significant region. These points typically do not indicate robust subpopulations since a
small perturbation away from them leads to a different correlation structure, and can
safely be ignored. This ”"noise” also gives rise to the slight inhomogeneities in the regions
identified in Figures 2 and 3.

Lastly, in the case of relatively many variables compared to the number of observations,
correlations can be computed using shrinkage-based estimators [202], although this results
in a different estimation of statistical significance, and increases computational complexity.

3.4 Conclusion

We have presented a method for the analysis of local correlation structures in subpop-
ulations of multivariate data. MCA provides a multiresolution summary of correlations
between pairs of variables as ordered by a third sorting variable. Using MCA, it is pos-
sible to detect robust correlations, identify outliers which can bias correlation estimates,
and potentially discover new subpopulations or interactions giving rise to novel biological
hypotheses.
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Future work will focus on the development of methods to automatically identify vari-
able pairs showing differential regulation in conjunction with a sorting variable, alleviating
the need to manually search through plots for interesting behaviors.

3.5 Methods

We introduce Multiresolution Correlation Analysis (MCA) as a means for visually analyz-
ing the local correlation structure of pairs of covariates, sorted by a sorting variable.

3.5.1 Estimation of correlations

The empirical estimation of the Pearson correlations of a pair of random variables is
computed in the usual way, see [2.2.4

If the data are not multivariate normally distributed, it is preferable to use a more
robust measure of statistical correlation. For instance, Spearman’s rank correlation co-
efficient is defined as in , but using the rank-transformed data [I58]; it provides a
non-parametric measure of correlation between a pair of covariates.

3.5.2 Multiresolution correlation analysis

We define the matrix

di1 ... din
p=1|: = :[d] & ... dy
dipg .. dyn

as the matrix of observed data, where the rows correspond to individual observations, and
columns to measured variables. Note that the data matrix is defined as the transpose of
the data matrix employed in some other transcriptomic analysis methods.

Given D, we can compute the sample correlation between any pair of variables, for
any subset of the total observations. In particular we examine subpopulations defined
by different intervals within the distribution of d_;, the st column of D, for any desired
sorting variable s. For example, we can examine subpopulations for which the value of s
is in the highest or lowest 30% of its distribution.

For a subpopulation centered on the ot quantile of the sorting variable d_;, and con-
taining 8 x 100%, of the total observations, such that

0< B <1
g B

we can compute the sample correlation matrix fl(a, B;s)

g(aa B;s) = {@‘j}z’,j:l“.N (3:2)
with
&ij = cor(di(ev, B 5), dj (e, B; 5)) (3.3)



62 CHAPTER 3. MULTIRESOLUTION CORRELATION ANALYSIS

and

d_(:‘((aaﬁ; S) = {dpq Q(a - 6;8) < dpq

< Qa+ B s>} (3.4)

where @ is the quantile function, i.e. Q(z;s) is the zt" quantile of the distribution of ds,
and d_(;(oc, f3;5) is the subset of the ¢! column of D for which the sorting variable falls
between the (o — 8)* and (a + B)™" quantile of its distribution.

We define Q to be the set of all pairs («, 3) for which Equation is satisfied; for
all (o, B) ¢ Q, f)(a, B;s) is undefined. Intuitively, Equation constrains v and 3 such
that the subpopulation can extend no lower than the minimum, and no higher than the
maximum of the sorting variable.

Although any function could be computed for the subpopulations, we restrict ourselves
to Pearson correlation. If there are relatively many variables compared to the number
of observations, i.e. N > M, estimation of the correlation matrix becomes numerically
infeasible. In this case, estimation of the correlation can be computed using shrinkage-
based approaches such as implemented in the GeneNet R-package [202].

3.5.3 Construction of MCA plots

We systematically investigate the correlation of the subpopulations defined by («, 8) € €.
This information can be condensed into a MCA plot for any pair of variables (i,5) by
plotting the magnitude of the (4, )" entry of f](a, B;s), with a color scale mapped to the
interval [—1,1].

While f)(a, B;s) is in principle defined for all («, 8) € €, in practice we choose =
1/R,...,0.5 and o = 3,8+ 1/R,...,1 — 3 for some positive odd integer R < M which
determines the resolution of the MCA plot, i.e. the number of subpopulations examined:
the larger R, the finer the resolution of the MCA plot.

For each computed subpopulation, a p-value is computed that depends on both sub-
population size and magnitude of the estimated correlation coefficient. Thresholding to
retain only small p-values may reveal large subpopulations with strong correlations. How-
ever, due to the interdependence of the subpopulations (i.e. the estimated correlation
coefficient of a subpopulation is determined by the correlation coefficients of the points
below), it is not possibly to directly interpret the p-values as the probability of non-zero
correlation.

Lastly, the number of possible MCA plots N increases cubically with the number of
variables k, i.e. N = k(k — 1)(k — 2)/6, rendering fully-automatic analysis difficult. In
this case, it is recommended to consider sorting variables which are of potential biological
interest, such as those that are known to be heterogeneously expressed.

3.5.4 Implementation

MCA and the MCA plots were implemented using the R programming language. The
routine allows the user to pass a data frame containing observations, select a sorting
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variable, and a subset of factors whose pairwise correlations are to be analyzed; choose
color options, and the number of subpopulations (resolution); specify correlation method
(Pearson, partial, or Spearman), enable significance cutoffs with user-specified p-value
threshold, and optionally to save resulting plots. The algorithm works by iterating through
all subpopulations defined by median quantile of the sorting variable and size of the
subpopulation, and computing the corresponding correlations using the built-in routines
for correlation and significance estimation. Code is available upon request.

3.5.5 Stochastic simulation

Synthetic data were generated via simulation of a gene regulatory network, the dynamics
of which obey a stochastic differential equation. Two cases were simulated: a three species
activation model where of Z activates X, and X activates Y (Figure , top); and an
inhibition model for which Z activates X and X inhibits Y (Figure , top).

The activation model obeys

X Zf;{v B X +otx(t) (3.5)
% _ MV@, By Y + ok (t)
e A0
and the inhibition model obeys
= Ve B X 4 06x() (3.6)
T = Y e
% ke =B Z + 0&z(t)

where model parameters are not necessarily the same between the activation and inhibition
models.

In both cases, the drift of X is a sigmoidal function of Z and Z is an unregulated birth-
death process. Each species is subject to linear decay and stochasticity enters through the
homogeneous Wiener processes {x(t), &y (t),and z(t) which are independent, with unit
variance, and scaled by the factor o.

The two systems were constructed in such a way that the steady state distributions
do not fully overlap, but are instead displaced with respect to one another such that the
inhibition model shows an approximately 40% increase in X, and 20% increase in Z with
respect to the activation model.

Parameters and initial conditions used for the activation model are given in Table
and in Table for the inhibition model. Simulations were performed using a Euler-
Maruyama SDE integration scheme [169] with time step At = 0.1, implemented in MAT-
LAB. The resulting simulations were allowed to converge to the steady state distribution
by discarding the first 300 data points, and subsequently thinned by a factor of 20. Pearson
correlations were computed using the corr built-in function of MATLAB.
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3.5.6 Analysis of transcriptomic data

Single-cell transcriptomic data from 87 mouse embryonic stem cells were obtained from
Trott, et al. [40] as an Excel spreadsheet containing ¢PCR readouts for eight pluripotency
factors and one housekeeping gene. The expression of each gene was first adjusted by
adding the minimum expression over all genes, 0.0217, and subsequently normalized by
dividing by the expression of the gene Gapdh on a cell-wise basis.

Two cells were excluded due to the presence of missing data for some factors, and two
additional cells were removed because they were thought to be outliers. The remaining
83 cells were subdivided into a Nanog+ compartment (N = 20), defined as the 20 cells
with the highest Nanog expression, and for which no Fgf5 expression was detected, and
the complementary Nanog- compartment (N = 63). The cells were separately divided
into a Fgf5+ (NN = 15) compartment, for which Fgf5 expression was detected, and a Fgf5-
(N = 68) compartment with no Fgf5 expression.

Correlation networks were computed using Pearson correlation of the normalized data
without any log transformation, and with a significance cutoff of 0.05.

3.6 Tables

Table 3.1: Model parameters used for activation model (Figure )

Parameter Value Description

Ny 2 Hill coefficient of X activation

Ny 2 Hill coefficient of Y activation

K., 900  Equilibrium constant of X activation
Ky 1000  Equilibrium constant of Y activation
Ve 600  Velocity of X production

Vy 600  Velocity of Y production

k, 450  Basal production of Z

B 0.3 Death rate of X

By 0.3  Death rate of Y

5. 0.5 Death rate of Z

Xo 100  Initial X

Yo 100  Initial Y

2y 100  Initial Z

At 0.1  Time step
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Table 3.2: Model parameters used for inhibition model (Figure )

Parameter Value Description
Ny 2 Hill coefficient of X activation
Ny 2 Hill coefficient of Y activation
K., 4000 Equilibrium constant of X activation
Ky 1000 Equilibrium constant of Y inhibition
Vz 10000  Velocity of X production
Vy 70 Velocity of Y production
k, 110  Basal production of Z
ay 70 Basal production of Y
Bz 0.5  Death rate of X
By 0.1 Death rate of Y
B, 0.1 Death rate of Z
Xo 100  Initial X
Yo 1500 Initial Y
Zo 1000 Initial Z
At 0.1 Time step
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Chapter 4

A case study on the use of scale
separation-based analytical
propagators for parameter
inference in models of stochastic
gene regulation

In order to provide an accurate, detailed model of Nanog regulation and expression dy-
namics, it is necessary to consider stochastic models which capture the time-dependent
evolution of the Nanog promoter, mRNA and protein. However, even for such a small sys-
tem it is not possible to compute the solution to the chemical master equation (CME) in
closed form. Although it is in principle possible to compute the solution with little approx-
imation error when the number of molecules is low (using the finite state projection (FSP),
see Section , it rapidly becomes infeasible when molecule numbers become too large
or when there are too many species involved. Thus, to investigate the time-dependent
behavior of small regulatory motifs it is necessary to utilize approximations.

Shahrezaei et al. developed an approximation to the transition density of a regu-
latory motif involving a promoter that is always active, and mRNA and protein that
are produced and degraded according to a birth-death process, where the probability of
protein production depends on the mRNA copy number [I11]. Recently, Popovi¢ et al.
derived an extension to this model, based on geometric perturbation theory, which relaxes
the assumption of infinite scale separation between mRNA and protein degradation, thus
allowing for a better approximation of the time-dependent joint density even when the
mRNA half-life is appreciable compared to the protein half-life [I12]. In this chapter, I
perform an investigation into the suitability of this approximation technique for parameter
inference for this two-stage model. The goal of this investigation is to learn whether this
method is appropriate for modeling Nanog dynamics and suitable for parameter identi-
fication. I further compare the newly developed method against the previous method of
Shahrezaei, and against an approximation to the CME using the FSP. Although I did not
develop the mathematical theory, I performed the entirety of the analysis described in this
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chapter, including developing a numerically robust and efficient, C++-based implementa-

tion of the two approximate propagators. I also derived alternative formulations to some

expressions (using identities of special functions) to render the computations feasible.
The work in this Chapter has been published in the following original research article:

Feigelman, J., Popovié¢, N., Marr, C. (2015). A case study on the use of
scale separation-based analytical propagators for parameter inference in models
of stochastic gene regulation . Journal of Coupled Systems and Multiscale
Dynamics, 3(2), 164173. http://doi.org/10.1166/jcsmd.2015.1074

The text and figures are entirely my work, with minor corrections from co-authors.

4.1 Introduction

Gene expression is a complex and highly regulated multi-step process responsible for the
timely synthesis of proteins necessary for cellular function. At the molecular level, gene
expression is inherently stochastic due to random binding events of transcription factors
and the transcriptional machinery, which ultimately leads to mRNA transcription with
probabilities depending on the concentration of the reaction educts. Protein synthesis
requires a chance encounter of mRNA with ribosomes, and mRNA or protein degradation
an encounter with the degradation machinery. Thus, models for gene expression have to
capture the stochasticity at both mRNA and protein levels.

A simple, “two-stage” model for stochastic gene expression consists of a constitutively
active gene from which an mRNA molecule can be transcribed, and protein, the production
of which depends on the instantaneous abundance of mRNA (see Figure [4.1]A). Both
mRNA and protein are subjected to stochastic degradation. Such a qualitative model
can be described mathematically as a two-dimensional Markov jump process in the copy
numbers of mRNA and protein, with reaction probabilities that are functions of the current
state only (hence the Markov property), and suitably chosen kinetic constants [105], [T11].

While the two-stage model is easily simulated using stochastic simulation algorithms
such as Gillespie’s algorithm [I17], it is nonetheless a difficult task to derive analytical
expressions for the evolution of mRNA and protein copy numbers with time. The Markov
process itself obeys the chemical master equation (CME), an infinite-dimensional system
of ordinary differential equations, for which no exact (closed-form) solutions are known in
general. Numerous approaches exist for approximately solving the CME such as the linear
noise approximation [167], a second-order Taylor series expansion in the system size of the
reaction volume; moment equations and variants [98], 203], which capture an arbitrary
number of statistical moments of the stochastic process; finite state projection [I31], a
truncation of the state space of possible copy number combinations, and many others (for
an overview, see [92]). We further note that this particular system has been studied using
a variety of analytical and computational techniques, see e.g. [42] [105] 113] 204] or [109]
for a review of related modelling approaches for this system.

An alternative analytical approach was developed by Shahrezaei and Swain [111],
wherein it is assumed that mRNA molecules decay much faster than protein, a realis-
tic assumption in many prokaryotic cells. In the limit of a perfect scale separation in
which the decay of mRNA is instantaneous, the CME underlying the two-stage model can
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be solved analytically by the introduction of a generating function. The latter then obeys
a first order linear partial differential equation, the solution of which can be obtained via
the method of characteristics. The resulting analytical expression for the general time-
dependent joint probability density of mRNA and protein, called the propagator of the
system, is of great utility for understanding the time-dependent behavior of the system.
However, it is not valid when the assumption of scale separation is violated as is commonly
the case for eukaryotic cells. In recent work [I12], the procedure developed in [I11] was
extended to capture departure from the assumption of perfect scale separation: the ratio
of degradation rates of protein and mRNA, denoted &, was taken to be small and positive
instead of zero, as was the case in [I11]. The presence of the (singular) perturbation pa-
rameter € allows for the application of asymptotic techniques, such as geometric singular
perturbation theory [205] and matched asymptotic expansions [200].

In the present case study, we explore the utility of this newly developed perturbative
approach for propagator-based parameter inference in systems with varying degrees of scale
separation. Specifically, the goal is to estimate molecular parameters in the model from
observations of protein abundance only. Trajectories are simulated via Gillespie’s stochas-
tic simulation algorithm in a parameter regime in which mRNA and protein are produced
continuously, i.e. not in translational bursts. The protein time-courses are sampled at
regular time intervals, thus mimicking a typical time-lapse fluorescence microscopy setup
[207, 208]. While fluorescence microscopy yields only intensity time courses, these can
nonetheless be converted into absolute protein numbers if a calibration factor of molecules
per unit intensity can be estimated, see e.g. [209]. mRNA time-courses are not observed,
and hence are not used for parameter inference.

The zeroth-order propagator obtained by setting ¢ = 0 [I1I] is then compared to
a first order propagator (in € > 0) that is uniformly valid both on short and on long
time-scales [112], in terms of the ability of each to capture the correct parameters —
i.e., the kinetic constants in the underlying chemical reaction network — in the two-stage
model for gene expression. A number of simplifying assumptions are made; notably, we
ignore impeding factors such as measurement noise, uncertainty in the conversion from
fluorescence intensity to protein numbers or low sampling frequency of fluorescent signal.
Rather, our focus in this case study is on assessing the general efficiency and accuracy of
the propagator-based approach for parameter estimation.

4.2 Methods

4.2.1 Two-stage Gene Expression Model

We model gene expression as a two-stage process, whereby DNA is transcribed to mRNA,
which is then translated into protein (see Figure ) We denote the probability of n
molecules of protein and m of mRNA in the system at time 7 by Py, (7), i.e. Pyn(7) =
P(M =m,N = n,t =7), where M, and N denote the number of mRNAs and proteins,
respectively. The probability density P, ,(7) evolves according to the non-dimensionalized
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CME (see |B.2)) [111], [167]

OPmn
or

= Q(Pm—l,n - Pm,n) + ’me(Pm,n—l - Pm,n)

+[(m + 1) Pt — mPpy 1)
+[(n+1)Pynt1 — nPpy). (4.1)

Here, m and n denote mRNA and protein copy numbers, respectively, a is the non-
dimensional transcription rate and b is the non-dimensional translation rate, while the
degradation rates of mRNA and protein are given by « and 1, respectively (see Figure
4.1]A). Finally, 7 denotes a suitably non-dimensionalized time variable.

As in [I11] 112], we define the perturbation parameter £ = y~! here. It follows that
for ¢ sufficiently small, the dynamics of Eq. will vary on two distinct time-scales: the
long-term behavior of the system is naturally described on the “slow” 7-scale, while the
“fast” transients evolve according to the rescaled time ¢ := .

4.2.2 Propagator Expressions

In this section, we collect a number of analytical results that underlie the present case
study; details can be found in [1111, [112].

Zeroth-Order Propagator

The zeroth-order propagator for the two-stage gene expression model (Figure ) rep-
resents an approximation to the CME, Eq. , under the assumption of infinitely
fast mRNA degradation. Mathematically speaking, it is obtained in the singular limit of
v — o0, i.e., of e = 0. Following [IT1], we have

Pmno(T,O):(1-57)%(1“’6_7)“( b )”z":{k(—l)k T(a+n —k)(ng +1)

1+0b 1+0b (n—k)! T(a)T'(no—k-+1)
14+0b 7k 1+5b
X [m} 2F1<—n+k,—a,1—a—n+k,eT+b>} (4.2)

for the zeroth-order marginal probability P,,,(7,0) of observing n protein molecules after
time 7, given ny molecules of protein and my = 0 of mRNA initially. Here, 9F(a,b,c, z) is
the Gauss hypergeometric function [210], see Appendix We remark that, by construc-
tion, Py, (7,0) neglects any contributions from the fast ¢-scale, as the decay of mRNA is
instantaneous to leading order in ¢.

Uniform (First-Order) Propagator

The uniform propagator, denoted Py, (7,t,¢), was derived as in [I12]. Here, ¢ denotes
the perturbation parameter, as before, while t is the fast time variable. We emphasize
that P,,, describes the probability of transitioning from ng protein molecules initially to
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n at time 7 = et, uniformly on the two time-scales. After some algebraic rearrangement,
we find

b n—ng 1
Pn|n0(7',t,€) = Pn|n0( g) + ga( ) (7

1+b 1+ b)2
o —b— _EY e
X [n—ng—b—(1+0b)t] + Tn = 1o+ 2) (bt) t

X {1F1(n —ng+1,n—ng+2,—(1+0)t)t

X [1 - (n—no = b)} (n=no + 1)6_(1+b)t} (4.3)

1+0 1+0

to first order in €; here, 1 Fj(a, b, z) is the Kummer function of the first kind (or confluent
hypergeometric function) [210]. We remark that the transition probability P,,,(T,¢)
contributes on the slow 7-scale in Eq. , while the ¢-dependent contribution in Eq.
accounts for the transient dynamics on the fast time-scale.

Specifically, Py, (7,€) denotes the marginal probability, up to and including O(e)-
terms, of observing n protein molecules after time 7 given ng protein and my = 0 mRNA
molecules initially:

n|n0 Z m,n|0,ng 7— 5 (44)

As shown in [I12], the probability of having more than 1 molecule of mRNA at time 7 is
negligible; thus, Eq. (4.4) reduces to

Pn|no (7—7 5) = PO,nlO,no (7—7 5) + Pl,n|0,n0 (T’ 5)' (4'5)

After some algebraic simplification, the two transition probabilities P /0, a0d Py (0,0,
in the above relation are found to be

Po,n\o,no(Ta e)=@1—eT)" (1 —llj— b)n<1 i_—iebT)a

n

1
XZ(n—k)B(an k)gFl(—n—i-k —a, 1—a—n+k,eT+b)

a L. _ 1} _1tb
X {g nOa 1 —|—b) (k—l_ 1) X |:2F1( k’ 1o, 1 k:’ b(l—eT)) (46)
140b T o
+< ) 62 2F1( ]{Z —n()?—l_k,b(l;i»eb-,-))]}
0 for k > ng
n()? n
(—1)F i b(lHSZ)]k for k < nyg
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Prnjono (7€) = (b+ ) i) ( 1+b )
b+1
kZ{ n_k)gFl(k‘—n,—a,—a—i—k:—n—l—l,b+ef)
o ) o |: be’T + 1 :|n0 (47)
h(n T
0,k b(1—e7)
h(no, k) = 0 for k > ng
no, k
(i) Loy ) 2B (L k =m0+ 1k 42, giftly) - for k< ng
_ T(@T®) . ; ; i S
Here, B(a,b) : Flatd) 1S the Beta function, with the proviso that = Ban—h 1
when n = k.
Finally, Eq. (4.3) can be simplified by substituting
1Filn—nog+Lin—ng+2;—(14+0b)t) =
[(1+ b)t] =m0t ID (0 — ng + 2)
—(n=no+1)I'(n—ng+1,(1+0b)) (4.8)
to achieve the computationally more tractable formulation
Pring (T, 1,€) = Py (T, €)
b n—no 1
—ng—b—(1
+€a<1+b) Tl o —b— (0]
b \n—mn0o 1 b+nyg—n
te =+ —t
““{ <1+b) (1+b)t< 1+ )
X [1=Q(n—no+1,(1+b)t)]
bt (n—no) —(1+b)t
(b0) © (4.9)
1+b I'(n—np+1)

Here, Q(a,x) := Fé?aa)c) denotes the regularized upper incomplete gamma function.

4.2.3 Special Cases of the Hypergeometric Functions

Care must be taken when evaluating the hypergeometric function 9Fi(a,b,c,z). The
following special cases are of use [210].

ea=—k=c(keZ"):
2F1(CL, ba ¢, Z) = 2F1(_k b —k’,Z)

= Z n' : (4.10)

where (2), = z(x 4+ 1)...(x+n — 1) is the rising factorial of z.
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ea=—k,c=—-k—-1(keZ"):
oF(a,b,¢,z) = oF1(—k,b,—k — 1, 2)

min(—a,—b) atn—1

= > (D (4.11)

nl a-—1
n=0

©ea>0,c>0,b=—-k(keZ"):
2F1(CL, ba ¢, Z) = 2F1(a7_kvcv Z)

k n
-y (azz;i’)" % (4.12)

n=0
4.2.4 Stochastic Simulation

Stochastic simulations were performed using the StochKit 2.0 [211] simulation framework
and the standard stochastic simulation algorithm [I17], with a non-dimensionalized tran-
scription rate ¢ = 20 and a non-dimensionalized translation rate b = 2.5, corresponding
to ‘regime I’, i.e. bursty mRNA synthesis, as defined in [I12]. We used mRNA degrada-
tion rates of v € {10, 20, 50,100} and protein degradation rate 1. Each value of v was
simulated 20 times, and the resulting trajectories were used for computing the probability
landscapes of the rescaled model parameters a and b. Protein quantities were observed
without measurement noise at intervals of 0.1 time units. All simulation runs assumed
zero molecules of mRNA and protein initially, i.e., mg = 0 = ng.

4.2.5 Implementation

Both the zeroth-order propagator, Eq. , and the uniform propagator Eq. , were
implemented in C++ with a Matlab mex-file interface. Special functions were evaluated
using the GNU scientific library [212], the Hyp_2F1 function implementation of the Gauss
hypergeometric function [213], and the Algorithm 910 multiprecision special function
library [214]. It proved indispensable to use a high precision numerical library due to
several computations involving subtraction of very large numbers. While the difference of
such numbers is potentially below a double precision machine error of approximately 10713,
they are nonetheless essential in the correct computation of the transition probabilities.
However, our C++ implementation is still inaccurate in some extreme cases, typically for
very large protein numbers n, due to numerical differences which are sometimes as small
as 107370 in Eq. , but which unfortunately cannot be neglected as they are inflated
by the remaining terms in the expression. Such inaccuracies are infrequent, though, and
generally occur during transitions for which the uniform propagator yields non-physical
values; thus, they do not substantially affect our analysis, or the conclusions obtained in
this study.

4.3 Results and Discussion

To assess the applicability of the zeroth-order propagator Eq. (4.2)), Pyjno (7,0), and the
uniform propagator Eq. (4.3), Ppn, (7,1, €), for parameter inference in the two-stage gene
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expression model, we simulate time series with a specific parameter pair (a*, b*). Then, we
compute the likelihood of the observed dataset on the basis of the two propagators for a
range of values for the parameters a and b. For simplicity, we assume the scale separation
v between mRNA and protein lifetimes to be known (see Methods for definitions).

4.3.1 Protein Time Courses Simulated With Gillespie’s Algorithm

We simulate mRNA and protein time-courses for the two-stage gene expression model
(Figure [4.1]A) using Gillespie’s algorithm [I17] (see Methods for details). Simulations are
initialized with mg = 0 mRNA molecules, and nyg = 0 protein molecules, although the
method is equally applicable to any initial number of proteins, as shown in [112].

The generated protein time-courses are sampled at N = 101 timepoints, with fixed time
increments of At = 0.1 to mimic the measurement of protein abundance with time-lapse
microscopy, see Figure [L.I]B. For each transition in the observed time series, we compute
the approximate probability using the two analytical propagators, see Figure [I.1B, inset.
Notably, we ignore measurement noise throughout, i.e., we only investigate the suitability
of the derived propagator expressions for synthetic “ideal” data (see Discussion for possible
extensions).

We note, moreover, that the propagator expressions can be used to visualize the like-
lihood of various sample paths in the underlying stochastic networks for a given set of
parameters and conditional on the initial condition; see Figure 4.1

4.3.2 Parameter Inference

Using the two analytical propagators, we compute the log-likelihood L(a,b) of the simu-
lated trajectories for a range of (a,b) combinations in the subspace (a,b) € [107!,10%] x
[1073,103]. The log-likelihood is computed as

N
L(a,b) =Y log Py, s (4.13)
=1

where P*,
nini—1

= Pm|m_1 given by for the zeroth-order propagator and P':i‘ni—l =
Prijn;_,» 8iven by for the uniform propagator, where the parameter ¢ = ~~! is
assumed to be known; both propagators depend on the parameters a and b. The term
n; represents the number of proteins at measurement time ¢;. Thus, we compute the
logarithm of the probability of each transition, from m;_1 protein molecules at time ¢; 1
to n; molecules at time t;, in the sequence of observed measurements (see Figure ,
inset).

In order to estimate the parameters a and b from simulated protein time-courses,
Eq. has to be evaluated very frequently. We thus developed a numerically stable
expression for the uniform propagator Py, (see Section , and we used an efficient
implementation in C++ for both propagators that results in reasonable runtimes; see

Section [£.2.5] for details.
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Figure 4.1: A. The two-stage model for gene expression, which captures stochastic mRNA
and protein birth and death, with non-dimensionalized parameters a for transcription, b
for translation, and v for mRNA degradation. B. Time-courses were simulated using the
stochastic simulation algorithm, shown here for a = 20,6 = 2.5,y = 10 and v = 100.
Probabilities can be computed for each protein transition using the analytical expression
for the two-stage propagators, Eq. and Eq. (inset, probability distributions
shown in gray). C. Propagator expressions can be used to compute the probability a
particular number of protein molecules at arbitrary timepoints, conditional on the initial
conditions. The prediction from the uniform propagator, Eq. (blue background),
shows good qualitative agreement with stochastic simulation (gray lines), shown for v = 10.
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4.3.3 Comparison of Propagator Accuracy and Efficiency

We scan the space of parameter values (a,b) on a logarithmically spaced 44 x 45-grid
with 107! < @ < 10® and 1072 < b < 103. For each pair (a,b), we compute the log-
likelihood L(a,b) of the zeroth-order propagator, resulting in a likelihood landscape that
should ideally have its maximum, the maximum likelihood estimator (MLE), at the true
parameter values. We immediately encountered the obstacle that the uniform propagator
yields negative transition probabilities, or even probabilities larger than one, for some
choices of (a,b). This is discussed in [I12], and is a result of the asymptotic approximation.
Nonetheless it is problematic when computing the overall log-likelihood as the computation
becomes meaningless. Thus we introduce an ’averaged log-likelihood’, L(a, b), which
removes all non-physical values (i.e. larger than one or less than or equal to zero):

N

L(a,b) = ~
s¥ifo<ry, <1}

(4.14)

with P':ilni—l defined as in . The averaged log-likelihood represents the average
log-likelihood for a set of parameters (a,b), after removing all non-physical transition
densities. The averaging is used to compensate for the fact that the number of non-
physical transitions may vary greatly for different (a, ). Since each retained transition only
decreases the overall log-likelihood of the time series, the log-likelihood estimate without
normalization would inherently be biased towards regions of (a,b)-space for which many
transitions were omitted.

Using , we compute the log-likelihood landscapes (shown as contour plots) for the
zeroth-order and uniform propagators, obtained from a single time-course simulated with
v = 100, observed at N = 101 timepoints at time intervals of At = 0.1. Computing the
MLE, we find that it deviates from the true model parameters (a*,b*) = (20,2.5) in (a, b)-
space, for both the zeroth-order propagator (Figure ), and the uniform propagator
(Figure ) For comparison, we also generate the finite state projection approximation
to the log-likelihood landscape (Figure ), computed by solving the CME , as-
suming that the mRNA has at most two copies (in agreement with simulations), and the
the number of proteins does not exceed 200, see [I31] for details of the FSP. Similar to
the two approximate propagators, the FSP shows a bias in the MLE, from which we can
conclude that the bias originates largely due to the inherent stochasticity of the system.

For all three methods, the MLE converges to the true model parameters (a*,b*) as
the number of simulations used for parameter inference increases from one to twenty, see
Figure [4.2D-F, wherein we depict the sum of the averaged log-likelihoods over each of the
trajectories. Thus, we conclude that for v = 100, both analytical propagators provide a
good approximation to the underlying transition density, and may be of use for parameter
inference. However, the finite state projection provides a log-likelihood landscape that is
more tightly peaked around the true model parameters (compare contour lines, in Figure
—F); the approximate methods are less able to to distinguish between combinations of
a and b which lead to approximately the same dynamics in the observed time courses.

Although both approximate propagators work well when = is sufficiently large, and thus
for which the perturbation parameter e = 4! is small, problems emerge when moving to
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Figure 4.2: Averaged log-likelihood landscapes for simulations with (a,b) = (20,2.5) and
~v = 100. Landscapes for single-time courses (left) are shown with contour lines drawn
at intervals of 1 unit; contours for landscapes using 20 time-courses (right) are drawn at
intervals of 10 units. The averaged log-likelihood landscapes generated using a single time-
course for the zeroth-order propagator, Eq. , (A), uniform propagator, Eq. (4.3), (B),
and finite state projection approximation (C) for a single time-course each show bias of the
MLE with respect to the true model parameters. Notably, the landscape of the uniform
propagator (B) shows distortions arising from non-physical transitions probabilities for
some parameters (a, b). As the number of trajectories is increased to 20, the MLE converges
to the true parameters for each of the zeroth-order propagator (D), uniform propagator
(E), and the finite state projection (F). The averaged log-likelihood of the finite state
projection seems to be the most tightly-peaked around the true model parameters.
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smaller v. In the case of v = 10, the uniform propagator generates many non-physical
transition probabilities which heavily distorts the log-likelihood landscape, see Figure|4.3A.
This leads to a severe bias of the MLE with respect to the true model parameters.

To understand the origins of this bias, it is helpful to examine a representative time-
course. In Figure|4.3B, a typical protein time-course with v = 10 is shown (top), along with
the log-likelihood of the transitions (bottom) obtained using the uniform propagator for
the true parameter values (black) and for the MLE (cyan). The transitions for which the
uniform propagator, Eq. , yields non-physical values are shown as white squares within
the colored bars at the bottom of Figure[£.3]B. We indicate one such transition using arrows
in Figure [£.3B, and compute the corresponding transition probability distribution using
the uniform propagator, Figure [L.3|C. In this example, the protein time-course transitions
from 55 to 57 molecules within one time interval. Examining the propagator evaluated
for the true parameters (a*,b*) with initially 55 protein molecules, i.e., calculating Ps7|55,
we see that the propagator becomes negative for 57 < n < 60 (Figure , arrow). We
note that the corresponding negative values are of order O(y~?2), and thus within the error
incurred by the expansion in Eq. , which is accurate to O(y~1).

Using the uniform propagator, we compute a portion of the “transition matrix”, i.e.
the probability of all transitions from 0 < n;_; < 100 to 0 < n; < 100, evaluated at the
true model parameters (a*b*), see Figure . Using this plot it is obvious that large
regions of the transition space yield non-physical values, shown in gray.

To quantify the frequency of the non-physical transitions, we calculate a “computability
score”

Ntraj N
1
C(a,b) = N N ; ; 1{0 < Pyyps <1}, (4.15)

where the superscript & indicates the index of the simulated trajectory. Thus C(a,b)
captures the fraction of evaluated transitions for a given pair (a,b) which were physically
admissible, i.e., between zero and one, for the uniform propagator. A plot of the com-
putability score reveals that certain regions of the parameter space suffer from low com-
putability, i.e., they yield many non-physical values, which are apparent as dark regions,
see Figure [L.3E. By contrast, the uniform propagator provides a better approximation to
the true transition probability when evaluated in the so-called regime II (a, b) = (0.5, 100)
(as defined in [112]), which corresponds to a continual protein synthesis. This is obvious
when examining the transition matrix, Figure [L.3[F, for which all transitions were com-
putable and physically admissible, as opposed to the transition matrix for (a, b) = (20, 2.5).

Thus we conclude that the uniform propagator may provide a useful approximation
to the stochastic propagator in certain regions of parameter space, in particular for high
b, low a corresponding to regime II, but breaks down in large regions of parameter space
for which the computability is low. In regions with low computability, the remaining
transitions may in fact have a higher likelihood than for the true model parameters (see
Figure ) which can lead to a biased estimate of the model parameters, as in Figure

H3A.
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Figure 4.3: A. The averaged log-likelihood landscape for v = 10 of the uniform propagator
shows prominent distortions in the contours caused by frequent non-computable transi-
tions. The MLE (cyan) shows an obvious bias with respect to the true model parameters
(black). B. Inspection of a single time-course (shown on top) evaluated at the true model
parameters and at the MLE reveals more non-computable transitions (indicated with white
boxes below) for the MLE than for the true parameters; however, for those points that can
be computed, the probability is higher than for the true parameters, leading to a higher
averaged probability and thus a biased estimate of the parameters (a,b). C. Inspection
of the transition probability with (a,b) = (20,2.5) for the transition marked with arrows
in (B), from 55 to 57 molecules, reveals a negative transition probability coinciding with
the observed transition. D. Computation of the transition matrix for the uniform propa-
gator ((a,b) = (20,2.5)) from N(t) proteins to N (¢t + At) proteins reveals a large region
of non-computable transitions, shown in gray. E. The computability score C(a,b) shows
that the MLE is biased towards the region with the lowest computability, for which most
transitions are omitted from the averaged log-likelihood score L(a,b). F. By contrast, the
transition matrix is fully computable for (a,b) = (0.5,100) corresponding to the region of
continuous protein synthesis, i.e. non-bursty dynamics.
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4.4 Conclusion

In this work, we have investigated the utility of a propagator-based approach for ap-
proximating the transition probabilities in a simple two-stage gene expression model by
attempting parameter inference from protein time-courses. The latter can be derived, e.g.,
from time-lapse microscopy of fluorescently-labelled proteins in single cells, and are thus
of interest for the study of regulation in gene expression. Here, we only use simulated
time-courses measured at regular intervals, without measurement noise. The simulations
are initialized with zero mRNA molecules and zero protein molecules. This represents a
simplifying assumption as compared to a typical biological setting, but does not affect the
subsequent analysis.

We compare a newly developed uniform propagator, which was derived in [112] by
application of geometric singular perturbation techniques, to a previously proposed prop-
agator [111] which corresponds to the singular limit as the perturbation parameter in the
model is decreased to zero. The two propagators are compared on the basis of the proba-
bility landscapes of the two relevant model parameters a and b, which represent rescaled
transcription and translation, respectively. The propagators are further compared against
another approximate solution of the chemical master equation , corresponding to the
finite state projection (FSP). The FSP is a numerical method and is a priori restricted to
a subspace of the possible configurations of the system; nonetheless, it shows very good
identifiability of the model parameters given sufficiently many observed trajectories (see
Figure [4.2]F).

The results of our investigation indicate that both propagators perform well when the
value of v — the non-dimensionalized mRNA degradation rate — is sufficiently large. In
the case of v = 100, both capture the true model parameters almost exactly, as long as
there are sufficiently many time-courses. In our simulations, 20 time-courses — about
2000 observed transitions — were needed before convergence to the true parameter val-
ues, a number which is attainable in a real biological experiment. However, for smaller
values of v, that is, assuming a decrease in scale separation between mRNA and protein
degradation, the uniform propagator becomes inconsistent, in that it generates negative
transition probabilities for many segments of the protein time-course. This loss of pos-
itivity is a general feature of asymptotic expansions for probability distributions, which
a priori only satisfy the non-negativity required of the distributions provided the corre-
sponding perturbation parameter is sufficiently small. While the occurrence of negative
probabilities for transient times, i.e., on the fast time-scale, is irrelevant for the evaluation
of the steady state of the system, it is of extreme relevance to the utility of the propagator
for parameter inference. Thus although the zeroth-order propagator is asymptotically less
accurate due to the exclusion of the correction term, it nonetheless may prove a more
useful approximation when used for parameter inference, as it does not yield negative
transition densities under any circumstances.

Since the majority of time-courses contained transitions for which the calculated prob-
abilities were negative, it was necessary to devise a better measure which utilized as much
information as possible. We thus discard all negative transitions, and use the remaining
non-negative transitions normalized by the number of non-negative transitions in each
time-course to obtain an averaged likelihood for each pair (a,b) in the parameter space.
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While this approach retains the maximum information possible from the trajectories, it
nonetheless seemingly introduces distortions into the probability landscapes of the param-
eter space (see Figure ) These distortions proved sufficient to shift the MLE away
from the true value, thus limiting the utility of the uniform propagator for parameter
inference in this regime.

In the current analysis, we have restricted ourselves to computing the log-likelihood
landscape, i.e., the approximate averaged log-likelihood L(a,b), for all parameter pairs
(a,b) on a discrete grid that was sampled uniformly in log-space (see Methods). This
approach is useful for visualizing the probability landscape, but is not ideal for parameter
inference. In a more realistic setting, one would compute the maximum likelihood estima-
tor via numerical optimization, e.g., by applying a finite-differencing scheme in conjunction
with a gradient descent algorithm (see e.g., [215]). Alternatively, one could use Markov
Chain Monte Carlo (MCMC) techniques to sample directly from the posterior in order to
obtain the log-likelihood landscape [161]. The MCMC approach is particularly advanta-
geous when the scale separation parameter v is not known a priori, as was assumed in
the current analysis, since the number of parameter combinations increases exponentially
with the number of unknown parameters.

Thus far, we have not considered the effects of measurement noise. In order to obtain
the correct parameter likelihoods in the presence of noisy measurements, one would have to
marginalize over all possible paths, weighted by the probability of observing the measured
values at each point along the sampled path, according to an error model such as normal
or log-normal measurement noise. The variance of the noise then constitutes an additional
unknown parameter o which would have to be inferred. Integrating over all possible sample
paths is of course computationally intractable due to the enormity of the number of such
paths, even if some truncation of the possible path space is made, e.g., by neglecting paths
for which the probability of observing the measured data points lies below some arbitrarily
small threshold. Alternatively, rather than integrating over all possible paths to obtain
the true marginal parameter likelihoods, one could apply a variant of the expectation
maximization algorithm [216] in which case the most likely parameter set (a,b,7y, o) is
inferred along with the “true” latent paths m and n for mRNA and protein, respectively.
A similar approach was employed by Suter, et al. [217], wherein they use the zeroth-order
model presented in [I11] along with simplifying assumptions in order to perform parameter
inference from protein time series.

To improve the utility of the uniform propagator for parameter inference, it is nec-
essary to eliminate the non-physical transition probabilities, which can be achieved via
the inclusion of higher-order terms in the perturbation parameter ¢ in the corresponding
asymptotic expansion, as the current approximation in Eq. is accurate only up to
and including first order terms in . Alternatively, the “fast” and “slow” propagators that
were derived separately in [I12], at first order in €, could be “patched” at some suitable
timepoint so that positivity is ensured throughout. Further improvement is likely possible
for specific parameter regimes (a,b,v) in which the relative orders of magnitude of the
three parameters naturally suggest a «-dependent rescaling of a or b. Another possible
application of the uniform propagator would be to combine it with other techniques, such
as moment equations, in order to perform approximate parameter inference by attempt-
ing to match simultaneously the predicted steady-state distributions and autocorrelation
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functions of the model to empirical observations. The uniform propagator provides a more
exact approximation of the steady-state distribution in the two-stage model for gene ex-
pression, as is shown in [I12], and is thus potentially well suited to such an approximate
inference scheme.



Chapter 5

Inferring gene regulation models
using particle filtering

5.1 Introduction

In real world settings, data are often incomplete in the sense that only some of the vari-
ables are measured. Due to various constraints, data are often also only obtained at
discrete timepoints, leading to uncertainty about unobserved transitions of the system
between observations. Moreover, the measurement process is typically imperfect, leading
to an associated measurement noise that must be also be taken into consideration when
attempting to infer the underlying mechanism and parameters from observed data. In
the case of proliferating cell populations, the problem is made more difficult due to the
branching nature of the dataset. As cells divide, the population size increases and addi-
tional uncertainity is introduced by the unobserved division process for which the initial
state of each daughter cells is unknown. Thus, when trying to perform inference using
such datasets, it is necessary to utilize sophisticated algorithms tailored to proliferating
populations.

In this chapter, I develop an algorithm for parameter inference using discretely and
partially observed time series data obtained from proliferating cellular populations. The
algorithm is designed to exploit the genealogical structure of the data in order to better
estimate the initial conditions of each daughter cell, leading to reduced uncertainty in the
parameters of the mechanistic model. T then test the algorithm’s performance using syn-
thetic data designed to be qualitatively similar to data produced by time-lapse fluorescence
microscopy experiments.

I consider a system consisting of of a single gene, its mRNA and its protein product.
Due to the low copy numbers of the system (one promoter, a couple hundred mRNAs),
I consider only stochastic models capable of capturing the intrinsic noise arising from
random binding and unbinding of the promoter, and stochastic mRNA and protein syn-
thesis and degradation. These chemical species constitute a chemical reaction network
and evolve according to the chemical master equation, see Section A number of
modeling strategies exist for approximating the CME since it cannot typically be solved
analytically. However, these methods are best suited to monostable systems with relatively
large numbers of molecules; in the limit of small molecule numbers, methods such as the
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linear noise approximation, or diffusion approximation (see Section are likely to fail
[94]. Another strategy would be to directly solve the CME using methods like the finite
state projection and variants (see Section . However, the directly solution becomes
computationally infeasible for larger systems containing hundreds of thousands or millions
of proteins.

Recently, approximate inference methods based Approximate Bayesian Computing
(ABC) have gained attention [218| 219]. ABC has the advantage of being likelihood-free:
parameter estimates are obtained purely by filtering sampled parameters on the basis
of the discrepancy between simulated and observed data points (or statistics thereof).
Thus ABC presents an attractive alternative to more classical methods. One ABC-based
algorithm was recently proposed by Loos et al. for inferring model parameters using
multivariate test statistics based on the population snapshot distributions as a distance
metric in the ABC framework [220]. The method was shown to also be suitable for tree-
structured data for a one-stage model (only mRNA) with no measurement error. However,
ABC suffers the great disadvantage that it uses heuristics to approximate the posterior
density of model parameters, making it difficult to assess the correctness of the resulting
estimates. Moreover, ABC induces an unknown loss of information, which can lead to
incorrect model choice in a model comparison scenario [22I]. ABC methods can also be
quite sensitive to the choice of tuning parameters, and may not represent a robust estimate
of the true posterior distribution. Thus, where possible exact methods are preferred.

The algorithm presented in this chapter utilizes particle filters to infer the unknown
regulatory mechanism and associated model parameters underlying discretely-observed
protein count time series. Particle filters represent a type of sequential Monte Carlo
(SMC) algorithm for generating successive approximations to the posterior joint density
of latent trajectories and model parameters [222]. Particle filtering algorithms are similar
to previously developed methods, including the Kalman filter and extended Kalman filter,
in that they use a model to predict the output of the system at the next time step
and subsequently use new observation data to update the predicted state of the system
[223] [224]. However, particle filters make no assumptions about the linearity or Gaussianity
of system transitions, making them much more suitable for inference and state estimation
in complex, non-linear systems. Particle filters are also reminiscent of more recent ABC
algorithms. However, unlike ABC, the SMC method utilized by particle filters samples
from the exact posterior distribution at each iteration, in the limit of infinitely many
samples, which leads to better parameter estimates and allows for model comparison.

Particle filters have previously been successfully applied for inference in stochastic
systems with non-linear, non-Gaussian transition densities where analytical solutions are
generally not possible. Such transition densities are frequently encountered in models of
gene expression, e.g. arising due to interactions at the promoter. The particle filter can be
directly applied to partially observed, noisy trajectories as long as the statistical distribu-
tion of the error is known. Because the particle filter makes no parametric assumptions
about the transition density of the state space (proceeding instead via simulation), it is
also possible to capture arbitrary, potentially multimodal distributions. Such flexibility
is advantageous in the context of gene expression models, where bimodal distributions
may arise via slow promoter switching between active and inactive conformations. Thus
particle filters present a very attractive option for inferring the latent state space and
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associated model parameters from noisy trajectories.

However, although particle filters have previously been applied to inference in gene
expression models, see e.g. [I138, 139] 225], to my knowledge no attempt has been made
to perform inference of stochastic models using tree-structured data arising from colonies
of proliferating cells, i.e. cellular genealogies. I thus propose an extension to the boot-
strap particle filter [226], with explicit modeling of the cell division process and allocation
of cellular contents to daughter cells. This additional modeling step improves inference
and model selection performance compared to an inference procedure which ignores the
genealogical structure of the dataset. The algorithm has the further advantage of fitting
each cellular trajectory individually, thus maximizing the amount of information used for
inferring model parameters, unlike inference algorithms like ABC which attempt only to
fit various statistics of the whole population.

5.2 Mathematical background

5.2.1 Bootstrap particle filter

The objective of the bootstrap particle filter is to sample from the posterior joint density
P(X,0|D, M) of latent trajectories X, and parameters 6 for a model M, given observed
data D. The latent trajectories X are realizations of a stochastic process (see Section
, and the data D represent noisy observations of (a function of) the latent process
X at discrete times. Often the observations are only of a subset of X.

For now we drop the index M for simplicity; when comparing models we will again
introduce this notation. The posterior joint density depends on the likelihood P(D|6) and
prior distribution 7(6) according to Bayes’ Law (2.2)):

P(D|X,0)P(X,0) P(D|X)P(X|0)r(0)

P(X,6|D) = ) - D) . (5.1)

The simplification on the right side of is possible since the probability of observing
data D given a latent trajectory X depends only on X and not on the underlying pa-
rameters 6 of the stochastic process (measurement error is considered separately). The
probability P(X|€) captures the evolution of the stochastic processes parametrized by 6.

In general D constitutes a set of (multivariate) observations of some subset or function
of the true latent trajectory X, given by P(D|X) = ¢g(D|X,n), where g is the observation
function with parameter 1. For example, g might be a Gaussian in which case 1 contains
the variance of the measurement process, and potentially a scaling factor. For brevity I
omit the dependence on n when writing the likelihood function P(D|X).

The latent trajectory X represents the configuration of the system in terms of value of
each stochastic variable, at each point in time. We restrict ourselves to chemical reaction
networks for which the stochastic process is a Markov jump process on the integer lattice
corresponding to molecular copy numbers, according to the reactions in the chemical
reaction network, see Section[2.4.1] For such a system, the likelihood of the complete latent
trajectory P(X|0) can be computed [227], and exact samples of X|@ can be generated e.g.
using Gillespie’s algorithm [I17], see Section Note that the transition density (i.e.
the probability distribution of X at a future timepoint) of the stochastic system is in
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general not known, but can be approximated for small systems, e.g. using the Finite State
Projection (see Section [2.4.2)).

Assuming uncorrelated errors in the observation function g, the likelihood P(D|X)
factorizes as:

P(D|X) = HP D;|X;). (5.2)

for a series of N observations. The variables D; and X; indicate the observation and value
of the latent state at time t;, respectively.

Furthermore, the stochastic process X is Markovian (see Section , thus the like-
lihood of the trajectory decomposes as:

N

P(X[6) = P(Xo) [ [ P(Xpt,_, 41Xi-1,6) (5.3)
i=1

where Xy, | ;) indicates the full path of the stochastic process in the time interval [t;_1,%;].
The variable X without subscripts is used as shorthand for the entire trajectory, i.e.
X = Xigo,tn]-

Following the derivation of Gordon et al. [226], we combine and (5.3), and
substitute into , to obtain a new expression for the posterior den81ty

N P(Di|X)P(Xy, 4| Xi1,
px o) = [ PP B0 i ) )
i=1 t
PON|XN)PXjy 1w Xn-1,0) Yo PO X3) P(Xps, 0| X1,
(DN |Xn) _(P(:[D]\;\;)l 1 XN-1 )H (D] X5) (P(Dli),ﬂ 1 ) P(X0|0)7(6)

i=1
PDNIXN)P Xty _1,tx)| XN-1,0)
P(D]\;\/')l ~ P<X[to,t1\1_1]70‘D07---7DN—1>
(5.4)
This can be rewritten as
P(Xpy a1 Xn-1,0)
P(X,0|Do.n) = w el P(Xito,tn 110 @Do:n-1) (5.5)

P(Dn)

where w = P(DN|XN) and DO;K = (Do, . ,DK).

Hence, there is a simple update rule relating the posterior distribution using obser-
vations until timepoint ¢y _1 to the posterior distribution with the next observation at
timepoint ty. Note also that one can generate a sample from the posterior at time ¢;,
P(Xt,4:1, @/Do:i), by first sampling a trajectory from the marginal distibution P (X, ;,/Do:i)
and then sampling a parameter 8|X, ., suggesting a Gibbs sampling approach.
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These observations and the recursive factorization of the joint posterior (5.5)) motivates
the so-called bootstrap particle filter [226]:

Algorithm 1: Bootstrap particle filter

Data: A set of observed data points D = (Dy,...,Dy) at timepoints (tg,...,tn),
parameter prior 7 : R? — Rq 4, observation function g(D|X,n) = P(D|X),
number of particles K

K
Result: A set of particles {(X(k), O(k))} sampled from the posterior density

P(X,0/D)
1 initialization;
2 for k=1...K do
3 Sample parameter values from the prior: %) ~ 7(0);
4 Sample initial state conditional on first observed data point: Xék) ~ g1 (Do, n);
5 | Initialize particle weight to w(()k) =1/K
6 main loop ;
7 for i=1... N do
8 Generate a set of particle indices e®) € {1,... K} k=1,..., K such that

a l
P =a) = w2/ T wihs
9 for k=1...K do

(k)
10 Generate a sample trajectory ng),hti] ~ P(|X§_I; ), O(E(k))) :
(k)

11 Concatenate to previously sampled trajectory: XEZ)M = [X[(teojcti)_ nE Et]i)_htiﬂ ;
12 Set the weight of the k' particle to the likelihood:

k k k

w® = P(D;[XP) = g(Dy X, n);

13 Generate a new set of parameters 6®) from the conditional density:

k (k)

14 Sample from the posterior ;
15 Generate a set of particle indices e®) ¢ {1,...,K},k=1,..., K such that

P(e® = a) = P/ K wl);

: : (€®) e () 1 K
16 Construct a sample of K particles from the posterior: {(0 , X )}k )

The recursive particle filter begins by sampling parameters 6 from the prior 7(0), and
an initial condition for the state X, for an ensemble of K particles, i.e. each particle is
a sample from the joint density of X and 6. If the observation function g(D|X,n) is
invertible, then X can be sampled from the inverse distribution; otherwise, X can be
chosen arbitrarily in a way that is consistent with prior knowledge.

At each iteration ¢, the particles are resampled according to their normalized weights
wgk)/ Zle wy), such that particles that have a state ng) for which the current obser-
vation D; is likely are sampled more frequently. Resampling according to the normalized
weights generates a collection of samples with empirical distribution which converges to
the true posterior distribution P(Xp, ;,]/D) asymptotically with the number of samples
(see [228] for proof); the method is illustrated in Figure
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Using the latent states of the resampled particles as initial conditions and parameters
sampled from their conditional distributions, the particles are propagated to the next
timepoint by sampling from the stochastic propagator. In the case of chemical reaction
networks, this can be achieved simply by using the stochastic simulation algorithm or
variants (see Section . The particles are then reweighted according to the likelihood
of the next observation. In this Gibbs sampling approach, first a particle is sampled
according to its weight, then a parameter 8 is sampled conditional on the particle’s latent
trajectory X up to the current timepoint. The result of the recursive particle filter is an
exact sample from posterior joint density of (X, 8|D), as formulated in (5.4)).

A B C D

Proteins

Prgteins
Proteins

Proteins

t 5 0 1 2 % t

Time (h) Time (h) Time (h) Time (h)

Probability
Probability
Probability
Probability

e Y 7

1
1
1
1
1
1
1
1
1
i
evu

8 B, 8IX, e 0IX

o|x )

Ttot true

[tot)] true

Figure 5.1: Illustration of the bootstrap particle filter. A. The bootstrap particle filter
requires a series of observation D = (Dg, Dy, ...) (top) and a prior distribution for model
parameters m(0) (bottom) as input. B. Particles are initialized by sampling latent states
X(()k) for each particle k. Parameters 0 are sampled from the prior distribution ().
C. The latent trajectories are resampled according to the likelihood w(()k) = P(D0|X(()k))
and propagated to the next time step using stochastic simulations to generate new states
ng) at timepoint t;. Model parameters for each latent trajectory are resampled from the
conditional distribution P(HIX%Z),t1]>' D. At each iteration, the weights are recomputed
and the particles are resampled. Resampled particles are propagated to the next timepoint
and the parameters are resampled conditional on the resampled latent trajectories. Over
time the posterior parameter distribution converges to the true value.

5.2.2 Gamma priors

The particle filter is significantly simplified if one assumes a gamma prior distribution (see
Section |A.5)) for each model parameter, and conditional independence between the model
parameters:
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d

d
7T(9) = Hﬂ'z(el) = H Ga(@i; (7% Bz) (5.6)
i=1

i=1

where «; and (; are the hyperparameters for the distribution of 8;,7 = 1...d. The
conditional independence between model parameters is often justified as information about
the covariance of biological constants is usually not available. Note that the gamma
distribution is flexible enough to take on a variety of shapes ranging from exponentially-
distributed to peaked, with tunable skewness via the choice of the parameters.

Using gamma priors for each model parameter, the conditional probability P(X|0) of
a particular realization of the Markov jump process is conjugate to the prior, such that
the conditional density P(0|X) is also gamma-distributed, see Wilkinson et al. [227], p.
281:

d
P(6X) = ];%‘g)w(a) = PP%'(";) 11 Ga(0p; ap, 8y)
) =t (5.7)
=[] Ga(0p; 0p + 7, By + Gy)
p=1

where r; is the number of reaction firings of reaction ¢ in the process X, and G is
proportional to the integrated propensity (a,(X)) of reaction p as given in Table (2.1):
Gp = é fOT ap(X(s))ds. Here k, is the reaction constant of reaction p, which cancels
the same term in the propensity function a,, thus rendering G, dependent only on the
instantaneous configuration of the system at all points along the trajectory, and not on
the reaction constants. Hence, a new sample for @ given the newly simulated trajectory
(line [13] of Algorithm [1)) can be generated by simply sampling from the updated gamma
posterior ; furthermore, the summary statistics 7, and G), are sufficient for describing
the posterior distribution of 8, thus the full trajectories X do not need to be stored,
leading to reduced memory consumption.

5.2.3 Model comparison

The particle filtering approach presented above can also be used for performing model

. . . . P(MllD) . . -
comparison via Bayes Factors, i.e. by computing POLD) the ratio of the posterior prob
abilities of each model 1 (M7) to model 2 (My). Using Bayes’ law, one can reformulate

the marginal probability of model M as:

P(D[M)P(M)

P(MID) = ==p 5

(5.8)

Following Wilkinson et al. [227], p. 294, we can approximate the marginal likelihood of
the model P(D|M) using the sampled particles at each iteration i. Firstly, the distribution
of the observed data at time ¢;41 depends only observations up to t;: P(D;41|D, M) =
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P(D;41|Dg.;, M). Moreover, this probability is approximated by the expectation of the
likelihood, or weights w®) | of the particles:

P(D;41|Dg.i, M) = /P(Di+1|Xi+1)P(Xi+1|DO:ia M)dX; 41

(5.9)

1 k
~ = > P(Din X))
k=1

(k)
Wiy

where the ng_)l are sampled (via the particle filter) from the marginal posterior up to time
tiy1 given by P(X;t1|Dg:;). This is nothing more than a Monte Carlo approximation of
the integral, which provides an unbiased approximation of P(D;41|Dg.;, M) with variance
decreasing as K~! [229].

Next, since the distribution of each observation depends only on previous observations,
the marginal probability of the entire set of observations P(D|M) is given by the product:

N
P(D|M) = P(Do) | [ P(Di11|Do.i, M). (5.10)
=1

Assuming a priori equally likely models, the factor of P(M) in cancels between
the two models and the Bayes Factor reduces to the ratio of marginal likelihoods. Although
it may also be possible to use other Monte Carlo methods for approximating the marginal
log likelihood, e.g. thermodynamic integration [229], that would necessitate running sev-
eral more iterations of the inference procedure to obtain samples from the posterior with
different power-likelihoods, leading to additional computational overhead.

5.3 Implementation

I implemented a highly parallelized version of the particle filtering algorithm (Algorithm
1)) in Matlab, with a custom implementation of the forward simulation algorithm for gen-
erating new latent trajectories X using the Gillespie algorithm (SSA)[I17]. The forward
simulation code was implemented using vectorized operations for computing the (expo-
nentially distributed) waiting times of each reaction for blocks of 2 x 10* simulations
simultaneously. Blocks of simulations were distributed to different cores of a multicore
machine for efficient parallel sampling from the stochastic process. Simulation code was
further optimized by automatically converting to C code (using the codegen toolbox) and
compiling using the matlab compiler mex.

For each simulation the necessary statistics are stored, including the number of reac-
tion firings r;, and the integral of the (scaled) propensity functions over the simulated
trajectory, G, for each reaction j. The storage space required grows linearly with the
number of particles, latent species and parameters. The number of simulations neces-
sary grows linearly with the number of timepoints simulated and the number of reactions,
since for each reaction new random numbers must be sampled for reaction waiting times,
although it may be less for more efficient implementations of the forward simulation algo-
rithm. In some cases the number of proteins simulated is very large, in which case I use an
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approximation to facilitate the stochastic simulation: I perform the full SSA for the DNA
and mRNA-related reactions, but approximate the number of birth and death reactions
for protein over the interval where DNA and mRNA copy numbers are constant, using
the 7-leaping approximation [122], i.e. the number of firings for protein-related reactions
over this interval is Poisson-distributed (see Section . This approximation provides
considerable speedup making the simulation possible even when the number of simulated
molecules exceeds 10°. The time interval for the Poisson approximation of the 7-leaping
variant was reduced such that the expected change in the reaction propensities was at
most 1% of the present value.

5.4 Application to simulated data

Using the particle filter with gamma priors for each model parameter, I performed a se-
ries of tests to determine whether this inference framework is suitable for inferring model
parameters and identifying the best model for Nanog autoregulation. To this end, I
constructed several simulated data sets that resemble actual time-lapse fluorescence mi-
croscopy experiments. In each dataset, proteins copy numbers are observed (with some
measurement error) at regular intervals, whereas the state of the promoter and the copy
number of mRNA are unknown throughout.

5.4.1 Models investigated

I generated synthetic data from three models featuring either no feedback, positive or neg-
ative feedback. Each model is a three-stage model, with active DNA (D*), inactive DNA
(D), mRNA (M), and protein (P); analytical approximations to such models have been
the subject of much recent work (see e.g. [109, 112, 230, 231] and Chapter [4). I model only
a single promoter, i.e. the total copy number of active and inactive DNA is always 1. In the
case of the positive feedback, protein increases the rate of DNA activation. Moreover, the
DNA activation rate depends quadratically on the protein number P, as would be the case
if the protein first dimerized, assuming fast reversible dimerization of the protein—then
the quantity of dimer is proportional to the square of P where the additional constant is
absorbed into ko, the activation rate of the DNA. In the case of negative feedback, the
rate of deactivation depends on the square of the protein number, following similar rea-
soning. Hence the models only differ in the activation and inactivation rate of the DNA,
and are summarized in Table All simulated models only include transcriptional regu-
lation, although it is possible to extend the simulations to post-transcriptional regulation.
In each case, only the protein is observed, at discrete timepoints.



CHAPTER 5. INFERRING GENE REGULATION MODELS USING PARTICLE

92 FILTERING
Propensity Function
Reaction + Feedback | - Feedback | () Feedback
DNA — DN A* kon D P? kon D kon D
DNA* — DNA kot D* ko D* P2 |  kog D*
DNA* - DNA*+ mRNA kmym D* kmy D* kmy D*
mRNA — () dpy M dpym M dpy M
mRNA — mRNA + Protein k, M k, M k, M
Protein — 0 d, P d, P d, P

Table 5.1: Autoregulation models used for model selection. The Positive (+) Feedback
model has DNA activation propensity that increases quadratically with the number of pro-
teins. The Negative (-) Feedback model has DNA deactivation propensity that increases
quadratically with the number of proteins. Species are abbreviated as inactive DNA (D),
active DNA (D*), mRNA (M) and Protein (P).

5.4.2 Tree simulations

For each model I generated a synthetic tree-structured dataset. Specifically, a single
progenitor cell was simulated from the initial condition with DNA inactive, 10 molecules
of mRNA present, and a random amount of protein uniformly sampled from [2000, 2500].
The cell was simulated for a random lifetime with uniform distribution on [8.5,11.5] hours
at which time it gives rise to two daughter cells, representing a cellular division event. It is
assumed that each molecule of the mother cells contents is allocated to the two daughter
cells with equal probability, giving rise to a binomial distribution.

At the time of division, two daughter cells are created from the mother cell, such that:

e The DNA state (active or inactive) of the mother cell is maintained by the daughter
cells

e mRNA is partitioned binomially (p = 0.5) to the two daughter cells (such that the
total mRNA is conserved)

e Protein is partitioned binomially (p = 0.5), conserving the total protein copy number
P of the mother cell. Since the P is generally very large, I approximate the binomial
distribution using a normal distribution with mean g = 0.5P and variance o2 =
0.5(1 — 0.5) = 0.25P, which provides a computationally efficient approximation to

the binomial distribution for large values of the argument.

The simulation was continued in the same way until three generations had completed,
with cell lifetimes sampled from the same distribution. The protein quantity was output at
time intervals of 0.5 time units, and Gaussian measurement error with standard deviation
200 was added to each observation. The results of the partially observed, noisy, tree-based
simulations are shown in Figure [5.2

5.4.3 Choice of prior and model parameters

For the “No Feedback” (()) model, parameters were chosen so as to be reasonably consistent
with the dynamics of mESCs. For example, DNA activation and inactivation rates are



5.4. APPLICATION TO SIMULATED DATA 93

9000 8000 8000

8000 7000 7000 |

7000
2 5000 26000 26000 /\[ \
[7} Q Q
5 5 5000 s |
85000 5 55000
5 5 4000 S /
H] 4000 B s 84000
£ 3000 5 000 'Y 5 a000 /
Z 2000 = 2000 ) =

1000 \ 1000 2000

o o 1000
0 10 20 30 40 0 5 10 _ 15 20 25 30 0 10 20 30 40
Time (h) Time (h) Time (h)

Figure 5.2: Simulated colonies for A. No Feedback, B. Negative Feedback, and C. Positive
Feedback models. Individual cells are shown using different colors for ease of visualization.

Model
Parameter | Description Units + Feedback | - Feedback | () Feedback

kon | DNA  activa- ht 5x 1077/ P? 10 1
tion

kog | DNA inactiva- h1 1 1 x107*/P? 1
tion

kn, | transcription h1 40 100 40

dm | mRNA degra- | A~ 'mRNA™! 3 3 3
dation

k, | translation h~ImRNA™! 200 2000 300

d, | protein degra- h~'Protein~* 0.4 0.4 0.4
dation

Table 5.2: Parameters used for simulation of each model.

chosen so that the DNA changes state on the order of hours, leading to relatively long
periods of quiescence or active transcription, as reported e.g. in [147]. Protein degradation
rates were chosen to be of the same order of magnitude as the measured half-lives of Nanog
[154], about 5 hours; production rates were chosen such that maximally a few hundred
mRNA molecules are produced. Proteins were on the order of tens of thousands, which
is less than found in mESCs. Nonetheless the tests were performed with relatively small
quantities of proteins in order to facilitate the stochastic simulation, which slows with
increasing numbers of molecules. All model parameters are listed in Table

For the “Positive Feedback” (4) and “Negative Feedback” (-) models, parameters were
chosen in a similar way, so as to produce reasonable quantities of proteins and mRNAs.
DNA activation and inactivation rates were chosen so that the expected waiting time of
DNA transitions was on the order of hours.
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+ Feedback | - Feedback | ) Feedback
Parameter | Description Units Q I53 « I} Q I3
kon DNA  activa- h=11 10 [12x107] 5 | 08 [ 5 2
tion
Kot DNA inactiva- h—1 14 20 7| 10° | 5 2
tion
Em transcription h! 12 0.2 12| 02 | 12| 0.2
dm mRNA degra- | A 'mRNA~! | 7 1 7 1 7 1
dation
kp translation h~'mRNA~! | 4.3 0.005 4.3 | 0.005 | 4.3 | 0.005
d, Protein degra- | h~'Protein™! | 5 5 5 5 5 )
dation

Table 5.3: Parameters of the gamma priors used for inference in the three autoregulatory
models. T For the Positive (4) Feedback model, the DNA activation rate has units of
h~'Protein~2. ¥ For the Negative Feedback model, the DNA inactivation rate has units
of h~'Protein2.

5.4.4 Parameter inference on single cells

I first tested the inference procedure by applying Algorithm [I] to each individual cell
of each of the simulated data sets shown in Figure [5.2 The inference algorithm was
performed using each of the three models, against each cellular trajectory, with three
replicates per combination, yielding a total of 189 inference combinations. In each case
10° particles were used for inference, as preliminary testing suggested this was sufficient to
prevent degeneracy of samples in the inference algorithm, i.e. adequately many simulated
latent trajectories were resampled at each iteration and propagated to the next iteration
of the algorithm. However, even with this fairly large number of particles, inference
proceeds quickly (within minutes) because of the efficient implementation, compilation to
C, and parallelization. Due to the structural differences in the propensity functions of
the DNA activation and inactivation between the different models, the scale of the model
parameters (such as ko, and kog) may vary considerably. Thus, while fitting each of the
models to the simulated data, I used priors appropriate to each model. This means that
model parameters for DNA activation and inactivation are not directly comparable across
models, since the structure of the reactions differ. The priors for the remaining parameters
(km, dm, kp, dp), however, are identical for each assumed model, see Table

For simplicity, I initialize the DNA state of each latent trajectory to either active or
inactive with equal probability, and sample the mRNA copy number from a uniform dis-
tribution on [0, 50]. Proteins are sampled from a Gaussian distribution centered about the
first observation, and with standard deviation corresponding to the assumed measurement
error.

No Feedback model

I first performed inference on the dataset generated using the No Feedback model (Figure
5.21A) while assuming the correct No Feedback model for inference. I performed three
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Figure 5.3: Posterior distributions of each replicate of the inference algorithm for data
simulated from the No Feedback model, shown as fractional errors of the true value. Each
of the 7 cells were fit 3 times independently (red boxes). The quantiles of the prior
distribution are shown in gray.

replicates of the inference procedure for each of the seven cells. For simplicity, I report
each parameter sample 6 using the fractional error, defined as (0 —0ue ) /Otrue, Where Oy is
the true value of the model parameter (see Table . The results are summarized using
box-and-whiskers plots showing the interquartile range (box) and extending to contain
95% of the samples (whiskers), see Figure

For ko, dm, kp and d,,, the single-cell-based inference shows some convergence towards
the correct model parameters (i.e. towards zero fractional error) as compared to the prior
distributions (shown in gray). For any given cell, the sampled parameters are very con-
sistent (compare the red box-and-whisker plots in Figure . However the results vary
substantially from cell to cell, especially for ko, and kog. The protein degradation rate
d, seems to be well inferred for almost every cell. In contrast, the mRNA degradation
rate d,, shows little deviation from the prior suggesting that the algorithm is able to
extract only little information regarding this parameter from the single-cell trajectories
when considered individually.

Next, I fit the same simulated dataset using the other two (incorrect) models and
compute the resulting estimate to the marginal likelihood of each model using . In-
terestingly, I find that the inference algorithm estimates a significantly higher marginal
likelihood for the correct (No Feedback) model compared to the Negative Feedback and
Positive Feedback models for 6 out of 7 cells, see Table cell 5 weakly favored the
Positive Feedback model. In all cases, the No Feedback model was strongly preferred over
the Negative Feedback model as seen by the large value of the log Bayes Factors.
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Negative Feedback

FILTERING

Positive Feedback

Cell | No Feedback
1 0
2 0
3 0
4 0
5 | -1.1334 (0.121)
6 0
7 0

-9.3054 (0.2582)
-13.5696 (3.3602)
-12.2594 (1.1507)
-15.0681 (1.3747)
-33.2052 (6.1942)
-22.3497 (2.7166)
~15.0969 (0.4353)

~10.7013 (0.1581)
-5.935 (0.0862)
-7.3764 (0.1044)
-9.8305 (0.0782)
0
-6.9995 (0.141)
-5.1588 (0.1668)

Table 5.4: Log Bayes Factors for single-cell-based inference on the No Feedback dataset,
relative to the best model for each cell. Mean (standard deviation) from three replicates.
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Negative Feedback model

Next, I applied the inference algorithm assuming the (correct) Negative Feedback model
for each of the 7 cells simulated with the Negative Feedback model shown in Figure
b.2B. As for the No Feedback example, I find that the inference procedure also produces
fairly consistent estimates of model parameters across replicates for most cells, see Figure
However some model parameters, such as d,,, show variable distributions across
cells. The model parameters d,, and d, seem to be inferred well for nearly all cells,
while the remaining parameters either show partial convergence to the correct parameters
(kon, km, kp) or a slight bias in the case of kog.

Computing the Bayes Factors for each model for this dataset, however, I find that
the the single-cell based inference favors the incorrect No Feedback model for 3 out of
7 cells, although for one cell the Bayes Factor is too small to be decisive, see Table
The misclassification of these 3 cells is likely because their trajectories are similar enough
to those typical of the No Feedback model that the correct model is not more likely
given the observed data. In addition, if the Negative Feedback model is more sensitive
to model parameters, then it is possible that the likelihood of each transition is on the
average lower for the Negative Feedback model for particles with parameter values that
are not very close to the true value, thus leading to a somewhat lower average transition
probability and finally to a lower marginal likelihood of the Negative Feedback model for
these cells.

Cell No Feedback Negative Feedback | Positive Feedback
1 -4.131 (0.3035) 0 -26.3066 (0.8125)
2 -2.502 (0.014) 0 -14.6629 (0.1774)
3 | -1.3918 (0.0288) 0 -11.957 (0.1156)
4 0 -4.1386 (0.5486) -1.0796 (0.0182)
5 0 -1.0327 (0.0177) -8.6714 (0.1402)
6 0 -5.2632 (2.1421) -5.0105 (0.0225)
7 -0.2432 (0.031) 0 -8.7574 (0.1)

Table 5.5: Log Bayes Factors for single-cell based inference on the Negative Feedback
dataset, relative to the best model for each cell. Mean (standard deviation) from three
replicates.
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Figure 5.4: Posterior distributions of each replicate of the inference algorithm for data
simulated from the Negative Feedback model, shown as fractional errors of the true value.
Each of the 7 cells were fit 3 times independently (red boxes). The quantiles of the prior
distribution are shown in gray.

Positive Feedback model

Finally, I tested the performance of the algorithm for the Positive Feedback dataset (as-
suming the correct model), shown in Figure . I found that £, and especially d, seem
to exhibit convergence to the true value, in the latter case showing a peak exactly on the
true value for some cells, see Figure 5.5l However, kon, ko and kj, show only a small
difference from their respective priors, while d,, shows a weak bias away from the true
value. Thus for this model it is not possible to infer most model parameters using only
individual cells. I note however that the parameter sample distributions generated by the
algorithm for each cell are quite consistent over each of the replicates.

Computing the Bayes Factor of the correct model compared to the No Feedback and
Negative Feedback models, I find that this single-cell based analysis shows preference for
the correct model for all cells, although only weakly so for cells 3 and 7, see Table
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Figure 5.5: Posterior distributions of each replicate of the inference algorithm for data
simulated from the Positive Feedback model, shown as fractional errors of the true value.
Each of the 7 cells were fit 3 times independently (red boxes). The quantiles of the prior

distribution are shown in gray.

Cell No Feedback

Negative Feedback

Positive Feedback

1 | -2.9141 (0.079)
-2.901 (0.243)
-0.9532 (0.0783)
~4.4171 (0.0225)
-4.4039 (0.035)
-4.2933 (0.043)
~0.521 (0.0497)

N O O W N

~12.5306 (0.4929)
~14.1889 (1.3588)
-9.3542 (0.6612)
-18.2459 (2.9465
-17.2991 (1.2285
-17.5176 (1.3442
-11.3935 (0.9244

~— — — —

0

OO OO o O

Table 5.6: Log Bayes Factors for single-cell based inference on the Positive Feedback
dataset, relative to the best model for each cell. Mean (standard deviation) from three

replicates.
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5.4.5 Parameter inference on genealogies

Until now, all inference has been performed using single cells individually, as would be
the case if we did not know the genealogical structure of the colony. In this case, it’s
reasonable to perform inference for each cell separately and compare the inference results.
However, since we have the complete genealogical record including all cell divisions, it
is possible to exploit the tree structure to improve inference results. This allows us to
structure more sensibly initialize the inference algorithm for daughter cells at the moment
of division by sampling from the distribution of DNA, mRNA and protein to the daughter
cells from the mother cell. This is more informative than assuming arbitrary distributions
for the initial conditions, as was previously done for the single-cell-based inference. Sec-
ondly, by utilizing the tree structure, the inference algorithm attempts to identify sets of
parameter values that generate trajectories that have a high likelihood for multiple cells
simultaneously, as the tree branches, i.e. as the cells proliferate. Although it is possible to
attempt to perform inference on all cells from the tree simultaneously while neglecting the
chronological and genealogical order, numerical experiments revealed this approach to be
very inefficient, leading to incorrect convergence of the model parameters due to the great
difficulty of fitting many data points simultaneously without informative distributions for
latent trajectories and model parameters, as are furnished by the bootstrap particle filter.

The tree-based inference proceeds as described in Algorithm[2] Foreachcellj=1...N
of the tree, there is a series of N; observations (i.e. protein measurements) (/Dy, ..., Dy;)
obtained at times (Jtl,...,Jth). A set of K particles is then initialized, where each
particle contains both a latent state IX(()k) and a set of parameters 0% All particles are
initially equalled weighted. The algorithm then iterates through all of the measurement
time points, where for simplicity we assume that all measurements are obtained at regular
intervals of At; however, the method is equally valid for irregular measurement time
intervals. At each iteration i, particles are resampled with frequencies proportional to
their weights, and cells that are alive at the current timepoint At and still living (i.e.
observed) at the next timepoint are simulated one time step using the stochastic process

conditional on the sampled parameters 0% to generate a sample 7/ XEz'kA)t,(i +1)AY of the

latent process over the time interval [iAt, (i + 1)At] for cell j. Cells that are alive at the
current timepoint, but not at the subsequent timepoint, divide to produce two daughter
cells with latent states % Xl(-i)l and %/ +1X§i)1, where the cells are numbered such that cell j
gives rise to cells 25 and 2j+1. The joint density of the two daughter cells at time (i+1)At

derives from the same division process previously described for the tree simulations (see

Section [5.4.2)), and is given by:

P(Dy = dy, My = my, P = p1, Dy = d2, My = ma, Py = pa| Dy = do, Mo = mo, Py = po) =
(5(d1 — do)é(dg — do)C’%’OﬁmO(S(mo —mi — m2)05?0.5p0(5(p0 —P1— pQ)
(5.11)

where D;, M;, P;,j = 1,2 represent the DNA, mRNA and protein states, respectively,
of the two daughter cells, and Dy etc. that of the mother cell; C}' denotes the binomial
coefficient and §(z) the Dirac delta function. After each forward simulation or division

step, the likelihood P(?D; 1]’ Xg?l) of each latent state is computed and used to reweight
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the particles, with the total weight for each particle given by the product of the partial
weights of each cell.

The posterior probability of the model parameters conditional on this set of simulated
trajectories (assuming conditionally independent gamma priors for each parameter) is
shifted similarly to in (5.7)), where the o parameter increases by the summed number of
reaction firings and § by the summed integrals of the (rescaled) propensity functions, over
all trajectories until the current timepoint iAt. I define the set A; to be the set of indices
of all cells observed at any time until iAt:

As = [T A {7 Ay # 0) (5.12)

Let 7r,(iAt) be the number of firings of reaction p in cell j up until time iA¢, and

min( th JAAL)

IG,(iAt) = fﬂtl ap(?X(s))ds be the integral of the propensity function di-
Vlded by its respectlve reaction constant for reaction p and cell j up until time iAt, for
a particular realization of the stochastic process for cell j. With these definitions, the
posterior joint density of model parameters @ is given by:

P0)|5;) HGa (o + Z rp(iAt), By + Z “Gp(iAt)) (5.13)

a€A; a€A;

where the set B; = {“X[atl min(aty, iAt)] }aeA gives the set of realizations of the stochas-

tic process for all cells observed at or before time iAt. Eq. (5.13]) provides the means
to generate samples 0%) from the probability density of model parameters conditional
on a particular sampled complete genealogy B;. The parameter samples 0% for each
particle k are obtained by substituting the sampled trajectories for that particle into all
expressions, i.e. ®X becomes *X*), “r, becomes arl(;k) , and “G), becomes aG,(gk) . Since
only the summary statistics are necessary to compute the posterior of the parameters,
the full trajectories are not saved, leading to a significant reduction in storage require-
ments. Finally, after iterating through all timepoints, the particles are resampled ac-
cording to their weights yielding a set of K latent trajectories (if stored) and param-
eter sets. Thus the tree-based inference algorithm extends the single-cell-based infer-
ence algorithm (Algorithm [1)) by establishing continuity between mother and daughter
cells and initializing new latent trajectories for daughter cells according to the division
process (5.11)). The method constitutes an exact Bayesian inference algorithm utiliz-
ing a Gibbs sampler to generate (nearly) exact samples from the underlying stochastic
process (via forward simulation using SSA or 7-leaping), and exact samples from the
conditional distribution of the model parameters assuming independent gamma priors.
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Algorithm 2: Tree-based recursive particle filter

10
11
12
13
14
15
16
17

18

19

20
21

22

23
24

25

26

27

28

Data: A set of observations D = {(’Dy, ... 7jDN_7.)};V=1 of N, cells observed at timepoints
T={'T,....NT} = {(ty,... ,thj)};Vzl; parameter prior 7 : R — Rq ; observation
function ¢(D|X,n) = P(D|X); number of particles K; measurement time interval At

K

Result: A set of particles {({IX(’“)7 S VXY ,O(k))}k

P({'X,...,VX},0|D,T)
initialization;
for k=1... K do
Sample parameter values from the prior: %) ~ 7(0);

sampled from the posterior density
1

Sample initial state conditional on first observed data point: 1X(()k) ~ g7 1(-|'Dg, n);
Initialize particle weight to 1w(()k) =1/K

Generate a set of particle indices ¢*) € {1,...,K},k=1,..., K such that

P(e® = a) = w” | 0 wl;

compute maximum of all timepoints: tmax = max(7T) ;

loop over all observed timepoints;

for i =0: [tmax/At] do

determine cells alive at this timepoint;

o= {jliAteIT} ;

loop over particles ;

for k=1...K do

loop over cells at current timepoint ;

for j € o do

Get index of current timepoint for cell j;

¢ = find(7t, = iAt) ;

Compute the partial weight of particle k for the j** cell:

T = PUDPXY) = gD X[, m);

Generate a sample trajectory jXEfA)t,(i—kl)At] ~ P(-PX

if (i +1)At ¢ 7T then

Initialize daughter cells;

i~ (K i k i~ (K
<2JX§+)1,23+1X£+)1) ~ P('7'|JX1('+)1) )

(7\">) 6(lc))

NS

else
Concatenate to previously sampled trajectory:

(k) i (€ s (k) .
Xt (i41) Al = [jX[O,iAt]7JX[iAt,(i+1)At]]7

Compute the total weights for particle k: wgk) = Hje:: jwl(k) ;

Generate a set of particle indices ¢*) € {1,...,K},k=1,..., K such that
a K 4

P(e®) = a) = w(fy/ S5, wiihs

Generate a new set of parameters 6™ from the conditional density:

k (k) .
6" ~ P(8X{}) 5y)

, N, A\
Construct a sample of K particles from the posterior: { ({JX(E(M)} ,0(€(k>)> }
L k=1

j=
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Comparison to single-cell-based inference

I next tested the tree-based inference method (Algorithm [2) by performing inference on
the three autoregulatory models used for testing the single-cell-based inference, namely
No Feedback, and Negative or Positive Feedback, see Figure In each case, I used
the correct model to perform inference, with K = 7 x 10° particles. I performed three
replicates of each dataset to test the consistency of the inference algorithm. I find that the
tree-based algorithm provides fairly consistent estimates of the model parameters for each
dataset. Furthermore, the tree-based inference shows substantial improvement compared
to the single-cell based inference for some model parameters, e.g. kon, koff, dm, kp and d,
for the No Feedback model (Figure ); ky, and k, for the Negative Feedback model
(Figure5.6B); and kon, ki and d,, for the Positive Feedback model (Figure 5.6/C), compare

with Figures and
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Figure 5.6: Fractional error (relative to the true parameter values) of the tree-based infer-
ence for the A. No Feedback, B. Negative Feedback and C. Positive Feedback models. In
each case inference was performed using the correct model. Boxes indicate the interquar-
tile range and whisker extend to include 95% of the sampled parameters. Gray boxes
indicate the quantiles of the fractional error for the priors.

Bayes Factors

Next, I compared the marginal likelihoods of each of the three models against each of the
three simulated datasets to evaluate the performance of the tree-based inference algorithm
for model selection, see Table I found that, unlike the single cell-based inference
algorithm, the tree-based algorithm always selects the correct model, with Bayes Factors
consistently providing very strong evidence for the correct model.

In summary, the tree-based algorithm (Algorithm [2|) provides an exact Bayesian infer-
ence scheme which exploits the latent division process to enhance parameter inference and
model selection for partially and discretely observed colonies of proliferating cells. The
algorithm provides better estimates of parameters than is obtainable by inference using
single cells, and results in stronger and more robust evidence for the correct model when
doing model selection using simulated data, even for K =7 x 10°.
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Fitted Model

True Model No Feedback ‘ Negative Feedback ‘ Positive Feedback

No Feedback 0 -43.6573 (6.4096) | -41.6947 (2.9166)
Negative Feedback | -19.6024 (0.456) 0 -56.3625 (1.8528)
Positive Feedback | -1.5769 (0.1997) | -18.9734 (0.8944) 0

Table 5.7: Log Bayes Factors for the tree-based inference, relative to the best model. Mean
(standard deviation) from three replicates.

5.5 Conclusions and outlook

In this chapter I introduced an (asymptotically) exact Bayesian framework for inferring
model parameters on partially and discretely observed tree-structured datasets, arising
e.g. in the context of time-lapse fluorescence microscopy. I performed inference for three
synthetic datasets differing in their mode of transcriptional control, showing either no
feedback, or positive or negative feedback. The effect of the feedback was to increase the
propensity of the activation and inactivation rates of the DNA for the Positive and Neg-
ative Feedback models, respectively. For each model I performed inference using all three
possible models and showed that the tree-based inference algorithm correctly identifies
the generative model in each case using Bayes Factors for model comparison. Moreover,
the inference algorithm is superior in terms of inference of model parameters compared
to inference based on a single-cell bootstrap particle filter, which does not incorporate
information about the cellular genealogy.

Until now, I have implemented only the three simple models described. However, one
can easily extend the inference procedure to incorporate a variety of additional models,
such as models with post-transcriptional control (i.e. protein translation or degradation
rates that depend on the protein quantity), switching models with a fixed probability
of transitions between modes with different dynamical behaviors [31], models with both
transcriptional and translation control, time-dependent rate constants (e.g. capturing cell-
cycle-related increase in transcription rates [232]), etc. Thus, the tree-based particle filter-
ing algorithm discussed presents a flexible framework for exact Bayesian inference (option-
ally with approximate forward simulation), useful for partially-observed, tree-structured
cellular lineages. This method will thus become more relevant as tracked and quantified
fluorescence data for cellular genealogies become more readily available.

The bootstrap particle filter is well established in the context of inference for chemical
reaction networks with discretely-observed time series. However, it has not previously
been extended to cellular genealogies. The extension to genealogies improves the inference
procedure by forcing particles to have high likelihood for all of the cells on the tree, thereby
constraining the inference procedure more than if the inference were to be performed on
the cells independently of one another. Moreover, by including the tree structure, the
inference procedure generates initial conditions from the stochastic process described by
the assumed reaction network and binomial division process, a significant advantage over
sampling independent initial conditions for the DNA and mRNA states of cells which
would not accurately reflect their biological inter-dependencies.

However, some challenges remain for utilizing the particle filtering approach presented



5.5. CONCLUSIONS AND OUTLOOK 105

in this chapter. In particular, the initial conditions are generally unknown, but may
nonetheless have an impact on the performance of the filtering algorithm. In analyses
presented in this chapter, I assumed equal probability for DNA activation and inactivation,
and a random mRNA copy number less than 50 for the initial founder cell of each genealogy.
The choice of initial condition is arbitrary, and a poor choice might lead to a high rejection
rate of the trajectories. However, worse initial conditions will give rise to worse fits for
the observed protein trajectories, and thus will eventually be filtered out by the inference
algorithm. Nonetheless, a better inference result is expected for a better choice of initial
conditions. In a related problem, the exact time of division is generally not known, since
it may often fall between measurement times. Thus, some additional error is introduced
by assuming that the division takes place exactly at the last measurement of the mother
cell. However, if the observations are sufficiently frequent, this approximation error should
be small.

Another challenge is presented by the choice of the scaling factor for converting mea-
sured fluorescence intensities into actual protein numbers. If possible, the calibration
factors can be obtained via additional experiments, e.g. Western blot analysis to estimate
the actual number of proteins present for cells with different fluorescence intensities. The
scaling factor, however, greatly influences the values of the estimated protein translation
and/or degradation rates. If feedback is involved, then one would expect the estimated
activation/inactivation constants to be affected as well since the total rates depend on the
absolute number of proteins available. It is not directly possible to infer the scaling factor
along with the remaining chemical kinetic rate constants, since the filtering procedure re-
quires the data to be unchanging from one iteration to the next. However, an alternative
implementation of the tree-based algorithm in which the particle filter for the latent (tree-
based) trajectories are embedded within a regular Metropolis Hastings MCMC sampler
(see Section7 may provide a framework for incorporating the unknown scaling factor.
The implementation of such a particle-filtering-within-MCMC algorithm is left for future
investigation.

Choice of the prior distribution of the model parameters is also worth detailed consid-
eration. Of course, one should attempt to incorporate existing biological knowledge into
the distributions, by e.g. choosing the mode of the distribution to correspond to a point
estimate of the parameters (such as degradation constants). If more knowledge exists
about the full distribution, variance, etc. of the rate constants, these can be included by
tuning the shape of the prior distributions via the two parameters o and 3. However,
there is no a priori justification for the choice of a gamma distribution other than that
this simplifies the later inference procedure. Moreover, gamma distributions are flexible
enough to emulate a more correct distribution if one is known. For the tests I performed
on the synthetic datasets, I attempted to choose priors that contained the correct model
parameters, and were not centered on the correct parameters, so as to test convergence
of the algorithm. Except for the DNA activation and inactivation rates, the parameters
were chosen the same across models. Thus, for a given latent DNA trajectory, the models
behave int the same way for mRNA and protein dynamics. Although this is probably
sufficient for the testing, it remains nonetheless essential to carefully choose priors as best
reflects biological knowledge, so as not to bias the inference procedure.

The inference algorithm assumes binomial distribution of protein and mRNA to the
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two daughter cells. The assumption of nearly equal distribution of proteins is in good
agreement with the observed dataset, whereas the mRNA distribution is merely an as-
sumption. The assumption that the DNA state is persistent from mother to daughter is
stronger, and is motivated by the observation in other NanogVENUS datasets that many
progeny will begin to show increased protein production rate after a few generations of
quiescence, suggesting a switch-like behavior and persistence in cellular offspring. This
assumption is not essential to the working of the algorithm, since it is only used to sample
the initial state of the daughter cells conditional on the mother cell, and can thus be easily
relaxed or modified.

In the case of time series obtained from fluorescence microscopy, additional uncertainty
is introduced by the unknown protein measurement error. In each of the preceding appli-
cations, I have assumed Gaussian measurement error with a fixed variance. However, such
an assumption is not essential to the algorithm, as it is only necessary for computing the
weights of each particle at each iteration of the inference procedure (see Algorithm . In
principle any other (non-Gaussian) observation function could be used as well. Addition-
ally, although the magnitude of the measurement error can in principle be inferred from
the data, such an extension has not been considered in the present work. In particular,
it may be possible to infer the noise magnitude by including it as a hyperparameter in
a particle-filter-within-MCMC context, as previously mentioned. Critically, assuming too
small a measurement error can cause the particle filter to reject many more particles, and
perhaps become degenerate as only a few particles are retained. This problem is partly
alleviated by having a very large number of particles for inference. Conversely, too large
a measurement error can cause too many particles to be accepted and thus the particle
filter will not remove particles that are incompatible with the data, leading to lack of
convergence to the correct model parameters. Thus, the measurement error should be
carefully chosen to be as close to the real value as possible.

The inference procedure is obviously limited by the quality of the data. For example,
very noisy data contain less information about the model parameters and latent trajec-
tories, and thus limit the ability to infer parameters and model structure. Also, the
performance of the algorithm depends on the values of the true model parameters un-
derlying the data—if the parameters are such that little information is contained in the
observed trajectory, e.g. if the mRNA is so stable that it effectively averages the DNA
activity state, then the inference procedure will not be able to deduce the latent DNA
trajectory. It is not clear when exactly this is to be expected, and thus this warrants a
more thorough investigation. However, it is hoped that the inclusion of longer, broader
(in the sense of more cells observed) genealogies will somewhat alleviate this problem.

The number of particles used in the inference procedure is also of importance. If too
few particles are used, there is the possibility of degeneracy whereby only a few particles
are sampled repeatedly, leading to a biased estimate of the posterior distribution. In
principle, the more particles the better, but this of course incurs additional computational
overhead. In practice, 10° — 10° particles seemed to suffice for the present analyses.
The single-cell-based inferences for the synthetic data were carried out with 10° particles,
and the tree-based inferences with 7 x 10°; since there were 7 cells in each synthetic
dataset the total number of particles is the same in the single-cell and tree-based cases.
However, as more trajectories are simulated in parallel, i.e. as the tree branches, the



5.5. CONCLUSIONS AND OUTLOOK 107

overall likelihoods and thus the weights of the particles decreases rapidly, possibly leading
a higher filtering rate of the particles. Hence, it may become necessary to greatly increase
the number of particles to ensure adequate sampling of the posterior. For the current
analyses, computation was greatly accelerated by utilizing a multicore architecture for
the forward simulations. Individual model and dataset combinations are independent and
were thus run in parallel on different compute nodes of a cluster. Additional acceleration
may be possible by utilizing a more efficient implementation of the forward simulation
procedure, or by utilizing GPUs instead of CPUs, which may lead to a substantial time
savings for trivially parallel computations.

Various extensions have been proposed to the original particle filtering algorithm of
Gordon et al. [226]. For example, it may be possible to improve sampling efficiency
by increasing the number of trajectories with high likelihoods at each iteration of the
inference algorithm. This might be obtained e.g. via the auxiliary variable method of
Pitt and Shephard [233] which reweights particles according to some approximation to the
predicted likelihood of each particle upon the next observation. By reducing the number of
particles discarded during the resampling step, the “variability” of the samples is increased.
Such an approach might reduce the observed degeneracy of samples, i.e. the number of
sampled latent trajectories (and thus components in the resulting mixture model) can
become small if most simulated trajectories are rejected. Hence the auxiliary variable
approach could reduce the number of particles needed to obtain an adequate estimate of
the posterior distributions, thus increasing computational efficiency. The implementation
of such a strategy is left for future work.

Lastly, although I have focused in particular on autoregulatory models for a single gene,
the method is general enough to be applied for any stochastic gene regulatory model with
an arbitrary number of observed species. The likelihood function can easily be modified
to incorporate multiple observed species simultaneously for experiments involving more
than one fluorophore. Thus, the method provides a new tool for performing inference in
tree-structured timeseries data, and may serve as the starting point for the development
of more advanced tree-based inference methods.
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Chapter 6

Analysis of NanogVENUS cellular
lineages

6.1 Introduction

In this chapter, I present the result of a set of investigations into the behavior of popula-
tions of embryonic stem cells (ESCs), at the single-cell level. As discussed in Chapter
mESCs are known to exhibit widely heterogeneous expression levels for some pluripotency
factors, including Nanog. However, the function and regulation of the core pluripotency
network of mESCs is less well understood. In particular, the mechanism underlying the
emergence of Nanog heterogeneity is still poorly characterized. This is partly due to the
lack of time-resolved single-cell expression data of adequate depth and breadth for Nanog’s
protein product. Here, we examine data generated by the Institute of Stem Cell Research
at the Helmholtz Zentrum Miinchen, and provide quantitative analysis of single-cell protein
expression time-courses and cellular genealogies. In the following sections, we investigate
possible oscillations, Nanog intensity transitions among progeny, fate determination of
sister cells, and identify a novel Nanog subpopulation based on Nanog expression and the
structure of correlation networks for core pluripotency factors, using the multiresolution
correlation method presented in Chapter [3] Finally, I apply the inference algorithm devel-
oped in Chapter [5| to this dataset in order to infer model parameters and the most likely
autoregulatory motif for the observed data.

The results included in this chapter are partially based on the publication (for which I
am second author): Filipzyck, A., Marr, C., Hastreiter, S., Feigelman, J., Schwarzfischer,
M., Hoppe, P. S., et al. (2015). Network plasticity of pluripotency transcription factors
in embryonic stem cells. Nature Cell Biology. http://doi.org/10.1038 /ncb3237

The analyses and figures contained in the sections “Oscillations”, “Onsets”, and “Mem-
ory” of section “Characterization of Nanog dynamics”, and the sections “Identification of
subpopulations” and “Stochastic autoregulatory models for NanogVENUS dynamics” are
entirely my own work. The analysis in Section “Transitions” is joint work with my col-
league Dr. Carsten Marr, who also produced the Figures 8-12. This Section and the
figures listed are included for completeness and to closely parallel the exposition in the
aforementioned publication.
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6.2 Experimental setup

All analysis of Nanog protein dynamics is based on data generated by Dr. Adam Filipczyk
and Simon Hastreiter of Prof. Timm Schroeder’s lab at the Institute of Stem Cell Research
(ISF), Helmholtz Zentrum Miinchen, and now of the Cell Systems Dynamics group at
BSSE, ETH Ziirich, from 2011-2014.

6.2.1 Generation of mESC fluorescent fusion protein line

Nanog protein quantity was characterized using a transgenic R1-mESC line, for which
the yellow fluorescent reporter molecule VENUS was integrated into the mESC genome
under the control of the endogenous Nanog promoter. The resultant C-terminally fused
protein complex, dubbed NanogVENUS, was shown to be a faithful reporter of Nanog
levels within the cell, as the fluorescent molecule VENUS is co-expressed with Nanog.
Furthermore, the half-life of the construct is not significantly altered with respect to the
wild type protein. Generation of the fusion protein and characterization of its biological
activity has been described elsewhere [154] 234].

NanogVENUS mESCs were imaged using brightfield and fluorescence time-lapse mi-
croscopy at half hour intervals under a variety of conditions and durations, as described
below. The aim of the experiments was to capture the dynamic behavior of individual
stem cells isolated from different compartments of the fluorescence intensity distribution,
possessing either low or high expression of NanogVENUS protein. The core assumption
of the experimental setup is that the fluorescence intensity is proportional to the number
of Nanog molecules, and thus that fluorescence microscopy provides an accurate quantifi-
cation of protein levels in individual cells. In order to quantify protein levels, several steps
are required, all of which are described in detail in the manuscript by Schwarzfischer et
al. [62).

6.2.2 NanogVENUS quantification

In the first step, cells must be tracked. Tracking entails maintaining an unambiguous
labeling of each individual cell in the population, from the time of birth of the cell until
the time of death or division. For quantitative analysis, it is essential that the identity
of the cell is known at all times. Thus cells were tracked manually using the software
Timm'’s Tracking Tool (TTT), which provides a graphical user interface for labeling cells
from time-lapse microscopy movies and the means to annotate events such as death and
division. Tracking was generally performed on the brightfield channel of the microscopy
setup, due to the relatively low phototoxicity that it induces; if tracking was not possible
via brightfield, fluorescence channels were sometimes used instead. Using TTT, cellular
genealogies up to 7 generations were established for clonal colonies of mESCs.

After tracking, individual cells must be segmented. By segmenting the cells, image
regions are identified which ideally capture the entirety of the cell (or of its nuclear region
in some cases), and none of the background or adjacent cells. Segmentation is possible
via a variety of numerical methods, most simply via thresholding algorithms for separat-
ing foreground from background based on signal intensity. Segmentation was performed
using the tool QTFy (Schwarzfischer et al. [62]), which provides a graphical interface for
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the semi-automatic identification and quantification of tree-structured cellular genealo-
gies derived from time-lapse microscopy. In most cases, the NanogVENUS mESCs were
virally transfected with a fluorescent protein (CHERRY), fused to a nuclear membrane
marker, Nucmem. The product of the construct, mCHERRYNucmem, localizes to the
nuclear membrane, and thus provides a fluorescence signal of a different wavelength than
the VENUS protein used for quantifying Nanog levels. The mCHERRYNucmem signal
hence provides a reliable means to detect and segment the nuclei of individual ES cells,
even when no Nanog is expressed, as is sometimes the case. In some instances, mCHER-
RYNucmem was not stably transfected, in which case segmentation was instead performed
on the brightfield images as best could be achieved without a nuclear marker.

In the last step, the fluorescence intensity must be quantified for the tracked and
segmented cells, which was also performed in QTFy. In the simplest case, intensity is
quantified by using the cellular (or nuclear) regions as a mask on the fluorescence inten-
sity channel. The intensity within the masked region is summed to give an approximation
to the total protein content of the cell, up to a constant conversion factor between protein
intensity and actual number of molecules. Additionally, the intensity must be corrected
by compensating for uneven illumination of the images due to effects arising from the
microscopy setup, and for pixel-specific gain functions that could otherwise bias the es-
timation of cellular intensities. These corrections were performed prior to subsequent
analysis of quantified intensity time-courses, and were described in [62].

Several experiments were performed throughout our investigations of Nanog dynamics,
see Table [6.1] Experiments are principally divided depending on the intensity of the cells
used to generate the subsequent colonies. In particular, three populations were examined:
cells isolated from the lowest 2% of the NanogVENUS fluorescence distribution (low-
sorted), the highest 5% of the NanogVENUS distribution (high-sorted), and unsorted
cells which were obtained without any flow-cytometric cell sorting. The experiments used
in subsequent analysis ranged from 1 day to about 10 days in duration, with thousands
of individual cells and dozens of single colonies tracked. mESC colonies derived from
single stem cells as confirmed by the high dilution used when plating the cells, and by
inspection of the resultant movies. In each case, mESC colonies were grown in serum/LIF,
a pluripotency-promoting culture medium [7].
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ID Description # cells | # trees | Duration (h) | Use
110907| Unsorted, unbiased 255 4 92.7 O
110930| Unsorted, unbiased | 1829 22 94.0 O
111115 High-sorted 4482 22 120.4 T
111115 Low-sorted 3550 27 173.3 T, On
110930 Low-sorted 796 16 94.0 T, On, PF
110613 Low-sorted 683 7 254.0 On
120410 Low-sorted 2758 25 96 ES
120516 Low-sorted 836 17 96 ES
130503 Low-sorted 623 15 96 ES
120509 Low-sorted 76 25 24 DS
130115 Low-sorted 215 57 24 DS
130204 Low-sorted 234 68 24 DS
130208 Low-sorted 258 201 24 DS

Table 6.1: Experiments used for analysis of NanogVENUS dynamics. Legend: O: oscilla-
tions, T transition densities, On: onsets, ES: endpoint staining analysis, DS: divergent
sisters analysis, PF: particle filter inference

6.3 Characterization of Nanog dynamics

6.3.1 Oscillations

Nanog is known to be heterogeneously expressed in mESCS under serum/LIF conditions
(see Chapter [I). However, it is unclear what regulatory features induce the observed
heterogeneity. One hypothesis is that Nanog heterogeneity emerges due to regular oscilla-
tions, which would have the potential benefit of allowing mESCs to explore a wide range of
expression levels and prime mESCs for differentiation from the transient Nanog low state,
e.g. in response to environmental signaling. Nanog oscillations could arise due to the pres-
ence of a negative feedback loop, giving rise to periodic fluctuations in Nanog expression.
Alternatively, Nanog could fluctuate between two meta-stable attractors corresponding
to low and high expression. Both hypotheses have been put forward by Glauche et al.
[29], see Section However, until now, no evidence has been presented in the litera-
ture substantiating or refuting the oscillatory hypothesis of Nanog expression in ESCs.
Indeed, evidence for oscillations by definition can only be discerned from time-resolved
Nanog expression, for which there have been few studies until now, largely due to the
lack of a fluorescent reporter for Nanog’s protein product. For example, Abranches et al.
[235] developed the VNP Nanog protein reporter, which expresses a destabilized Nanog
construct via the insertion of a bacterial artificial chromosome, while leaving the two en-
dogenous Nanog alleles intact. In the most recent work, Abranches et al. [26] utilize this
system to perform single-cell time-lapse fluorescence microscopy under serum/LIF and 2i
conditions. However, their data are limited to a single-cellular generation precluding the
detection of oscillations over multiple generations. Furthermore, they perform no analysis
for the detection of oscillations, nor do their data suggest oscillations upon inspection.
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Figure 6.1: Two fully-inspected NanogVENUS ESC colonies used for investigation of
NanogVENUS dynamics. single-cells are distinguished with random colors.

Besides Abranches, Miyanari et al. constructed a two-color (turboGFP/mCherry)
Nanog protein fusion mESC line [I53]. They concluded that Nanog is largely monoallel-
ically expressed during embryonic development. However, this view has been contested,
raising additional uncertainty [34], 154]. Hence, Nanog expression dynamics at the protein
level has not thus far been thoroughly characterized, nor has any evidence been provided
that might refute hypotheses pertaining to possible oscillations, motivating the subsequent
analyses.

To investigate potential oscillations in the NanogVENUS dataset, I examined data
from two datasets generated by our collaborators, that were unbiased, i.e. not enriched for
low or high NanogVENUS expression, and tracked and quantified agnostically of cell fate
in order to prevent bias in the subsequent analysis. The NanogVENUS expression time
series for single-cells in these two data sets—Experiment 1 (ID 110907) and Experiment
2 (ID 110930)—are shown in Figure For this investigation I utilized only data that
had been fully inspected manually using QTFy in order to minimize the chance of error
arising due to mis-segmentation.

In general, oscillations in a univariate time series may be detected using the autocorre-
lation of the signal, see Section For example, an oscillator (a sinusoid with Gaussian
noise added) with a fixed period T' shows a significant positive correlation at lags of nT',
n=1,2,..., and a negative correlation at a lag of T'(n+1/2), n =0, 1,..., see Figure
Thus, an easy way to detect oscillations in the NanogVENUS signal is to inspect single
cells and look for periodicity in the autocorrelation function corresponding to the period
of NanogVENUS oscillations. However, by examining the autocorrelation of individual
cells (see Figure , it is immediately clear that although there are a wide variety of
behaviors exhibited, there is little to suggest oscillations, at least, not within the lifetimes
of individual cells. However, it is possible that a cellular lineage could exhibit oscillations
over several generations.

To search for multi-generational oscillations, I compute the autocorrelation for each
branch in each of the two experiments, and combine them to obtain statistics for the
autocorrelation over generations. In Figure[6.4} I display the mean, 25% and 75% quantiles
of the autocorrelation, for varying lags, for both experiments separately. While Figure|6.4A
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Figure 6.2: Autocorrelations can be used to detect oscillations. A. Example of a sim-
ple sinusoidal oscillator with period T' = 3 with Gaussian error. B. The corresponding
autocorrelation function shows clear peaks at multiples of the period.
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Figure 6.3: Autocorrelations computed for single-cells from Experiment 1 suggest lack of
stable oscillations. Here only a subset of N = 24 randomly chosen cells are shown.
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Figure 6.4: Autocorrelation functions for all branches in each of two experiments, shown
as median and 25%, 75% quantiles. A. Experiment 1 shows a trend of decreasing auto-
correlation with increasing lag, suggesting no oscillations. B. Experiment 2 shows seem-
ing periodic peaks in the autocorrelation suggesting oscillations with period of about 10
hours, possibly due to the cell cycle-related increase in NanogVENUS intensity which
peaks sharply at 10h. Cell cycle length distribution shown in inset for both experiments.

shows no evidence for oscillations, Figure would seem to indicate that Experiment
2 shows oscillations with period of about 10 hours. However, the cells naturally oscillate
with a period of about 10 hours due to the cell cycle (inset), hence it is very likely that
these apparent oscillations arise due to this effect. Furthermore, the cell cycle is more
sharply peaked for Experiment 2 (coefficient of variation of 1.94 vs 2.14 for Experiment
1), which could explain the stronger degree of cell-cycle related effect visible in Figure
G.4B.

One approach to try to remove the cell cycle effect from the NanogVENUS signal entails
normalizing the signal by the approximate nuclear volume to achieve the NanogVENUS
intensity concentration at each timepoint. The reasoning behind this is that both ab-
solute NanogVENUS copy numbers and nuclear volume are increasing in time. If the
cell attempts to maintain constant concentration of Nanog, and hence constant action
on Nanog’s downstream targets, then Nanog protein (and hence NanogVENUS signal)
should increase proportionally to nuclear volume. Moreover, it has recently been shown
that mammalian cells scale transcription to maintain an approximately constant concen-
tration in transcripts for varying cellular volumes [232]. Thus it is potentially possible
to remove the cell cycle-dependent increase in NanogVENUS intensity simply by divid-
ing by the estimated nuclear area, obtained from segmentation of the nuclear marker
mCHERRYnucmem, which serves as a proxy to the nuclear volume. ES cells in culture
are typically flat due to the cadherin-functionalized surface in the culture plate, suggesting
that the proportionality constant between area and volume is roughly constant. However,
examination of the nuclear area-normalized intensity concentrations reveals a residual cell
cycle dependent increases near the time of division, see Figure This is presumably
due to the “rounding” of the ES cells prior to division. The rounding leads to an in-
creased volume/area ratio, and conversely to an apparent increase in the intensity/area
concentration.

While the cells inherently oscillate due to the cell cycle, the intensity nonetheless
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Figure 6.5: Normalization of the NanogVENUS intensities along cellular lineages fails to
completely abate cell-cycle-dependent oscillations. Prominent artifacts are visible near
the point of division (indicated with arrows) due to rounding morphology near the time
of division, illustrate with one lineage from Experiment 2.
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Figure 6.6: Unsorted cells are taken, plated and imaged over a period of 4 days. Cells
were tracked, quantified, and the median intensities of the initial three timepoints used
for analysis of oscillations.

remains fairly stable from one generation to the next in steady state. Thus, a more suitable
measure for detecting multi-generational oscillations may be to examine the intensity at the
time of birth of each cell along a lineage. It is thus possible to compute the autocorrelation
of a set of statistically independent branches, using only the intensity at the beginning of
the time series for each cell. To reduce the effect of measurement error, the median of the
first three timepoints of each cell is used instead of the first timepoint alone, see Figure
0.0

I identified a set of statistically-independent branches from Experiment 2 by filtering
for branches of at least 5 generations in order to resolve potentially multi-generational
oscillations, while retaining at most one branch per subtree—i.e. no cells in the retained
branches were common to more than one branch; Experiment 1 contained just two such
branches and was not used for this analysis. However, with this restriction the amount
of available data becomes limited, since from the potentially 2* = 16 branches that may
derive from a single ancestor cell over 5 generations, only one is retained for the analysis
to ensure statistical independence amongst branches. Thus, the filtering process resulted
in 16 total suitable branches, see Figure [6.7A. From these branches it is evident that
oscillations are not a dominant behavior of the cellular lineages. While some branches



6.3. CHARACTERIZATION OF NANOG DYNAMICS 117

show non-monotonic behavior, the magnitude of the fluctuation is typically on the order
of one intensity unit or less. Moreover, none of the fluctuations are sufficient to drive the
expression level below the detection limit of 0.101 units, suggesting that oscillations do
not cause ES cells to enter the Nanog- compartment as previously hypothesized in [29].
Similarly, examination of the autocorrelations of each of the branches shown confirms lack
of oscillation, Figure [6.7B.
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Figure 6.7: A. Statistically-independent branches generated from Experiment 2, keeping
only the median NanogVENUS intensity of the first three timepoints of each generation.
No obvious oscillations exist over after removing cell-cycle driven increase. B. Autocor-
relations of the branches shown in (A). No clear periodic peaks exist, suggesting lack of
multi-generational oscillations.
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6.3.2 Transitions

Next, to help characterize the NanogVENUS intensity transitions observed within mESC
colonies, I define 4 intensity compartments: the Negative compartment contains intensities
that fall below the 95% quantile of the estimated background intensities, and thus represent
no detectable NanogVENUS signal; the remaining three intensity compartments (Low,
Mid, High) equally divide the log-transformed NanogVENUS intensity range, see Figure
Furthermore, by examining the NanogVENUS intensity only at the beginning of each
observed cellular trajectory, the cell-cycle driven increase in expression is removed, leading
to the “cell-cycle corrected” expression profile shown in Figure By correcting for the
cell cycle, we are able to artificially synchronize cells in a population in order to facilitate
comparison of expression intensity.

Negative [ High
%)
S
Z5
>
o £
rC o
25
O >
= c

Figure 6.8: The NanogVENUS intensity expression range was divided into four com-
partments. Negative cells have no detectable NanogVENUS expression; nonetheless the
cells are still detected using the mCHERRYnucmem nuclear marker. The Low, Mid, and
High compartments correspond to the bins of equal size spanning the log-transformed
NanogVENUS intensity range.

I next computed the estimated transition density from initial mother cell intensity to
initial daughter cell intensity. For this I use a simple kernel density estimator (KDE)
to approximate the density of observed mother-daughter intensity transitions present in
Experiments 1 and 2, see Figure We observe an apparent bistability, with high cells
preferentially remaining high, and low cells preferentially remaining low, as evidenced
by the increased density in the lower left, and upper right corners of the plot, respec-
tively. This bistability is reminiscent of the bistabilities previously reported [24] 235].
Furthermore the majority of cells give rise to progeny with initial NanogVENUS expres-
sion intensities between 1/2 and 2 times the their own initial intensity (dashed diagonal
lines).
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Figure 6.9: The cell-cycle corrected NanogVENUS intensity distributions show reduced
expression when the cell-cycle-associated intensity increase is removed.
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Figure 6.10: The empirical transition kernel between initial mother cell intensity, and
daughter cell intensity shows increased density consistent with high cells preferentially
remaining high, and low cells preferentially remaining low. Cells rarely give rise to progeny
with intensity less than half or more than double the initial intensity of the mother cell
(dashed diagonal lines).
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Markov model

Utilizing the estimated transition kernel (Figure , it is possible to predict the (log)
intensity distribution at the next generation, simply by performing the vector-matrix mul-
tiplication of the estimated density at each generation with the transition kernel density
matrix. Interestingly, the predicted distributions for populations sorted from each of the
defined intensity compartments show very good qualitative agreement with the actual
distributions arising from the sorted cells, as determined by time-lapse fluorescence mi-
croscopy, see Figure[6.11

>
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NanogVENUS repopulation Model repopulation based on
transition kernel

----- Reference distribution
_A=0
—_—Aq

2 | Negative 2 2| Negative
g sorting . '~._‘_3:*4' % sorting -
a —5A=5 (=) o :

Density
Density

Mid
sorting

Density
Density

Density
Density

10 05 00 0.5 -1.0  -05 0.0 0.5
Log,, NanogVENUS intensity (a.u.)  Log,, NanogVENUS intensity (a.u.)

Figure 6.11: The Log;y NanogVENUS intensity distribution at A = 0,...,5 generations
subsequent to sorting into one of the four intensity compartments is well approximated by
a simple Markov model. The intensity at the next generation is the vector-matrix product
of the intensity distribution at the current generation (approximated using a KDE), and
the empirical transition density (see Figure .

While at the population level the dynamics are seemingly well approximated by a
simple Markov model, the dynamics of individual cells are much less predictable, as is
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Figure 6.12: Low-sorted mESCs undergo a variety of dynamical behaviors when examined
at the single-cell level. A. We characterize the behavior of individual cellular lineages over
three generations as belonging to one of four categories: decreasing, staying, increasing, or
inconsistent, based on the intensity compartments of the progeny cells. B. The negative
and high compartments show an increased fraction of branches remaining in the same
intensity category after two generations, relative to the low and mid intensity compart-
ments, consistent with the estimated bistable transition density (Figure . Cells from
the lowest compartment show a predominance of increasing intensity, while cells from
higher compartments tend to decrease in intensity.

apparent when plotting the transitions for two consecutive generations of a collection of
low-sorted cells, see Figure Here, low-sorted cells may either remain low, decrease,
increase, or be inconsistent, e.g. increase or decrease followed by the opposite, see Figure
[6.12]A. While the majority of low-sorted cells show increasing intensity in progeny, consis-
tent with the repopulation of the distribution shown in Figure there are nonetheless
many inconsistent and decreasing cellular lineages as well; see Figure for summary.

6.3.3 Onsets

It is evident that single ES cells are capable of a wide range of dynamic behaviors, (see
Figure , thus we decided to further investigate the NanogVENUS dynamics of indi-
vidual cells and branches or lineages within low-sorted colonies. We noticed in particular
that colonies often continue to have low NanogVENUS expression for a small number of
generations, after which most colonies begin to exhibit increased NanogVENUS intensity—
presumably due to upregulation of NanogVENUS expression—in one or more cells, see e.g.
Figure [6.13] This transition from low to high is critical to the mESCs’ ability to restore
the steady state distribution upon sorting. Thus, I analyzed the dynamical behavior of
low-sorted cells undergoing this transition.

Generalized logistic function

In order to characterize the dynamics of individual “onsets”, i.e. the point where NanogVENUS
intensity begins to show a rapid increase, I identified a set of 42 onset-containing cellu-
lar lineages derived from low-sorted mESCs via manual inspection (see Table [6.1]). To
establish continuity between cells in a cellular lineage, and to minimize the effect of the
cell-cycle on NanogVENUS intensity, I divide the intensity of each cell by the estimated
nuclear area (obtained via the mCHERRYnucmem signal), to obtain the average per-
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Figure 6.13: Example low-sorted NanogVENUS colony emerging from a single progenitor
cell. Low-sorted NanogVENUS trees typically show onset of NanogVENUS production
within a few generations following sorting. Individual cells are distinguished using random
colors.

pixel NanogVENUS intensity, or intensity concentration time series. Note that averaged
NanogVENUS time series sometimes still show artifacts near division, as previously men-
tioned (see Figure . I then fit each of these time series by a simple sigmoid function,
given by the generalized logistic function:

K-A

Y(t)=A+ (15 Qe B/

(6.1)

The parameters can be interpreted as follows: K gives the upper asymptote, A the lower
asymptote, B the growth rate, v pertains to the shape of the sigmoid, ¢y is a time pa-
rameter, for which Y (¢p) = A + 12(1—_/;4, and @ is related to the value Y (0). Thus the
generalized logistic function is a flexible sigmoidal function, from which one can directly
ascertain relevant biological features such as maximal and minimal expression levels, rate
of growth, time of onset, etc.

The generalized logistic function was fit to each of the 42 identified onsets, to obtain the
fits shown in Figure Fitting was accomplished by least-squared error minimization
of the model for each fit individually, using 100 restarts initialized using Latin hypercube
sampling with parameters bounded by the constraints given in Table Constraints were
chosen to be very flexible, i.e. wide but arbitrary upper and lower bounds; the estimated
parameters of the resulting fits were inspected to ensure that the fits were not biased due
to the constraints.

For each fit, one obtains immediately the estimated minimal averaged NanogVENUS
intensity (A), and the maximal averaged NanogVENUS intensity (K). By solving the
second derivative of for its root, i.e. computing y"” (tmax) = 0, one obtains the time
tmax at which the slope Y”(¢) is maximal. This slope, denoted Y. ..., represents the maximal
growth rate of the averaged NanogVENUS intensity. Lastly, the parameter ¢y reflects the
relative shape of the onset sigmoid, with small ¢y being left-shifted (i.e. early), and large
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/A K B v Q
Min.[O O O 0 O 0
Max. | 2 10 100 100 100 100

Table 6.2: Parameter constraints for fitting the onset to the generalized logistic function

)

to being right-shifted (late). Using the fitted curves, we obtain the statistics summarized
in Table Clearly the identified onsets are very heterogeneous in all parameters except
for the lower asymptote, which is similar across all onsets since the lineages begin with
very low or non-detectable NanogVENUS expression.

Lower Upper Max Onset Time
Asymptote  Asymptote  Growth (to)
(A) (K) Rate (V)
Mean | 0.0012 0.1412 47.0086 0.0188
Std | 0.0008 0.5209 23.7081 0.1006

Table 6.3: Fitted averaged NanogVENUS intensity onsets in low-sorted mESCs reveal
substantial heterogeneity in estimated maximum intensity concentration, rate of increase,
and time of onset within the fitted onsets.

ODE model

As an alternative to the generalized logistic model, I also fit the onset curves using a simple
differential equation model for the mRNA and protein concentrations, assuming that the
DNA is initially in an inactive configuration and becomes active at an unknown switch
time, at which point transcription proceeds with a greater rate, see Figure

The ODE model treats the mRNA and protein numbers as deterministic variables with
unknown switching time tg:

dR {km —wR, t<t

E k;n - ’YTR, t 2 to (62)
dpP
— = kpR— P

which corresponds to constant production of mRNA with rate constant that switches at tg,
production of protein proportional to mRNA, and linear degradation of mRNA and protein
with rate constants «, and ~,, respectively. The model does not explicitly incorporate cell
cycle, however.

The system was solved analytically and the resulting protein curve is fit to the
observed trajectories, assuming normal measurement errors with a hyperparameter for
the standard deviation (o), which constitute an additional model parameter to be in-
ferred. Fitting was repeated 10 times per trajectory with Latin hypercube-sampled initial
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Figure 6.14: Example onsets of NanogVENUS intensity computed from one experiment
(black), along with fit using a generalized logistic function (blue).
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Figure 6.15: Switch model of NanogVENUS expression. NanogVENUS begins in the
“inactive” configuration (Nanog) and switches to the active configuration (Nanog*) at time
to. The inactive configuration has basal transcription rate k,, and the active configuration
transcription rate k,,. Protein is translated at rate k,, and mRNA (R) and protein (P)
are degraded at rates 7., and -, respectively.

Parameter Description Units Lower Bound | Upper bound

kr, Basal transcription rate r}iRg?l 0.05 50

kr, Active transcription rate L“.pgg 1 200

kp Translation rate #X{Eixel 25 1.25 x 10°
Yy mRNA degradation % 0.01 1.5

Yp Protein degradation : 0.01 1.5

to Time of onset h 0.1 100

o Observation error Protein 0.1 1000

Table 6.4: Onset model parameter constraints

parameter values, using the fmincon numerical optimization function in Matlab with
analytically-computed gradients. Parameter constraints used are listed in Table and
were chosen e.g. to be consistent with the NanogVENUS mRNA and protein half-lives of
approximately 5h, or a degradation rate of 0.2 h~!. Protein time series were normalized
by the estimated nuclear area, as for the generalized logistic model above. Intensities con-
centrations (I) were then converted to absolute protein numbers (P) by multiplying by a
rough estimate of A = 3.5 x 10° proteins/unit intensity, as approximated from a Western
blot analysis, and by multiplying by the approximate average cell nuclear area of A = 200
pixels: P = \I/A.

From each fitted trajectory, I estimated several “observable” features: the maximum
intensity concentration level after onset (upper asymptote), the initial intensity concen-
tration (lower asymptote), the time of onset, the time until half-maximum intensity level
is reached T /5, and the maximum rate of production. I also compute the fraction of the
cell cycle at which point the onset occurs, f, for the appropriate cell within the onset
branch, see Figure The statistics of the fitted curves are shown in Figure [6.17] and
reveal both that onsets do not occur preferentially at any point in the cell cycleEI (Figure
6.17C), and that onset times are very heterogeneous, occurring after as little as ten hours
of imaging, but also as late as 60-70 hours (Figure [6.17B).

!Distribution does not differ significantly from the uniform distribution on [0,1], p > 0.05, Kolmogorov-
Smirnoff test
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Figure 6.16: Three example onset trajectories computed by taking the NanogVENUS
intensity trajectories (top row), and normalizing by the estimated nuclear volumes to
obtain NanogVENUS intensity concentrations (bottom row). Each intensity concentration
trajectory is fitted to the ODE model given in . From each fitted curve, we estimate
the upper and lower asymptotes, the maximal rate of production, the time until half
maximum intensity, and the time of onset. We further compute the fraction f within the
cell cycle at which point the onset occurs.
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Figure 6.17: Distributions of observable features for the fitted onsets, as shown in Figure
6.16] A. The maximum protein production rate. B. The absolute time of NanogVENUS
expression onset. C. The fraction within the cell cycle at which point the onset occurs.
D. The time until half maximum proteins.
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6.3.4 Memory
Variability among closely related cells

Next, we were interested in quantifying the extent to which the onset of NanogVENUS
expression in populations of low-sorted mESCs was associated with cellular relatedness.
Specifically, we were interested in analyzing whether sister cells, or more generally, cells
of arbitrary degree of relation, show statistically significant correlation in their expres-
sion of NanogVENUS, and whether sister cells are more likely to both undergo onset of
NanogVENUS expression than randomly chosen cells.

Using three low-sorted populations of mESCs, I computed the distribution of the
differences in expression of several pluripotency factors between sister cells. Expression
was measured via the quantification of immunohistological staining images using fluores-
cent antibodies against the pluripotency-associated transcription factors Oct4, KIf4 and
Sox2, performed using QTFy; NanogVENUS intensity was quantified via fluorescence
microscopy and QTFy. Only data for which the cells were fully tracked and for which
endpoint staining was performed were utilized; in total 275 stem cells were analyzed.

The analysis revealed that sister cells, unsurprisingly, show decreased variability in
the expression of pluripotency factors than randomly selected pairs of cells from the same
experiment (p = 0.0002641 for Nanog, p = 3.03 x 10~ for Oct4, p = 5.063 x 10~ for
Sox2, p = 6.31 x 10~® for KlIf4, Kolmogorov-Smirnoff test), see Figure . Variability
was quantified using the standard error (the standard deviation normalized by the square
root of the number of data points) of the quantified intensities of each biomarker. Thus,
intensities that are more similar amongst closely related cells translates into a reduction
in the standard error of each quantified factor.

However, for cousin cells (cells that had a common ancestor two generations prior), the
NanogVENUS distribution is no longer significantly less variable than randomly chosen
groups of four cells, see Figure In contrast, the remaining factors Oct4, Sox2 and
Klf4, show significantly decreased variability for cells related by a common ancestor even
three generations prior, as compared to randomly selected groups of 8 cells (p < 0.001).
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Figure 6.18: Sister cells (solid lines) exhibit significantly less difference in pluripotency
factor expression as measured by immunofluorescence, as compared to random pairs of

cells (dashed lines).
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Figure 6.19: ES cells having a common ancestor up to three generations prior show sig-
nificantly decreased variability in the expression of Oct4, Klf4, and Sox2 (p < 0.001,
Kolmogorov-Smirnoff test), as compared to randomly selected groups of cells of the same
size. NanogVENUS variability, however, is not significantly reduced compared to ran-
domly selected groups of cells beyond the generation of division.

Congruent and incongruent divergence

Having determined that pluripotency expression remains less variable amongst cells that
shared a common ancestor up to three generations prior, we next examined the extent to
which the differential expression of NanogVENUS correlates with differential expression
of the remaining pluripotency factors. To this end, I utilized a different set of mESC
data that was fully tracked, inspected and quantified, along with endpoint stainings for
the same factors Oct4, Sox2, and Klf4. Endpoint stainings were performed after 24h of
continual imaging, for a total of 119 pairs of sister cells (see Table [6.1]).

I then classified each pair of sister cells based on the relative expression of NanogVENUS
in the pair. Pairs for which the expression of NanogVENUS was double or greater in one
sister cell than in the other, or for which one sister cell showed detectable NanogVENUS
signal while the other remained below the detection limit, were classified as “divergent”,
see Figure The remaining pluripotency factors were subsequently categorized rela-
tive to the NanogVENUS expression—if a pair of cells exhibited a two-fold difference in
the expression of a pluripotency factor it was classified as divergent, otherwise it was non-
divergent. Furthermore, if a pair of cells divergent for a particular factor showed higher
expression of that factor in the same sister cell for which the NanogVENUS expression
was higher, then the divergence was termed “congruent divergence”, indicating that the
divergence was in the same fashion as for NanogVENUS; otherwise, the divergence was
termed “incongruent”, see Figure [6.21

Examination of the sister cells for which NanogVENUS was divergent revealed that
only Oct4 and Klf4 expression was significantly increased in the “high” cell—the cell that
showed higher NanogVENUS expression, see Figure Sox2 expression, while higher
for the NanogVENUS high cell, was not statistically significant.

Using a multinomial distribution, I estimated the fraction of instances of each possi-
ble combination of pairs of divergent factors, that is, the frequencies for congruent, and
incongruent divergence and non-divergence of each factor for the Nanog divergent sister
cell pairs, and for the Oct4 divergent sister cell pairs, etc, see Figure Interestingly,
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Figure 6.20: Endpoint staining of Oct4, Sox2 and Klf4 reveals congruent and incongruent
divergence or non-divergence between sister cells, with respect to NanogVENUS diver-
gence. A. Low-sorted mESCs are imaged for 24h, and endpoint staining is performed for
Oct4, Sox2 and Klf4. B. Sister cell pairs for which NanogVENUS expression differs by
two-fold or greater are deemed divergent for NanogVENUS. The remaining pluripotency
factors are categorized as congruent or incongruent divergent, or non-divergent, depending
on the ratio of expression of each factor between sister cells. C. Congruent divergence is
defined as divergent (ratio of expression between sister cells two-fold or more), and relative
expression levels the same ordering as for NanogVENUS (e.g. Oct4); incongruent diver-
gence defined as divergent, but with the opposite ordering with respect to NanogVENUS
(e.g. Sox2). Non-divergent is defined as expression ratio between sister of between 1/2
and 2 (e.g. KIf4).

NanogVENUS divergence seems to bear no relevance for divergence (congruent or incon-
gruent) of the remaining factors, as evidenced by the high proportion of non-divergence
(see Figure ) Conversely, the remaining factors show a high proportion of congruent
divergence, indicating a likely coregulation of the pluripotency factors Oct4, Sox2, and
Klf4, in agreement with the canonical core regulatory network of mESCs, see e.g. [§].
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Figure 6.21: Sister cell pairs are categorized on the basis of the relative expression levels
of transcription factors between sisters. If the expression of one sister exceeds the other by
a factor of two or more the pair is deemed divergent. Other transcription factors for the
same pair can then be congruently divergent if the same sister cell shows two-fold increased
expression for that factor, incongruently divergent if the pair is divergent with inverted
order, or non-divergent if the expression levels do not exceed the divergence threshold.
The pairwise relationship of transcription factors among sister cell pairs is shown for each
combination of transcription factors.
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Figure 6.22: Pairs of sister cells for which the two cells diverge with respect to

NanogVENUS signal shows significantly increased expression of Oct4 (p = 0.001), and
Klf4 (p = 0.025), but not of Sox2 (p > 0.05). Pluripotency factor expression is visualized
using box-and-whisker plots, where the whiskers extend to the maximum and minimum ex-
pression levels, the box extends to the 25% and 75% quantiles and the notch indicates the
group median. Significance was determined using the non-parametric, paired, one-sided
Wilcoxon signed rank test.
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Figure 6.23: Sisters cell pairs can be classified according to the relative expression of
transcription factors between sister cells, shown for 119 sister cell pairs from 4, 24h end-
point staining experiments. A. Sister cell pairs divergent for NanogVENUS are mostly
non-divergent for other transcription factors. Sister cells divergent for other transcription
factors show a high degree of congruence with the remaining factors for each of Oct4 (B),
Sox2 (C) and Klf4 (D). Error bars estimated using a multinomial distribution for counts
of each grouping, showing 95% confidence interval of the proportion.
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6.4 Identification of subpopulations

Visualization of NanogVENUS dynamics in mESC colonies reveals an obvious hetero-
geneity in the behaviors of individual stem cells with some cells and lineages increasing
in expression over time, some decreasing, some showing onset behavior, etc., see Figure
6.12l Hence, it is reasonable to assume that the mESC colonies might comprise several
subpopulations, for which the dynamic evolution of the system differs.

By examining the estimated mother-daughter NanogVENUS intensity transition ker-
nels (estimated using KDEs), for each of the low-sorted mESC colonies individually, it
becomes clear that different trees exhibit different propensities for upregulation or onset,
see Figure For instance low-sorted trees 1, 3 and 9 all seem to only produce low-low
transitions, i.e. the log-intensity of the daughter cell never rise above 0; in contrast the
remaining trees show daughter log-intensities of up to 0.5 or 1.0, with an apparent attrac-
tor around daughter intensity of 0.0, showing a preference for increased NanogVENUS
expression. This is confirmed by inspection of the trees, shown using absolute (non log-
transformed) NanogVENUS intensities, see Figure in which the same trees are shown
to remain relatively low in NanogVENUS expression.

At this point the origin of the observed heterogeneous behavior of mESC colonies is
unclear. It has been previously established that low-sorted mESC colonies are capable of
reestablishing their steady state protein distributions. Thus the fact that some observed
colonies undergo onset of NanogVENUS expression leading to higher expression levels
and ultimately to reestablishing the steady-state is not surprising. It is clear also from
the observation of individual colonies as in Figure that some colonies remain low
for several generations, which has not been previously observed. Indeed the predominant
hypothesis has been that high NanogVENUS expression represents the “ground state”, and
thus that low expression is a transient phenomenon, giving rise to increased differentiation
propensity. Hence, it is surprising to find colonies that remain low for NanogVENUS
expression for sustained periods of time, in contradiction e.g. to the excitatory hypothesis

[25], see Section

In our subsequent investigations, we termed colonies which show sustained decreased
NanogVENUS expression “Nanog Negative/low” colonies, and colonies which show in-
creased expression “Nanog Mosaic” colonies, since they may contain a “mosaic” of cells
with low and high NanogVENUS expression. With this distinction, we investigated
whether the different colony types differ in other biologically meaningful ways, beyond
the differential expression of NanogVENUS.

We performed time-lapse microscopy experiments for colonies of low-sorted mESCs,
over a period of 4 days with continual imaging of NanogVENUS fluorescence intensity,
and with an endpoint immunofluorescence staining for the pluripotency factors Oct4,
Sox2 and Klf4, see Figure We quantified the expression within colonies of the two
types using QTFy to obtain single-cell expression levels for each pluripotency factor, see
Figure and for each combination of factors, see Figure In each case, the
pluripotency factors other than Nanog were expressed less, especially for KIf4 which shows
the greatest difference between colony types. However, all other pluripotency factors were
still expressed at detectable levels, within the NanogVENUS Negative/low colonies.
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Figure 6.24: Low-sorted mESC colonies differ with respect to their mother-daughter
NanogVENUS intensity transition kernels.
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Figure 6.25: Low-sorted mESC colonies exhibit heterogeneous behaviors, in some cases re-
maining low in NanogVENUS intensity, and in other cases showing onset of NanogVENUS
expression. Each cell is distinguished using a random color.
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NanogVENUS

Figure 6.26: Low-sorted mESC colonies give rise to two phenotypically-distinct colony
types, which differ in the expression levels of NanogVENUS. NanogVENUS Negative/low
colonies how little or no NanogVENUS expression, and reduced levels of other pluripo-
tency factors. NanogVENUS mosaic colonies contain cells with significantly higher
NanogVENUS expression than any cell of the Negative/low colonies, and relatively higher
levels of the remaining pluripotency factors.
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Figure 6.27: NanogVENUS mosaic colonies (gray) show increased expression levels for
each pluripotency factor relative to the NanogVENUS Negative/low colonies (red).



6.4. IDENTIFICATION OF SUBPOPULATIONS 135

o [Mosaic R.=084 37 RE 071 9| Re...= 0.43
— F|Negative/low R =0.79 o] RT-0.48 —~ RT=0.21
E ] 3 e 5 ¥
S o Scdhfis? El > 5 So
XK I o X &
s A ¥ A »
R e e e e T T C T
0 200 400 0 100 300 0 20 40 60 80 100
Oct4 (a.u.) Sox2 (a.u.) NanogVENUS (a.u.)
3 R,.-068 @ R =051 ]
~ 5 Re= 027 1 RT-014 = g
: O _] o] ne ! _
Eﬂ'_ ; > V% gq—_ o8 $¢_
s o ' I o X % 34
¥ N7 ® ¥ N7 % O«
R i B e e ot
0 200 400 0 20 40 60 80 100 0 20 40 60 80 100
Oct4 (a.u.) NanogVENUS (a.u.) NanogVENUS (a.u.)

Figure 6.28: Both NanogVENUS mosaic (black) and Negative/low colonies (red) show high
correlation between pluripotency factors. However, correlation between NanogVENUS
and other pluripotency factors is reduced in mosaic colonies; NanogVENUS is very low or
absent in NanogVENUS Negative/low colonies.

Correlation networks

Next, we attempted to identify possible differential regulation motifs by analyzing the rela-
tionship amongst the measured pluripotency factors in the two colony types. Specifically,
we computed the Pearson and partial correlation networks (see Section , for each
colony type, see Figure (top). Interestingly, we find that the two colony types ex-
hibit differential regulation, as determined by the different graph structure resultant when
retaining only edges corresponding to statistically significant correlations (p < 0.01). Com-
puting the partial correlation has the advantage of removing indirect interactions and can
thus reveal correlations that might otherwise be “masked” due a strong, indirect inter-
action. Concretely, the partial correlation analysis reveals that the Nanog Negative/low
colonies show a qualitatively different partial correlation between the factors Oct4 and
Klf4 than do the mosaic colonies— significantly negatively partially correlated in Nega-
tive/low colonies, and significantly positively partially correlated in mosaic colonies. More-
over, by computing the (partial) correlation networks of the cells in the mosaic colonies
for which the expression of NanogVENUS is no greater than the expression within the
NanogVENUS Negative/low colonies (“low cells in mosaic colonies”), we find that the
correlation networks more resemble those of the mosaic colonies and not those of the Neg-
ative/low colonies, suggesting that cells from mosaic colonies are phenotypically different
as reflected in their correlation networks. The differences between the partial correlation
networks of the two colony types were further confirmed by analyzing three biological
replicates, see Figure for which the Oct4-KIf4 partial correlation differs significantly
between the colony types (Wilcoxon pairwise signed rank test, p < 0.01), and for which
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the correlation is of opposite sign between the two types; the Oct4-Sox2 partial correlation
also differs significantly.
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Figure 6.29: NanogVENUS Negative/low and Mosaic and differ with respect to their cor-
relation networks of the pluripotency factors Nanog(N), Oct4(0O), Sox2(S), and KIf4(K).
NanogVENUS Mosaic and Negative/low colonies show significant positive correlation be-
tween each pluripotency factor when computing the Pearson correlation, with the excep-
tion of Oct4 / Nanog in the Negative/low colonies, which is not significant. However, when
compared using partial correlations, NanogVENUS Negative /low and Mosaic colonies dif-
fer with respect to the Oct4 / Klf4 correlation: Mosaic colonies show positive positive
correlation, whereas Negative/low significant negative partial correlation. Interestingly,
cells in mosaic colonies with expression levels below similar to the Negative/low colonies
(“low cells in mosaic colonies”) show similar correlations and partial correlations to the
mosaic colonies, suggesting that Nanog alone is not sufficient to predict the correlation
networks colonies. Edge widths correspond to the magnitude of the correlations coefficient.
Solid lines indicate positive correlations, and dashed lines negative.

Lastly, we examined the NanogVENUS mosaic and Negative/low colonies using the
Multiresolution Correlation Analysis (MCA) method presented in Chapter Interest-
ingly, we find that all Nanog-sorted subpopulations within the mosaic colonies (including
the low cells with NanogVENUS levels equal to the Negative/low colonies) show a pos-
itive Oct4-KIf4 partial correlation, whereas all Nanog-sorted subpopulations within the
NanogVENUS Negative/low colonies show a negative Oct4-Klf4 partial correlation, see
Figure [6.31] providing further evidence that this is a phenotypically distinct subtype,
possibly with a distinct regulation mechanism.
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Figure 6.30: A. Comparison of partial correlations of transcription factor pairs reveals
differences between Nanog mosaic and Nanog negative/low colonies. The most drastic
difference occurs for Oct4-Klf4, where the partial correlation changes significantly from
—0.14 +0.09 (mean + SD, nE=3, nC=894, p < 0.01 using the pairwise Wilcoxon signed
rank test to compare partial correlations between colony types for each replicate) in Nanog
negative/low colonies to 0.09£0.11 (nE=3, nC=3323) in Nanog mosaic colonies. We show
mean and 95% bootstrap confidence interval for each replicate. Significant differences
also appear for Oct4-Sox2, with 0.56 £+ 0.14 and 0.35 4 0.17 for Nanog negative/low and
mosaic colonies, respectively. B. Nanog negative/low cells from Nanog mosaic colonies
that express NanogVENUS at the same level as Nanog negative colonies still exhibit
altered partial correlations. Significant differences are found for Oct4-Klf4, Oct4-Sox2,
and Nanog-Sox?2.
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Figure 6.31: Multiresolution Correlation Analysis plots reveal that all Nanog-sorted sub-
populations of the NanogVENUS Negative/low colonies (left) have either positive (red) or
insignificant (transparent) Oct4-KIf4 partial correlations. In contrast, NanogVENUS mo-
saic colonies (right) show only positive (blue) or insignificant Oct4-K1f4 partial correlation.
Cells in the mosaic colonies with NanogVENUS expression below the 95-percentile of the
expression of the Negative/low colonies also show significant positive Oct4-KI1f4 partial cor-
relation. Complete pluripotency factor partial correlation networks for all Negative/low,
and mosaic colonies, and for low cells within mosaic colonies are shown in callouts.

6.5 Stochastic auto-regulatory models for NanogVENUS dy-
namics

The analyses presented in the previous sections are largely descriptive, and provide insight
into the transition rates between intensity levels in NanogVENUS mESCs, oscillations,
subpopulations, and transitions from low /negative expression to higher NanogVENUS ex-
pression levels (onsets). However, the true mechanism regulating NanogVENUS expression
is as of yet unknown. In particular, three motifs of Nanog transcriptional autoregulation
have been hypothesized: no regulation, and negative or positive feedback. Interestingly,
and somewhat perplexingly, all three models have been reported in the literature. For
example, Ochiai et al. surmise that Nanog transcriptional activity is best explained by a
random telegraph, with no regulation [147]. In contrast, most models assume positive au-
toregulation, see e.g. Refs. [25], 29, 146, [149] [156]. Lastly, two recent publications suggest
Nanog negative autoregulation [22, 23]. Thus the real mode of autoregulation remains con-
troversial. However, the NanogVENUS highly resolved time lapse fluorescence microscopy
data presented in the previous sections might be able to afford additional insight into the
true regulatory mechanism, when fit with stochastic gene regulation models.

The NanogVENUS data set obtained from the time lapse fluorescence microscopy ex-
periments shown represent noisy, discrete, partially observed samples from a stochastic
(biochemical) process, and thus are well suited to the Bayesian, tree-based inference al-
gorithm presented in Chapter [5, With this algorithm, I perform parameter inference and
model comparison for several candidate models of Nanog autoregulation, in order to assess
the ability of these simple models to explain the observed time series. To utilize the parti-
cle filtering algorithm presented, I first converted intensities to absolute protein numbers
using the rough conversion factor A = 3.5 x 10 proteins per unit fluorescence intensity,
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obtained by Schwarzfischer et al. [236] (see Section |6.3.3)). With this conversion factor, I
derived protein copy number time series for a single fully-inspected NanogVENUS cellular
genealogy, shown in Figure [6.32
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Figure 6.32: A low-sorted NanogVENUS genealogy emerging from a single progenitor cell.
Individual cells are colored for ease of visualization.

Based on the magnitude of the fluctuations of the fluorescence signal, I estimated the
standard deviation of the measurement error to be approximately 10° molecules. For the
stochastic gene regulatory model generating the data, I consider the three candidate tran-
scriptional autoregulatory motifs analyzed in Chapter [5; no feedback, negative feedback,
and positive feedback. For inference, I used the prior distributions for model parameters
shown in Table (mean and standard deviations shown in Table . The observed
NanogVENUS signals varied from approximately 10° — 10° proteins (see Figure .
Thus the squared number of proteins is approximately 10'° — 10'2. By choosing prior
distributions for the on and off rate constants in the Positive and Negative Feedback mod-
els with a mean of 107!, the expected waiting time for the on and off switches is thus
approximately between 0.1 — 100 hours, which should thus lead to several switches in
the simulated time series. Moreover, for time series with suitably small &, values, the
rate of DNA activation should initially be relatively small but increasing substantially
with the protein copy number in the Positive Feedback model, and similarly for the DNA
inactivation rate in the Negative Feedback case.

Computing the marginal likelihoods (see (5.8))) I find that the No Feedback model and
Negative Feedback models are preferred to the Positive Feedback model with mean Bayes
Factors of 445.8 and 200.3, respectively, see Table However, the No Feedback model
is only weakly preferred to the Negative Feedback model with a Bayes Factor of 2.22.
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Replicate ‘ No Feedback ‘ Negative Feedback ‘ Positive Feedback

1 -1810.2 -1811.0 -1817.1
2 -1810.2 -1810.8 -1815.3
3 -1810.3 -1811.3 -1816.6

Table 6.5: Marginal log likelihoods of each model for the NanogVENUS tree.

+ Feedback | - Feedback | () Feedback
Parameter | « I} « I3 o} 15}
kon 1| 10ttt | 2 2 2 2
Kot 2 2 1| 10t | 2 2
km 10 0.1 10 0.1 10 0.1
dpm 2 10 2 10 2 10

k, 3 | 0.0005 | 3 | 0.0005| 3 | 0.0005
d, 2 10 2 10 2 10

Table 6.6: Gamma prior distribution shape parameters used for NanogVENUS inference
for the Positive (+), Negative (-), and No Feedback (f)) models. Parameter descriptions
and units are the same as in Table

Interestingly, the marginal log likelihoods of each model are very consistent over each of
the three replicates.

I next examined the posteriors distributions of the model parameters for both the
No Feedback model and the Negative Feedback model. For both models, I find that
the posterior converges to a very similar distribution in each replicate of the inference
algorithm. In each case, I computed the posterior of each replicate and the average
posterior over the replicates, obtained by resampling with equal probability from each of
the three posteriors. For the No Feedback model all parameters except kog show a visible
shift from the prior distribution, see Figure Interestingly, I find that the parameters
for the protein birth death process k, and d, show fairly noisy posterior distributions,
whereas the estimates for ko, and kog are very smooth. This is consistent with the fact
that the conditional probability density of each model parameter is a gamma distribution,
with parameters that grow linearly with the number of reaction firings or the integral of
the propensity function. In the case of protein, the copy numbers are drastically higher
(on the order of 10° — 10%), as opposed to the DNA or mRNA copy numbers which are
either 1 or up to a few hundred, respectively. Thus the number of birth and death reaction
firings for the proteins are much higher than for the other species, leading to increasingly
narrow posterior distributions for the protein model parameters. The narrow conditional
distributions lead to the overall more “spiky” appearance for the protein parameters as
compared to the DNA and mRNA parameters, for which the conditional distributions are
considerably larger.

Examining the marginal posterior distributions of model parameters for the Negative
Feedback model, I find that all model parameters except k,, show an obvious shift from
the prior distribution, see Figure In particular, the parameters kon, kog and k, are
particularly well identified, with much narrower distributions than the prior with a high
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+ Feedback - Feedback () Feedback
Parameter | mean std mean std mean std
kon le-11 | le-11 1 0.7 1 0.7
kot 1 0.7 le-11 | le-11 1 0.7
km, 100 31.6 100 31.6 100 31.6
dm 0.2 0.1 0.2 0.1 0.2 0.1

ky 6000 | 3464.1 | 6000 | 3464.1 | 6000 | 3464.1
dp 0.2 0.1 0.2 0.1 0.2 0.1

Table 6.7: Gamma prior means and standard deviations used for NanogVENUS inference.

— Replicate 1
Replicate 2
Replicate 3

—— Average

---- Prior

0.6 0.8 1

2

Figure 6.33: Posterior distributions of model parameters for the No Feedback model fitted
to the NanogVENUS dataset shown in Figure [6.32] shown for three replicates of the
inference procedure.
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degree of consistency among replicates. In contrast, the transcription rate k,, shows less
deviation from the prior than in the No Feedback case. Interestingly, the distributions of
all model parameters except for those pertaining to the DNA activation and inactivation
process are quite consistent between the No Feedback and Negative Feedback models.

k k k

4 on 4-j | off 0.025 ) m — Replicate 1
s Replicate 2

8 s Replicate 3
25 _— A\{erage

2 B ---- Prior
15

! 1

- 05 X
% 2 ST ° ER o 0w 0 o 20 20
x

| d 167107 k 12 d
\

o =4 N W & 0 o N ®

Figure 6.34: Posterior probability distributions of model parameters for the Negative
Feedback model fitted to the NanogVENUS dataset shown in Figure[6.32] shown for three
replicates of the inference procedure.

In summary, when applied to a real NanogVENUS tree dataset, I find that the Bayes
Factors analysis provides definitive evidence against the Positive Feedback model. How-
ever, it appears that the high measurement error of the fluorescence signal renders it
difficult to discriminate between the No Feedback and Negative Feedback models; the
average likelihood of each transition in the two models was similar enough (i.e. the sim-
ulated trajectories were quite similar) that the Bayes Factor was not large enough to
rule definitively in favor of one model. Thus in order to better discriminate between the
models it may be necessary to either extend the inference procedure to deeper trees (the
current analysis is limited to just 3 generations), improve the quality of the data via e.g.
better background correction algorithms in the image processing steps, or repeat the anal-
ysis for multiple cellular genealogies and see if data accumulates in favor of a particular
model. The Negative Feedback and No Feedback models yielded very similar results for
the parameter inference (except for the DNA inactivation rate, where the models differ
structurally), suggesting a robust estimation of the model parameters. Interestingly, the
inference results suggest a lower protein production rate and higher mRNA turnover rate
(half-life approximately 2-5 hours) than assumed in the parameter priors; for comparison,
Ochiai et al. estimated a mRNA half-life of about 4.8h [147]. Both models also predict a
DNA activation rate with an average waiting time of approximately 2-3 hours, suggesting
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fairly rapid transitions between active and inactive states. For comparison, Ochiai et al.
estimate an average waiting time of 0.6h in serum/LIF conditions using a transcriptional
reporter. However, both Singer et al. [31] and Ochiai et al. report [147] evidence for the
existence of two subpopulations, which differ in their relative Nanog transcription rates,
suggesting that the slow transitions between active and inactive promoter conformations
predicted by our inference framework might in part be due to switching between pheno-
typically varying subpopulations. This is also in line with our observation that low-sorted
NanogVENUS mESCs are capable of generating low/negative and mosaic colonies with
differing partial correlation networks and NanogVENUS expression dynamics. Thus, it
would be interesting to see if stochastic models which explicitly incorporate switching of
cells between “modes” with different reaction constants and/or CRN topologies are fa-
vored by model selection using Bayes Factors. This investigation and the application of
the inference framework to other models is left for future work. We note however, that
such a model would be amenable to the inference procedure of Chapter [5| through the
inclusion of an additional stochastic “reaction” at the time of division.
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Chapter 7

Discussion

Nanog is a key factor for the maintenance of pluripotency in mESCs and thus it is es-
sential to study its expression dynamics in order to provide a complete understanding of
the regulation of pluripotency and differentiation. In particular, a detailed mechanistic
model of mESC regulation encompassing its key transcription factors would facilitate the
quantitative prediction of the response of mESCs to perturbations such as knock-downs,
spike-ins, etc. both deepening our understanding of fundamental stem cell biology and
potentially paving the way for the rational design of protocols for directed differentiation
of human ESCs for use in clinical applications.

In addition to being a key regulator of pluripotency in mESCS, Nanog is also known to
be heterogeneously expressed, both at the transcriptional and translational levels, when
cultured in serum/LIF. Moreover, mESCs with low Nanog expression have been shown
to be at increased risk of differentiation, in agreement with Nanog’s role as a sustainer of
pluripotency. Nanog’s heterogeneous expression has led to the proposal of many models
capable of giving rise to bimodal distributions in approximate agreement with the observed
Nanog distributions. Such models, however, largely rely on ad hoc model assumptions
pertaining to model structure and the exact form of the equations describing the dynamical
systems capturing protein dynamics. In the literature, the emphasis has been on inventing
models that give rise to bimodality, via a variety of mechanisms including stochastic
oscillations, excitations, bistablity emergent from positive feedback loops or stochastic
switching between cell states with high and low Nanog protein production rates. Such
models are tuned to qualitatively match the observed bimodal distribution of the Nanog
steady state, but have not been fit to real Nanog time-courses due in part to the lack of
availability of quantitative, time-resolved data. Furthermore, no attempt has been made
previously to systematically identify the best model for describing real Nanog protein
dynamics.

In this work, I analyzed Nanog protein time-courses generated using fluorescence time-
lapse microscopy of colonies of mESCs containing the NanogVENUS fluorescent reporter
knock-in for Nanog. In particular, in Chapter [6] I described the transitions observed be-
tween mother and daughter cells using a Markov model for populations of cells obtained
either by sorting for high or low NanogVENUS expression, or without sorting. Inves-
tigations revealed that both oscillations and excitatory dynamics are unlikely given the
observed transitions, casting doubt on previously hypothesized models. I further modeled
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the onset of NanogVENUS expression in low-sorted mESC colonies, using a simple ODE
model with a random switching event. Using this approach, I concluded that onsets oc-
cur with very heterogeneous onset dynamics, and I showed in particular that there is no
inherent preference for the relative time of the onset within the cell cycle.

Using the NanogVENUS onset time-courses, we identify two types of colonies emerging
from low-sorted mESCs, corresponding to NanogVENUS Negative/low expression, and to
NanogVENUS mosaic expression, where the latter contains a mixture of cells with both
non-detectable or low NanogVENUS expression and cells with mid-to-high NanogVENUS
expression. These populations were later assayed for differentiation potential, and it was
revealed that the NanogVENUS Negative/low population tend to express Foxa2, an en-
dodermal marker, at lower levels than the cells from mosaic colonies, upon exposure to
retinoic acid, an inducer of differentiation toward the neuroectodermal lineage. Soxl, a
neuroectodermal lineage marker, was also markedly decreased in the Negative/low cells
[234]. T further investigated cells from the two colony types using multiresolution corre-
lation analysis (MCA), a novel technique for visualizing the local correlation structure of
low-dimensional datasets, see Chapter [3| Using MCA, I determined that the two subpop-
ulations significantly differed with respect to their partial correlation networks, suggesting
differential regulation.

In a first step towards inference of stochastic models for NanogVENUS dynamics,
I investigated the utility of a recently developed approximation to the solution of the
chemical master equation, based on geometric singular perturbation (GSP), for a two-stage
model of gene regulation, see Chapter dl The GSP approach improves upon a previous
model by Shahrezaei et al. [111], which assumes infinite scale separation between mRNA
and protein degradation rates—an assumption which may be justified in a prokaryotic
context, but which does not hold for eukaryotes where e.g. mRNA and protein half-lives do
not greatly differ. However, the GSP approach proved problematic for parameter inference
due to difficulties evaluating the special functions arising in the computation to the very
high numerical precisions needed for accurate evaluation of the probability densities. More
importantly, since the method only is accurate to first order in the perturbation parameter,
it frequently generates non-physical, negative transition densities between states. The
presence of negative probabilities severely impeded the inference procedure, from which
I concluded that the method, although useful for approximating both the transient and
steady-state probability densities, is not suitable for parameter inference with time-lapse
fluorescence data such as the NanogVENUS dataset. However, the method may become
suitable with the inclusion of further terms of the perturbation series, in future work.

Lastly, in Chapter [5] I developed a fully-stochastic, exact Bayesian parameter inference
framework for performing parameter inference and model selection using tree-structured,
partially and discretely-observed protein time series data, as is the case for NanogVENUS.
The method is based on the bootstrap (recursive) particle filter, which provides successive
approximations of the posterior distribution of the model parameters for a given model
topology, i.e. a chemical reaction network with fixed reactions. At each iteration of the
algorithm, additional observed data points are included corresponding to the set of ob-
servations for that timepoint, and the posterior distribution of the parameters updates
accordingly. I used synthetic data to demonstrate that the parameter inference proce-
dure learns the correct model parameters for three simple transcriptional autoregulatory
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models of gene expression, and that, when combined with Bayes Factors, the methodol-
ogy correctly identifies the mode of regulation for each model. The algorithm extends
the standard bootstrap particle filter by including an additional step for simulating cell
division and the accompanying random partitioning of cell contents (mRNA and protein)
to the two daughter cells. By including cell division, I was able to extend the inference to
tree-structured data, corresponding e.g. to colonies of proliferating cells as is the case for
the NanogVENUS mESC data analyzed. Lastly, in Chapter [6] I applied the tree-based
inference methodology to a fully-inspected, three generation NanogVENUS cellular ge-
nealogy from a low-sorted mESC founder cell, and concluded that the model comparison
provides strong evidence against the positive feedback model. However, with the noisy
trajectories examined, it was not possible to definitively discern between the models with
no feedback and negative feedback.

In future work, I will continue to investigate stochastic models of Nanog expression
utilizing the algorithm presented in Chapter pl In particular, I will apply the method to
all available mESC NanogVENUS data on a colony-by-colony basis, in order to rigorously
identify the stochastic models most in agreement with the data, with the aid of model
comparison using Bayes Factors. As previously discussed, the inference framework is
general enough to easily permit the comparison of arbitrary models such as the switching
model proposed by Ochiai et al. [147], models with translational control, and others.
Hence, I will perform a comparison of stochastic models for Nanog regulation, which will
help identify candidate models to be tested with further biological experiments. The aims
of this comprehensive analysis will be to identify the mechanisms underlying NanogVENUS
genealogies, and to assess the robustness of estimated model parameters for biological
replicates and across experimental conditions.

By analyzing NanogVENUS expression dynamics we have characterized the dynamics
of the onset of gene activity, revealed that mESCs do not undergo stable oscillations
in NanogVENUS expression, and identified the presence of two mESC colony subtypes
differing in expression levels of key pluripotency factors, correlation between these factors
and significantly different cell fate outcomes upon exposure to inducers of differentiation.
The investigation of NanogVENUS dynamics in mESCS will be complemented by future
investigations including additional fluorescent protein reporter knock-ins for pluripotency
factors including Oct4 and Klf4. Much of the same analysis can be performed for two-color
datasets, to investigate e.g. potential mESC subpopulations arising from heterogeneous
pluripotency factor expression.

The following investigations are left for future work:

e Application of the tree-based particle filtering algorithm to more NanogVENUS
datasets

e Investigation of a wide variety of models for NanogVENUS dynamics

e Embedding of the tree-based particle filter within an MCMC algorithm in order to
increase efficiency and permit hyperparameters such as measurement error variance

e Development of a graphical user interface for the MCA method

In conclusion, the tools and results presented in this thesis will facilitate future research
into the underlying regulatory mechanism of mESCs as well as other biological systems for
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which single-cell data are available. A deeper understanding of mESC regulation, in turn,
may provide valuable insight for corresponding regulation in human embryonic stem cells,
or in human induced pluripotent stem cells which are rapidly gaining traction in tissue
replacement therapies. Thus, this work contributes to the growing body of knowledge of
the fundamental biology of mESCs and may facilitate future clinical applications.
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Appendix A

Common probability distributions

A.1 Normal distribution

One of the most commonly occurring distribution in many statistical problems is the
normal distribution, or Gaussian distribution. In one dimension, it is described by the
probability density function

1 T — )2
¢(x;u70)=mexp((202u))

(A1)

where p is the mean, and o the standard deviation. The prefactor \/2170 is necessary to

ensure normalization, i.e. that the integral over the domain of the event space (—oo, c0)
is one. The extension to higher dimensions is given by

e exp(—a(x— @) TS (@ — ) (A.2)

¢(X7l‘l’72) = (27T)d/2|2|1/2 2

where p is the (multivariate) mean vector, and ¥ is the covariance matrix.

A.2 Log-normal distribution

The (univariate) log-normal distribution is defined by the probability density

ogr — 2
blaipo) =~ exp(- L) (A3

By comparison to (A.1)), it is easy to see that the natural logarithm of a random variable
X is normally distributed if X is log-normally distributed.

A.3 Exponential distribution

Another common distribution is the exponential distribution which arises in the con-
text of waiting times until an event occurs. If the probability per unit time of the event oc-
curring is a constant A, then one can compute the probability that the time 7 that the event
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first occurs in the infinitesimal time interval [t, t+At], as P(t < 7 < t+At) = AAtP(T > t).
Using the cumulative probability density ®(¢) = fot ¢(s)ds this can be rewritten as

Bt + AL) — B(t) = MAL(1 — (L)) (A4)

rearranging and taking the limit At — 0, one obtains the ODE @'(¢) = A(1 — ®(¢)) which
has solution ®(¢) = 1 — exp(—At). Hence, the density of an exponential distribution with

parameter A is given by:
d

o(t) = £®(t) = Aexp(—At). (A.5)

Competing exponentials

Consider the case of R > 1 exponentially-distributed events occurring stochastically. The
cumulative probability density that event i has occurred at or before time ¢ is given by
®,(t) = 1 — exp(—A;t). Hence, the probability of it not having occurred until time ¢ is
given by 1—®;(t) = exp(—A;t). The probability of none of the events i = 1... R occurring
until time ¢ is then simply:

R R
Pty >tty > t,... .ty > t{A1,..., Ag) = [ [ exp(—Ait) = exp (Z —)\Z-t) . (A6
=1 =1

Finally, the probability of any event taking place at time ¢, and no event before time t, is
given by:

¢(t) = ()\1 + ...+ >\R) eXp(—)\ot) (A?)
— Joexp(—ot)

where Ay = Eﬁ: 1 Ai- Thus, is the probability density of the waiting time until
any of the events ¢ = 1... R occurs. Given that one of the events occurred at time ¢,
the probability that the i*" event occurred, and not another, is given by P(t; > t,to >
byt =ttt >t,...) = A/ o

A.4 Poisson distribution
The Poisson distribution with parameter A is defined by the density

—X
ola; n) = 2PN (4.8)
x!

It plays an important role in the statistics of random events, such as the probability of a
certain number of events occurring in some time interval if the probability per unit time
is constant (i.e. an exponential process).

For an exponential process with parameter A, the probability of the event occurring
at time ¢ is given by . Consider a time interval dt sufficiently small such that the
probability of more than one event occurring is negligible. The probability of N events

occurring until time ¢ + dt is thus the probability that n — 1 events occurred until time ¢,
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and one event occurred thereafter, plus the probability that n events occurred until time
t, and no events occurred thereafter, given by:

P(n,t +dt) = P(n — 1,t)Adt + P(n, t)(1 — \dt) (A.9)

hence

P(n,t+dt) — P(n,t)
dt

=P(n—1,t)A — AP(n,t)
= —A[P(n,t) — P(n—1,t)].

(A.10)

In the limit d¢ — 0 this yields the recursive ODE P(n,t) = —A(P(n,t) — P(n — 1,t)).
Substituting (A.8]) yields

d [(=A)" exp()\t)} _ ()" Lexp(—At) N (M) (=) exp(—At)
dt n!

n! n!

n! (n—1)!
= ~A[P(n,t) — P(n —1,1)]

_ [(/\t)” exp(=At) (M) Lexp(—At) (A.11)

verifying (A.10).

A.5 Gamma distribution

The gamma distribution is a flexible distribution parametrized by two parameters o and £,
known as the scale parameter and shape parameter, respectively. The gamma distribution
can take on a variety of shapes depending on the choice of parameters, ranging from
exponential-like distributions to peaked, normal-like distributions. The mean is given by
% and the variance by % The probability density function is given by:

ﬁaxa—le—arﬂ

i) = S (A1)
A.6 Gauss hypergeometric distribution
The Gauss hypergeometric distribution, denoted 2 F} (a, b; ¢; ) is defined as
— (a)i(b)i*
F b;c;z) = — Al
2 1(@7 G Z) kzo (C)kk' ( 3)

for |z| < 1 and Re(c—a —b) > 0, where the notation (z), = z(z+1)(z+2)...(z+n—1)
denotes the rising factorial of x.
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Appendix B

Gene regulation models

B.1 Birth-death model

Due to the large (possibly infinite) dimensionality of the chemical master equation (2.56)),
it is not generally solvable in closed form. One notable exception is the so-called “birth-
death” model, describing a simple process whereby a molecule of a species X can be either
produced (birth) or destroyed (death) with a certain probability:

Ri:0-% X
RQIXL@

According to Table the corresponding reaction propensities are given by a;(X) = a,
and ay(X) = 5 X, where we assume that the reaction volume is constant and can thus be
absorbed into the rate constant « in the case of the zeroth order reaction.

For this system, the CME (4.1)) is given by:

%P(X, = aP(X — 1)+ B(X + 1) P(X + 1) — (a + BX)P(X,t)  (B.1)

This system can be solved analytically by using the moment-generating function G of
the system, defined as in . To compute the solution to the birth-death model ,
one can multiply both sides by Z¥, and sum over X to obtain the moment generating
function in differential form:

G(Z,t)=Y P(X,t)z*

d )
@G(Z, t) P(X,t)z% (B.2)

M6 110 T

[aP(X —1,t)+ B(X +1)P(X +1,t) — (a + BX)P(X,t)] 2%

>
Il
o



156 APPENDIX B. GENE REGULATION MODELS

Defining X' = X — 1 and X” = X + 1, we obtain

i P(X,t)z% = i aP (X' t) + i BX"P(X" 1) (B.3)

X=0 X'=0 X"=0
~- > aP(X,)Z¥ =) BXP(X,t)Z¥ (B.4)

X=0 X=0
d 0

= aGZ+ Ba—ZG —aG — BZa—ZG (B.5)
= [a(Z —~1)+6(1- Z)aaz] G (B.6)
= —(1-2) {a—ﬁjz] G (B.7)

Thus the steady state solution G, of the moment-generating function can be immediately
obtained by solving for G = 0:

—(1-2) [a - 5;;} Goo = 0 (B.8)
0 o
87Goo = EGOO (B.9)

for which G (Z) = Gy e®/#Z. The normalizing constant Gy is obtained by requiring that
oo
Gool1) = Goe™? =" P(X,t) =1 (B.10)
X=0

by which we obtain Gy = e~ *# and Gu(Z) = e*/#?=1 . Finally, the steady state
distribution can be obtained using (2.40)):

071

Pu(X =n) = —o—Gool0) (B.11)
671
_ 9" aspz-y
= oz ® |2=0 (B.12)
1 [a\"
= —_ — —C!/IB
= ( B) e (B.13)

Thus the steady state distribution has the form of a Poisson distribution, see (A.8)).
The full time-dependent solution can be computed using the method of characteristics,
as described in Walczak [230].

B.2 Two-stage model (mRNA and protein)

The birth/death process described in is useful due to its simplicity. However, it is
generally too simple to model the stochastic production of a gene product. In particular,
proteins are produced via the translation of mRNAs, which are in turn the results of the



B.2. TWO-STAGE MODEL (MRNA AND PROTEIN) 157

regulated transcription of genes. A two-stage model explicitly models mRNA dynamics,
while assuming constantly active DNA [IT1], 237]. A three-stage model allows DNA to
transition between active and inactive states while mRNA is only produced when the DNA
is active [74] [238].

Consider a system with DNA that is always active and random variables m and n,
denoting the number of mRNAs and proteins, respectively, at some time. This system is
described by the following chemical reaction network:

Ri:m Am+1

Ry :m d0—7>n m—1

Ry:p2Zp+1

Ry:p M p—1
with constants vy, 1, dy, d; corresponding to the rate constants for transcription, transla-
tion, death of mRNA and death of protein, respectively. The probability density of the

system, denoted P, ,,(t) corresponding to the number of mRNAs (m) and proteins (n) at
time t, evolves according to the following master equation:

8f’m,n
ot

= VO(mel,n - Pm,n) + Vlm(Pm,nfl - Pm,n)

+d0[(m + 1)Pm+1,n - mpm,n] (B.14)

—|—d1[(7’L + 1)Pm,n+1 —nbPpy, n]

)

Shahrezai et al. solve approximately for the limit of fast mRNA degradation.
They rewrite the CME as a partial differential equation of the (two-variable) generating
function (see [2.3.2), defined as F(z',2) = >_, 22" Py for some dummy variables
2,7 (corresponding to mRNa and protein, respectively), and solving the resulting PDE
in z and 2’ using the method of characteristics. Assuming fast mRNA degradation, the
majority of the probability mass is in the Fp, state, that is, mRNA is mainly entirely
absent due to its rapid degradation. Thus, the PDE for the generating function reduces
to a function of z alone, with solution

(B.15)

1—bz—1)e "]"
14+b—-0bz

Flz,7) = [

using rescaled variables a = vy/dy,b = v1/dy, 7 = dit. Finally, the protein distribution is
computed by successive differentiation of the generating function:

Po(r) = S5 F (2, 7)]a=0- (B.16)

Following simplification of the resulting expression, one achieves the approximate,
closed-form, time-dependent probability distribution for proteins:

Po(r) = <1b+b>n (1 JlriebTy g((Z);(Z))QFI <—n, —a,1—a—n; ;::;) . (BIT)
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The distribution (B.17)) is valid in the regime of fast mRNA degradation (y = dy/dy > 1)
and after relaxation of transient dynamics (7 > v~ 1). For 7 >> 1, (B.17) converges to its

steady state given by:
_ I'(a+n) b \" b \*
Fn = I'(n)I'(a) <1 + b> (1 1+ b> ‘ (B.18)

The distribution can be interpreted intuitively as follows: a given molecule of
mRNA can either be degraded or translated within some time interval. Translation occurs
with propensity v; and the mRNA degradation with propensity dg, thus the probability
of a protein translation event occurring is given by v1/(v1 + do) = b/(1 +b), see (A.7).
The probability of r proteins being translated followed by subsequent degradation of the
mRNA molecule is thus given by:

par—n=(15) (1) w19

which is the probability of a “burst” of proteins of size r being translated from a single
mRNA during the lifetime of the mRNA. The moment generating function of the burst
distribution is given by the f(z) = (1+b—bz)~!. Since the translation of proteins
from distinct mRNA molecules is independent, the generating function for the sum of the
proteins over all mRNAs is equal to the product of their respective generating functions.
Assuming ¢ mRNA molecules, where a = V—? is the expected number of mRNAs, the
generating function for the total number of proteins is given by:

a

[ir@e=@a+b-bz)— (B.20)

=1

The solution to the compound generating function is equal to the steady state
protein distribution .

The analytical results summarized here crucially depend on the scale separation pa-
rameter v, between mRNA and protein degradation rates—the simplifying assumptions
are only valid in the limit of short mRNA half-lives, which is typically the case for prokary-
otes such as budding yeast, but not necessarily for eukaryotic cells. In Section [ I explore
the utility of a method which extends the analytical techniques of [IT11] to the domain of
diminishing scale separation (y — 1).
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