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Abstract

Motivation: In vitro and in vivo cell proliferation is often studied using the dye Carboxyfluorescein suc-
cinimidyl ester (CFSE). The CFSE time-series data provides information about the proliferation history of
populations of cells. While the experimental procedures are well established and widely used, the analysis
of CFSE time-series data is still challenging. Many available analysis tools do not account for cell age and
employ optimisation methods which are inefficient (or even unreliable).
Results: We present a new model-based analysis method for CFSE time-series data. This method uses
a flexible description of proliferating cell populations, namely, a division-, age- and label-structured pop-
ulation model. Efficient maximum likelihood and Bayesian estimation algorithms are introduced to infer
the model parameters and their uncertainties. These methods exploit the forward sensitivity equations of
the underlying partial differential equation model for efficient and accurate gradient calculation, thereby
improving computational efficiency and reliability compared to alternative approaches and accelerating
uncertainty analysis. The performance of the method is assessed by studying a dataset for immune cell
proliferation. This revealed the importance of different factors on the proliferation rates of individual cells.
Among others, the predominate effect of the cell-age on the division rate is found which was not revealed
by available computational methods.
Availability: The MATLAB source code implementing the models and algorithms is available from
http://janhasenauer.github.io/ShAPE-DALSP/.
Contact: jan.hasenauer@helmholtz-muenchen.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Proliferation is essential in many biological processes, ranging from devel-
opment to wound healing, immune response and stem cell renewal. Due to
this eminent role, a key challenge in cell biology is to quantify proliferation
dynamics. Nowadays there are different experimental methods available
to assess cell proliferation, e.g., time-lapse microscopy (Schroeder, 2011)
and proliferation assays based upon Carboxyfluorescein succinimidyl ester
(CFSE) labeling (Lyons and Parish, 1994). While time-lapse microscopy
is highly informative, it is difficult to apply in vivo. CFSE-based prolifer-
ation assays can be employed in vivo and in vitro but the data analysis is
more intricate and no single-cell time courses are available.

To study proliferation using CFSE, cells are incubated with carboxyflu-
orescein diacetate succinimidyl ester (CFDA-SE). CFDA-SE can diffuse
across the cell membrane and once in the cytoplasm is converted to CFSE,
which binds covalently to intracellular proteins. CFSE is a fluorescent dye
and its concentration is reduced by protein degradation as well as cell
division. During cell division, CFSE is distributed approximately equally
among daughter cells (Lyons and Parish, 1994), hence, proliferation results
in a progressive dilution of the dye (Figure 1A) which can be recorded using
flow cytometry. As the individual cells do not, in general, divide with the
same rates, an initially uni-modal distribution (Figure 1B) becomes multi-
modal as time progresses (Figure 1C). The modes are related to different
numbers of cell divisions (Hawkins et al., 2007a); however, often the cells
with different numbers of divisions are not strictly separated. For this rea-
son, the calculation of the number of cells with a certain division number
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using peak detection and deconvolution methods (Luzyanina et al., 2007a;
Hawkins et al., 2007a) is error-prone. Furthermore, even knowledge about
the number of cells with a particular division number does not enable the
comparison of different hypotheses regarding, e.g., the proliferation rates.

The need for quantitative data analysis and hypothesis testing inspired
the development of a multitude of model-based approaches. Nowadays,
age-structured population (ASP) models (Bernard et al., 2003; Hawkins
et al., 2007b), division-structured population (DSP) models (De Boer et al.,
2006), label-structured population (LSP) models (Luzyanina et al., 2007b;
Banks et al., 2010), age- and division-structured population (ADSP) mod-
els (Hawkins et al., 2007b), and division- and label-structured population
(DLSP) models (Schittler et al., 2011; Hasenauer et al., 2012) are used to
study CFSE data. These classes of population balance models account for
up to two properties of individual cells:

• number of divisions i (→ DSP and DLSP model)
• CFSE concentration x (→ LSP and DLSP model)
• cell’s age a (→ ASP and ADSP model)

and are mostly written as systems of ordinary differential equations
(ODEs) or partial differential equations (PDEs). Population balance mod-
els which account for the cell age – the time passed since cell division –,
i.e., ASP and ADSP, can also be formulated as sets of nested integrals (De
Boer and Perelson, 2013). This alternative formulation is employed for
the Smith-Martin model (Smith and Martin, 1973) and the cyton model
(Hawkins et al., 2007b). For the Smith-Martin model and the cyton model
(with progression fraction equal to zero), equivalent PDE formulations
are available (Bernard et al., 2003; De Boer and Perelson, 2013). For a
comprehensive introduction to structured population models, we refer to
the review by De Boer and Perelson (2013).

As the population models available in the literature did not capture the
complexity of the process, we recently introduced the division-, age- and
label-structured population (DALSP) model (Metzger et al., 2012). The
DALSP model, a system of coupled partial differential equations (PDEs),
provides a flexible description of proliferation dynamics (Metzger et al.,
2012), but it has never been used to analyse CFSE data. Accordingly, no
parameter estimation, model selection and uncertainty analysis methods
have been available for this type of model until now.

In this manuscript, we introduce methods to infer the parameters of
DALSP models from CFSE distribution time-series data and to assess the
dependency of the proliferation rates on factors such as the cell age. For
this we introduce a statistical model linking predictions of the DALSP
model to measured CFSE data and formulate the corresponding inverse
problem. As the optimisation problem is nonlinear, we compare different
optimisation procedures. Furthermore, we implement the first identifiabil-
ity and uncertainty analysis methods for DALSP models. Combined with
model selection methods, these methods facilitate an in-depth analysis of
CFSE time-series data, which we illustrate for a published dataset.

2 Methods
To analyse CFSE data, we combine mechanistic and statistical models of
the biological process and the measurement process. In the following we
present the different ingredients as well as the inference methods. A more
detailed description is provided in the Supplementary Information.

Notation: We denote the set of non-negative real numbers by R+ :=

[0,∞) and the set of natural numbers with zero by N0 := {0, 1, 2, . . .}.
The units used in the following equations are number of cells (cells), unit
of concentration (UC), unit of fluorescence intensity (UFI) and unit of
time (UT). For simplicity, we assume that age and time are measured in
the same units, generalizations are straight forward.

Figure 1. Illustration of proliferation assay showing (A) one labeled cell and its descen-
dants, (B) the frequency of different CFSE concentration in the cell population at t = 0, and
(C) the frequency of different CFSE concentration in the cell population at t = T . Shades
from dark to light gray correspond to high and low CFSE concentration, respectively.

2.1 DALSP model

The state variable of the DALSP model is the joint number den-
sity of age, label concentration and cell division number, n(a, x, i|t)
(in cells/UC/UT). Its dynamics are governed by a system of coupled
2-dimensional PDEs,

∂n(a, x, i|t)
∂t

+
∂n(a, x, i|t)

∂a
+
∂(ν(t, x)n(a, x, i|t))

∂x

= − (αi(t, a) + βi(t, a))n(a, x, i|t)
(1)

with initial conditions (ICs)

i = 0 : n(a, x, 0|0) ≡ n0(a)p0(x),

∀i ≥ 1 : n(a, x, i|0) ≡ 0,
(2)

and boundary conditions (BCs)

i = 0 : n(0, x, 0|t) ≡ 0,

i ≥ 1 : n(0, x, i|t) ≡ 4

∫
R+

αi−1(t, a)n(a, 2x, i− 1|t)da.
(3)

The i-th PDE describes the dynamics of cells with i divisions. The
factorization of the initial condition, n(a, x, 0|0) ≡ n0(a)p0(x), in ini-
tial age distribution n0(a) (in cells/UT) and initial label density p0(x) (in
1/UC), is biologically plausible as the labeling efficiency should not de-
pend on the cell age. This factorization will allow for an efficient numerical
solution algorithm.

In (1)-(3), αi(t, a) and βi(t, a) denote the rates (in 1/UT) of cell
division and cell death for cells with i divisions. The rate of cellular label
degradation is denoted by ν(t, x) = −k(t)x (in 1/UT), with rate constant
k(t) (in 1/UT/UC). Accordingly, the following terms contribute to the
temporal change of the density n(a, x, i|t):

• ∂(ν(t, x)n(a, x, i|t))/∂x, change of label x with rate ν(t, x),
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• ∂(n(a, x, i|t))/∂a, increase of cell age a, and
• − (αi(t, a) + βi(t, a))n(a, x, i|t), loss of cells from the i-th sub-

population due to cell division and due to cell death,

and possess units cells/UC/UT2. The loss of cells from the (i− 1)-th
subpopulation due to cell division results in the birth of cells in the i-th
subpopulation with age a = 0, defining the BCs (3). The BCs are obtained
by integratingαi−1(t, a)n(a, 2x, i−1|t) over the age. As the cells double
(factor 2) and the label distribution is rescaled due to the halving of the
label concentration (factor 2), this integral is multiplied by a factor 4.

The rates as well as the initial conditions are usually unknown and
have to be estimated from experimental data. Therefore, rates and initial
conditions are parameterized in terms of a parameter vector θ ∈ Rnθ (see
Results section). For a more detailed statement of the model we refer to
the Supplementary Information, Section 1.1.1.

2.2 Modeled and measured quantities

The number densityn(a, x, i|t) encodes the properties of the proliferating
cell population. By marginalizing n(a, x, i|t) over all cell ages and label
concentrations, the number of cells which underwent i divisions,

N(i|t) =

∫
R+

∫
R+

n(a, x, i|t)dxda,

is obtained. The subsequent summation over the division number i
yields the overall number of cells, N(t) =

∑
i∈N0

N(i|t). Marginal-
ization over label concentrations and division number and subsequent
normalization with the number of cells yields the age distribution,

p(a|t) =
1

N(t)

∑
i∈N0

∫
R+

n(a, x, i|t)dx.

The label distribution, p(x|t), is obtained by marginalizing over cell
age and division number and normalizing with the overall cell number,

p(x|t) =
1

N(t)

∑
i∈N0

∫
R+

n(a, x, i|t)da.

Proliferation assays provide information about the overall number of
cells as well as the sum of label induced fluorescence (Figure 1B and C)
and cellular background fluorescence. The label induced fluorescence,
y (in UFI), is proportional to the label concentration, y = cx with
x ∼ p(x|t) and proportionality constant c > 0 (UFI/UC). The back-
ground fluorescence yb is a random variable, yb ∼ pb(yb) (in UFI),
whose distribution (pb) depends potentially on the biological system, the
measurement procedure and technical factors. The distribution of the total
measured fluorescence, ym = y + yb (in UFI), obeys the convolution
integral,

p(ym|t) =

∫ ym

0
p(y|t)pb(ym − y)dy,

with p(y|t) =
1

c
p
(
x =

y

c

∣∣∣ t)
(see Supplementary Information, Section 1.1.2). In the presence of

outliers, p(ym|t) can be mixed with an outlier distribution, poutliers(yo)

(see Supplementary Information, Section 2.1). The measurement of the
fluorescence distribution p(ym|t) does not provide information about the
absolute values of the concentration x. Any changes in c can be compen-
sated by changes in the initial label distributionp0(x) andk(t) (Hasenauer,
2013), rendering c = 1 (UFI/UC) a valid parameterization.

Commonly used measurement devices possess a finite resolution and
collect interval censored samples from p(ym|t). The resulting binned
snapshot data provides the number of cells H̄j

k observed in a bin j with
intensity range Ij at time tk . These counts {H̄j

k}
J
j=1 along with intervals

{Ij}Jj=1 provide a histogram. The probability p(ym ∈ Ij |tk) of observ-
ing an individual cell at time point tk in bin j is the integral of p(ym|tk)

over Ij . The overall cell count measured at time point tk is denoted by
N̄k =

∑J
j=1 H̄

j
k .

2.3 Numerical simulation

To compute the number density n(a, x, i|t) and further model proper-
ties, the DALSP model (1)-(3) is solved numerically. For this we exploit
that the solution of the system of coupled two-dimensional PDEs (1)-
(3) is factorable (Metzger et al., 2012). The first factor is the solution to a
system of coupled one-dimensional PDEs describing an age- and division-
structured population. This solution is computed using an efficient iterative
numerical scheme. The second factor is the solution to a set of decoupled
one-dimensional PDEs describing the label distribution in cellular sub-
populations with similar division number. This solution can be determined
analytically. The factorization accelerates the numerical evaluation by sev-
eral orders of magnitude compared to naive numerical methods. A similar
decomposition approach is used to compute the sensitivities ofn(a, x, i|t)
with respect to the parameters θi, ∂n(a, x, i|t)/∂θi. Given n(a, x, i|t)
and its sensitivities, the model properties and their derivatives are deter-
mined via numerical integration. The convolution integral defining the
measured fluorescence intensity is evaluated using Fenton’s approxima-
tion (Fenton, 1960). For further details we refer to the Supplementary
Information, Section 1.2 to 1.5.

2.4 Parameter estimation and uncertainty analysis

We employed maximum likelihood and Bayesian parameter estimation to
determine the unknown model parameters θ, with θ ∈ Θ ⊆ Rnθ , from
the collection of binned snapshot data D = {{H̄j

k}
J
j=1, N̄k}Kk=1. To

account for measurement noise in the measured overall cell number and
the histograms, the likelihood function

P(D|θ) =

K∏
k=1

P({H̄j
tk
}Jj=1|θ)P(N̄k|θ)

is used (Hasenauer, 2013). The likelihood P({H̄j
tk
}Jj=1|θ) of ob-

serving the histogram {H̄j
tk
}Jj=1 follows a multinomial distribution with

category probabilities {p(xm ∈ Ij |tk)}Jj=1. The likelihood P(N̄k|θ)
of observing the overall population size N̄k assumes a log-normally
distributed measurement error. A detailed statement of the likelihood func-
tions is provided in the Supplementary Information, Section 2.1. Prior and
posterior distribution for Bayesian parameter estimation are denoted by
π(θ) and π(θ|D), with π(θ|D) ∝ P(D|θ)π(θ). A log-uniform prior
π(θ) is employed.

The maximum likelihood estimates θML and maximum a posteriori
parameter estimates θMAP are obtained by maximizing the respective
objective functions. To improve the numerical evaluation and the optimiser
convergence, we maximize the logarithms of the objective functions, e.g.

θML = arg max
θ∈Θ

log P(D|θ).

These nonlinear optimisation problems are solved using stochastic
global optimisation (Weise, 2009) and multi-start local optimisation (Raue
et al., 2013). For stochastic global optimisation the particle-swarm pattern
search method PSwarm (Vaz and Vicente, 2007) is employed. For multi-
start local optimisation, parameters are drawn from the parameter domain
Θ and used as starting points for the local optimiser. For local optimisation
the MATLAB routine fmincon.m is used with and without user-supplied
gradients. The user supplied gradients are computed using the forward sen-
sitivity equations of the DALSP model (see Supplementary Information,
Section 1.2 and 2.1.)
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The estimated parameter values reveal properties of the proliferation
dynamics. To assess the parameter identifiabilities and uncertainties we
calculate profile likelihoods (Raue et al., 2009) using our in-house Param-
eter Estimation Toolbox (PESTO) and sample the posterior distribution
using the Delayed Rejection Adaptive Metropolis (DRAM) sampler de-
veloped by Haario et al. (2006). The posterior sample is employed to study
parameter correlations and prediction uncertainties (Hug et al., 2013). For
details on the optimiser and sampler settings we refer to the Supplementary
Information, Section 2.2-2.4.

2.5 Hypothesis testing

Competing hypotheses regarding the mode of proliferation can be encoded
in the rates α(t, a) and β(t, a). Each of the resulting models is assessed
using the Akaike information criterion (AIC),

AIC = −2 log P(D|θML) + 2nθ,

and the Bayesian information criterion (BIC)

BIC = −2 log P(D|θML) + log(nD)nθ,

in which the maximum likelihood estimate and the number of param-
eters for the model of interest are denoted by θML and nθ . The number of
independent data points is denoted by nD . AIC and BIC account for the
likelihood of the data and penalize model complexity. Low AIC and BIC
values are favorable. We consider a difference > 10 between AIC/BIC
values of different models as substantial (Burnham and Anderson, 2002).

2.6 Implementation

All implementations are available as MATLAB toolbox from GitHub
(http://janhasenauer.github.io/ShAPE-DALSP/). As the MATLAB Sym-
bolic Math Toolbox is used to construct the models and sensitivity
equations, a variety of alternative rates αi(t, a), βi(t, a) and ν(t, x) =

−k(t)x can be analysed easily.

3 Application
We illustrate the proposed model-based quantification method by studying
T lymphocyte proliferation. T lymphocytes are part of the adaptive immune
system and their pool expands upon pathogen recognition. This expansion
is frequently monitored using CFSE labeling (Hawkins et al., 2007a)

3.1 Experimental data and mechanistic model

We considered T lymphocyte proliferation upon treatment with antibodies
against CD3 and CD28 receptors. Experimental data for this setting has
been collected by Luzyanina et al. (2007b) and analysed in a series of
studies (Luzyanina et al., 2007b; Banks et al., 2010, 2011; Thompson,
2012; Hasenauer, 2013). This multitude of preceding studies underlines
the importance of the dataset and renders it ideal for the evaluation of our
approach.

In this study, an ensemble of DALSP models is used to study the CFSE
data collected on days 1-5 post treatment. To capture the observed hetero-
geneity, the initial CFSE distribution (on day 1), p0(x), is modeled by
a weighted sum of two log-normal distributions and the distribution of
the autofluorescence, pa(xa) is modeled by a single log-normal distri-
bution. After considering different alternatives, we set initial cell age to
zero, such that the initial condition is given by n0(a) = N0δ(a). N0 is
the initial number of cells and δ denotes the Dirac delta distribution. We
considered rates of cell division which are constant, age- and/or division
number-dependent, i.e.,

αi(a) =



kα → constant

kα,i → division number dependent
kαa

nα

K
nα
α +anα

→ age dependent
kα,ia

nα

K
nα
α +anα

→ division number and age dependent,

and the same holds for the rate of cell death, βi(a). The age-
dependence is modeled by Hill-type functions with maximal rates kα,i
and kβ,i which can depend on the division number i. Similar to previ-
ous publications the intracellular CFSE degradation is described using
Gompertz decay, k(t) = −kdeg exp(−cdegt) (Banks et al., 2013b). The
constants used to model the rates, e.g., kα,i, kβ,i, kdeg and cdeg, and the
parameters of the initial conditions are part of the parameter vector θ and
estimated from the data. Lower and upper bounds for these parameters are
reported and discussed in the Supplementary Information, Section 3.1.

The combinations of the different hypotheses regarding αi(a) and
βi(a) give rise to 16 model alternatives with 12 to 29 parameters. We
denote these models withM1 throughM16 and their properties are sum-
marized in Table 1. In the following sections, these model alternatives are
compared and used to interpret the CFSE time-series data.

3.2 Comparison of optimisation methods

We estimated the parameters of all 16 model alternatives using the particle-
swarm optimisation algorithm implemented in PSwarm and the multi-start
local optimisation method implemented in PESTO. The latter performs
individual deterministic optimisations using gradients obtained by finite
differences or sensitivity equations. For all optimisation methods we as-
sessed the percentage of ‘converged starts’ using the likelihood ratio test
with a significance level of 0.05 (see Supplementary Information, Sec-
tion 2.4). This is a weak, statistically motivated measure of convergence
and can be checked easily also for complex problems. Beyond converged
starts, we considered the distribution of computation times for individual
starts as well as the average computation time per converged start. The
latter is computed by dividing the overall computation time by the number
of converged starts (see Supplementary Information, Section 2.4). This
yields a measure for the overall optimiser efficiency.

The results for 250 runs of PSwarm, 250 runs of the deterministic op-
timisers used in multi-start local optimisation and 250 random parameter
samples for different model alternatives are depicted in Figure 2 and Fig-
ure S2. ForM2 all optimisers achieve a significant improvement compared
to random samples. ForM2 the percentages of converged starts were for
all optimisers comparable (Figure 2A), but deterministic optimisers using
sensitivity equations were two orders of magnitude faster than PSwarm
(Figure 2B and C) and the only algorithms able to reproduce the global
optimum. For model alternatives with more parameters, the difference in
the performance of multi-start methods and PSwarm becomes even more
apparent (Figure S2). Hence, although PSwarm is known to outperform
most available global optimisation algorithms (Vaz and Vicente, 2007), we
found that multi-start local optimisation yields better results for DALSP
models.

3.3 Evaluation of age-dependent proliferation rates

ModelM1 toM16 describe different dependencies of the proliferation
rates on cell age and division number. A comparison of the measured
distributions and cell counts (Figure 3A) with the best fits for these model
hypotheses is provided in Figure 3, S4 and S5. We found that already model
M1, which assumes constant rates of cell division and cell death, fits a
large fraction of the data well (Figure 3B). ModelM2, which accounts
for age-dependence of the division rate, already provides a good visual
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Table 1. Number of parameters, negative log-likelihood, Akaike information criterion (AIC) and Bayesian information criterion (BIC) for the 16 model alternatives.
Rows two to five indicate the dependencies considered in the different models. Dependencies are indicated using fnc, e.g. α = fnc(a) indicates that α depends
on a. The values for AIC and BIC are for the maximum likelihood estimate found after 250 runs of a deterministic local optimiser exploiting forward sensitivity
equations.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

α = fnc(a) × × × × × × × ×
α = fnc(i) × × × × × × × ×
β = fnc(a) × × × × × × × ×
β = fnc(i) × × × × × × × ×

nθ 12 14 18 20 14 16 20 22 19 21 25 27 21 23 27 29
− log P (×104) 2.242 1.521 2.185 1.476 2.089 1.521 2.016 1.476 2.176 1.508 2.138 1.350 2.033 1.497 1.987 1.345
AIC (×104) 4.486 3.044 4.374 2.956 4.180 3.045 4.036 2.956 4.356 3.021 4.281 2.705 4.070 2.998 3.980 2.696
BIC (×104) 4.497 3.058 4.391 2.974 4.194 3.060 4.056 2.977 4.374 3.041 4.305 2.730 4.090 3.020 4.006 2.723

agreement of model and data (Figure 3C). The fit tends to improve further
as additional degrees of freedom (i.e., model parameters) are introduced
(Figure 3D). To our surprise, we found only a weak correlation between
the log-likelihood and the number of parameters of a model (Figure 4A).
In contrast, age-dependence of the division rate separates the models in
those with high log-likelihood values (→ good fits) and those with low log-
likelihood values (→ bad fits). Taken together, this indicates that missing
age-dependence of the rates of cell division cannot be compensated by
increasing the number of parameters and the model complexity.

To assess the importance of individual dependencies of proliferation
rates we computed the AIC and the BIC values (Table 1). Both informa-
tion criteria provided identical rankings and revealed the model hierarchy
visualized in Figure 4B and C. The best eight models were those with
age-dependence of the rates of cell division, includingM2. The best four
models were those with age- and division-dependent rates of cell division.
The best two models were those possessing in addition a dependence of
the rates of cell death on the division number. In the best model the rates
of cell division and cell death depended on cell age and division number.

Previous studies relying on LSP and DLSP models assumed time-
and/or CFSE concentration-dependent division rates. The estimates of
these division rates were multi-modal, difficult to interpret and possessed
many unknowns (see, e.g., (Banks et al., 2010, Figure 8) and (Thompson,
2012, Figure 3.10)). The DALSP models proposed here possess fewer
parameters and the age-dependent rates of cell division are interpretable,
e.g. in terms of inter-division times (Metzger et al., 2012). Furthermore,
age-dependent rates provide a direct link to the cell cycle-dependent gene
expression during T lymphocyte proliferation and differentiation (Bird
et al., 1998). Accordingly, DALSP models facilitated an accurate descrip-
tion and a meaningful interpretation of CFSE time-series data in terms of
model parameters.

3.4 Analysis of parameter and prediction uncertainties

As estimated parameters and predicted model properties are potentially
non-identifiable from available CFSE time-series data, we assessed their
uncertainties using profile likelihoods and MCMC sampling. We evaluated
the optimisation procedures and found that only deterministic optimisation
with sensitivity equations yields accurate profile likelihoods. Furthermore,
despite the use of state-of-the-art adaptive MCMC sampling procedures,
random initialization of the starting point did not yield a sample within
30 CPU days that passes the Geweke test (Brooks and Roberts, 1998),
a convergence diagnostic. In contrast, initialization at the MAP estimate
resulted after only 2 CPU days in a sample which passes the Geweke test.
This demonstrated the importance of reliable and efficient optimisation

Figure 2. Performance of different optimisation methods for modelM2 . (A) Negative
log-likelihoods for 250 runs of deterministic local and global optimisers and 250 randomly
sampled parameter values. Missing points indicate failed objective function evaluations and
optimisation runs. The dashed line indicates the significance threshold for converged starts.
(B) Box plot of the computation time per optimisation run. (C) Average computation time
per converged start.

methods for uncertainty analysis. The results of the uncertainty analysis
forM1,M2 andM16 are visualized in Figure S7-S12.

ForM2, the simplest model which provides a good visual agreement of
model and data, we found that most parameters are practically identifiable
(Figure S8). The maximum rate of cell division, kα, as well as the age at
which the half maximum value of the division rates is reached, Kα, were
tightly constrained (Figure 5A). For the Hill coefficient,nα, we considered
the range of 10−6 to 102 and found a lower bound of 45.4. Accordingly,
the age-dependent division rates, αi(a), is close to the scaled Heaviside
step function kαh(a − Kα) which would be reached for nα → ∞
(Figure 5B). This indicates that the upper bound for nα chosen in the
study, nα ≤ 102, does not influence the estimation results significantly.
For the estimated division rate, the inter-division time (in the absence of
cell death) is similar to a shifted exponential distribution (Figure 5C). This
is the distribution assumed in the Smith-Martin model (Smith and Martin,
1973). The rate of cell death, β(a) = kβ , was significantly smaller than
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Figure 3. Comparison of measured CFSE distributions (A, left) and measured overall cell counts (A, right) with the best fits of modelM1 (B),M2 (C), andM16 (D). The region in
between the fine black lines (==) indicates the 90% confidence interval (5-th to 95-th percentile) of the bin counts for the particular number of measured cells. A coverage/overplotting of the
experimental data by the confidence interval indicates a good fit.

Figure 4. Model selection results for proliferation modelsM1 -M16 . (A) Optimal log-likelihood value vs. number of parameter for the individual models. (B) Ordering of models
implied by BIC values, starting with the best model. Crosses in the table indicate dependencies of the rate of cell division, α and cell death, β. (C) Visualization of the hierarchy of models
according to the minimal set of dependencies, which are color-coded consistently across all subplots. (A,B,C) Visualization of AIC instead of BIC yields the same results as AIC and BIC
values differ merely in the third significant digit.

the maximal rate of cell division, kα (Figure 5D). As the rate of cell
death is constant, the time to cell death (in the absence of cell division)
is exponentially distributed (Figure 5D). The estimated parameters of the
rates of cell division and cell death are correlated (Figure S11). The good
agreement of profile likelihoods and histograms obtained using Markov
chain Monte Carlo sampling underpin the functioning of the methods.

Confidence intervals for all parameters of model M2 are provided in
Table 2.

Beyond the quantification of parameter uncertainties, we assessed
model predictions. As CFSE time-series data are most frequently used
to determine the number of cells with a certain number of divisions,
N(i|t), we used samples from the posterior distribution π(θ|D) obtained
by MCMC to quantify this property and its uncertainty. The results for
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Table 2. Parameter estimates and confidence intervals for modelM2.

Name ML estimate 95% confidence interval Unit

kα 1.499 (1.474, 1.524) d−1

nα 100.0 (45.39,≥ 100) -
Kα 0.410 (0.406, 0.414) d
kβ 0.204 (0.197, 0.211) d−1

kdeg 0.190 (0.184, 0.196) d−1

cdeg 0.076 (0.057, 0.095) d−1

µnoise 2.150 (2.132, 2.169) -
σnoise 0.333 (0.321, 0.344) -
N0 7012 (6902, 7123) cells
rx,1 0.746 (0.735, 0.757) -
µx,1 6.402 (6.396, 6.407) -
µx,2 7.302 (7.270, 7.335) -
σx,1 0.177 (0.174, 0.179) -
σx,2 0.741 (0.724, 0.758) -

M2 (Figure 5C) revealed that the uncertainties are relatively small. A
second property providing insights into the proliferation dynamics is the
age distribution. While this property could not be assessed with LSP and
DLSP models, the DALSP model revealed its structure. Due to the con-
tinuous renewal, cells tended to be young with a maximum at a = 0 d.
Between a = 0 d and a = 0.41 d the density slowly decreases, mostly
due to cell death. At a = 0.41 d ≈ Kα cell division sets in and results
in an accelerated decline. Although CFSE time-series data do not directly
provide information about the cell age distribution, DALSP models could
be used to quantify it accurately, which is indicated by narrow credible
intervals. This is also true for other properties such as intracellular CFSE
degradation.

4 Conclusion
In vivo and in vitro proliferation assays using CFSE require accurate
tools for quantifying biologically meaningful parameters (Hawkins et al.,
2007a). To meet this requirement, we propose to use DALSP models
which account for the age of individual cells. In contrast to the frequently
used LSP and DLSP models, DALSP models allow for non-exponential
inter-division time. To exploit DALSP models for the analysis of CFSE
time-series data, we derived sensitivity equations for gradient calculation
and we developed a tailored numerical scheme exploiting the hierarchical
structure of DALSP models.

As an accurate model-based analysis of experimental data requires reli-
able inference, we compared different optimisation algorithms with respect
to convergence and computation time. Our comparison, which is to the best
of our knowledge the first comparison of this kind for structured population
models, revealed that multi-start local optimisation outperforms stochas-
tic global optimisation for this class of PDE models. This confirms results
by Raue et al. (2013) for ODE models. Indeed, for some DALSP mod-
els the evaluated stochastic global optimisers did not even converge if a
large number of function evaluations (> 105) was allowed. For the same
models, multi-start local optimisation with accurate gradients provided
reproducible results. This underpined the importance of using sensitivity
equations, which have so far not been described for LSP and DLSP models.
The latter raising questions regarding the reliability of previous estimation
results.

The efficient deterministic optimisers were used to maximize a like-
lihood function which accounts for the stochasticity of the acquisition
process. This likelihood function is statistically more meaningful than
least-squares type objective functions (Banks et al., 2010, 2011). We em-
ployed the proposed likelihood function for model selection and found

evidence for a dependence of the division rate on the cell age. More pre-
cisely, the Hill-type division rate with a high degree, nα � 1, indicated
a lower bound for the inter-division time, which could be interpreted as a
minimal length of the cell cycle. This seems biologically more plausible
than the time- and CFSE concentration-dependent division rates proposed
in previous publications (Luzyanina et al., 2007b; Banks et al., 2010,
2011). Furthermore, age-dependent rates of cell division have been re-
ported for similar biological systems using time-lapse microscopy data
(Duffy et al., 2012; Shokhirev et al., 2015).

Beyond model selection, we provided the first detailed Bayesian un-
certainty analysis for structured population models. This was challenging
due to the computational complexity of PDE models and the number of un-
known parameters. We established computational feasibility by exploiting
tailored numerical methods and an initialization using optimisation re-
sults. The posterior samples obtained using MCMC methods revealed a
low level of uncertainties for latent properties, such as the age distribu-
tion and the parameters of the cell division rate. In addition, the marginal
distribution of the parameters are consistent with the profile likelihoods,
which substantiated the results further.

All the modeling, simulation, parameter estimation and model selec-
tion methods used in this publication are implemented in the open-source
MATLAB toolbox ShAPE-DALSP. The availability of the code will fa-
cilitate the application of the method and simplify the development of
extensions, e.g., towards multiple cell-types (Schittler et al., 2012), asym-
metric cell division (Bocharov et al., 2013; Luzyanina et al., 2014;
Kapraun, 2014; Banks et al., 2015) and alternative DALSP models
(Luzyanina et al., 2014; Banks et al., 2013a, 2014, 2015; Kapraun, 2014).
In particular the implementation of a cyton-based model (Banks et al.,
2013a, 2014, 2015; Kapraun, 2014) would be interesting as these models
allow for a fraction of non-dividing cells. In addition to extensions, alter-
native parameterizations can be included, e.g., a parameterization of the
probability density functions for a cell to divide and die at age a (as used in
the cyton models) in contrast to a parameterization of the age-dependent
rate of cell division and cell death. The incorporation of the features in
ShAPE-DALSP would allow for an even broader spectrum of applications
and improve user-friendliness.

In summary, this study presents a novel model-based analysis method
for CFSE time-series data. Besides a statistical model, we present findings
regarding optimiser performance and uncertainty analysis. These findings
and the methods we developed can be easily transferred to other structured
population models and might also be applicable to other types of population
balance models. Accordingly, this study will help to make the most of
CFSE time-series data and other data requiring cell-cycle corrections.
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