
Supplement to

Analysis of CFSE proliferation assay using division-, age- and

label-structured population models

Sabrina Hross1,2 and Jan Hasenauer1,2

1Helmholtz Zentrum München - German Research Center for Environmental Health,
Institute of Computational Biology, 85764 Neuherberg, Germany

2Technische Universität München, Center for Mathematics,
Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany

Contents

1 Modeling of CFSE proliferation assay 2

1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Proliferation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Measurement process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Sensitivity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Proliferation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Measurement process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Decomposition of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Sensitivity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Division- and age-structured population model . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Simple label-structured population model . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Numerical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Proliferation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.2 Measurement process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Parameter Estimation and Model Selection 9

2.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Noise models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Gradient of likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Multi-start local optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Particle swarm optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Comparison of optimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



2.5.1 Profile likelihood calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Markov chain Monte-Carlo sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Application 13

3.1 Lower and upper bounds of model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Comparison of optimisation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Multi-start local optimisation with forward sensitivity equation . . . . . . . . . . . . . . . . . 15

3.4 Profile likelihood and Bayesian uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Division number-dependence of the rates of cell division . . . . . . . . . . . . . . . . . . . . . 15

1 Modeling of CFSE proliferation assay

In this section, we summarize the division-, age- and label-structured population (DALSP) model, a gener-
alization of existing modeling approaches for CFSE time-series data (Figure 1). We provide the model and
the sensitivity equations along with decompositions which simplify the numerical evaluation.

1.1 Model

We start by introducing the DALSP model for the proliferation dynamics of cell populations (Metzger et al.,
2012) as well as a model for the measurement processes (Hasenauer, 2013).

Notation: We denote the set of nonnegative real numbers by R+ := [0,∞) and the set of natural numbers
with zero by N0 := {0, 1, 2, . . .}. The units used in the following equations are number of cells (cells), unit
of concentration (UC), unit of fluorescence intensity (UFI) and unit of time (UT). For simplicity, we assume
that age and time are measured in the same units, generalizations are however straight forward.

1.1.1 Proliferation dynamics

We use the number density n(a, x, i|t) (in cells/UC/UT) to describe the state of a proliferating cell population.
The different variables are the cell age a (in UT), the label concentration x (in UC), the number of cell divisions
i (without unit) and the time t (in UT). The number density n(a, x, i|t) evolves according to a systems of
partial differential equations (PDEs),

∀i ≥ 0 :
∂n(a, x, i|t)

∂t
+
∂n(a, x, i|t)

∂a
+
∂(ν(t, x)n(a, x, i|t))

∂x
= − (αi(t, a) + βi(t, a))n(a, x, i|t) (1)

with initial conditions (ICs)
i = 0 : n(a, x, i|0) ≡ n0(a)p0(x),

∀i ≥ 1 : n(a, x, i|0) ≡ 0,
(2)

and boundary conditions (BCs)

i = 0 : n(0, x, 0|t) ≡ 0,

i ≥ 1 : n(0, x, i|t) ≡ 4

∫
R+

αi−1(t, a)n(a, 2x, i− 1|t)da.
(3)

The i-th PDE describes the dynamics of the subpopulation of cells with i cell divisions. The product structure
of the initial condition, n(a, x, i|0) ≡ n0(a)p0(x), is assumed to allow for a simple solution algorithm (see
Section 1.5). Furthermore, it is biologically plausible as there are no indications that the labelling efficiency
depends on the cell age.

1.1.2 Measurement process

To assess the proliferation dynamics, cell populations are analysed at different time points using cell counting
and flow cytometry. Via cell counting the overall size of the cell population, N(t) (in cells),

N(t) =
∞∑
i=1

∫
R+

∫
R+

n(a, x, i|t)dxda, (4)
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Supplement Figure 1: Illustration of the common models (USP, DSP, LSP, DLSP, ASP and DASP model)
and the DALSP model considered in this work. The axis represent properties of individual cell for which
some of the model account.

is determined. Flow cytometry measures in addition the fluorescence ym (in UFI) of individual cells. The
measured fluorescence ym is the sum of the CFSE induced fluorescence, y = cx with proportionality constant
c > 0 (UFI/UC) and background fluorescence yb, hence ym = y + yb (Hasenauer, 2013). Information about
cell age a and division number i is generally not assessable. Accordingly, the distribution of ym is given by
the convolution integral

pm(ym|t) =

∫ ym

0

p(y|t)pb(ym − y)dy, (5)

in which pb(yb) denotes the distribution of background fluorescence and p(y|t) denotes the distribution of the
label induced fluorescence. The distribution of the label induced fluorescence is

p(y|t) =
1

c
p
(
x =

y

c

∣∣∣ t) , (6)

with label concentration distribution

p(x|t) =
1

N(t)

∑
i∈N0

∫
R+

n(a, x, i|t)da. (7)

In most studies, neither the label concentration, x, nor the proportionality constant, c, are of interest. Merely,
the information about the label induced fluorescence, and its distribution within the cell population shall
be used to infer the proliferation properties. This can be employed to avoid the estimation of c. It can
be shown that the PDE model (1)-(3) also governs the dynamics of the distribution of the label induced
fluorescence, when substituting x (in UC) by y (in UFI) and rescaling the initial distribution. This proves
that the estimation of c can be avoided by restating the model and implies that any choice of c is valid, e.g.,
c = 1 (in UFI/UC).

1.2 Sensitivity equation

For parameter estimation the sensitivities of the measured quantities, N(t) and pm(ym|t), with respect to
the model parameters θ ∈ Rnθ are required. We parametrise the potentially unknown rates of cell division
and cell death, the rate of label degradation as well as the initial age distribution, the initial fluorescence
distribution and the autofluorescence distribution. In this section we derive the sensitivity equation of the
state variables for the DALSP model, n(a, x, i|t), and subsequently the sensitivity equations for the measured
quantities, N(t) and pm(ym|t).

1.2.1 Proliferation dynamics

The sensitivity of the number density n(a, x, i|t) with respect to parameter θj is

snj (a, x, i|t) :=
∂n(a, x, i|t)

∂θj
. (8)
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This sensitivity evolves according to the forward sensitivity equation

∀i ≥ 0 :
∂snj (a, x, i|t)

∂t
+
∂snj (a, x, i|t)

∂a
+

∂

∂x

(
∂ν(t, x)

∂θj
n(a, x, i|t) + ν(t, x)snj (a, x, i|t)

)
= −

(
∂αi(t, a)

∂θj
+
∂βi(t, a)

∂θj

)
n(a, x, i|t)− (αi(t, a) + βi(t, a)) snj (a, x, i|t)

(9)

with initial conditions (ICs)

i = 0 : snj (a, x, i|0) ≡ ∂n0(a)

∂θj
p0(x) + n0(a)

∂p0(x)

∂θj
,

∀i ≥ 1 : snj (a, x, i|0) ≡ 0,

(10)

and boundary conditions (BCs)

i = 0 : snj (0, x, 0|t) ≡ 0,

i ≥ 1 : snj (0, x, i|t) ≡ 4

∫
R+

(
∂αi−1(t, a)

∂θj
n(a, 2x, i− 1|t) + αi−1(t, a)snj (a, 2x, i− 1|t

)
da,

(11)

This forward sensitivity equation is obtained by differentiating (1)-(3) with respect to the parameter θj
and subsequent reordering. By simultaneous solution of the systems (1)-(3) and the forward sensitivity
equation (9)-(11) we obtain a more robust estimate compared to finite differences and the computation is
often more efficient.

1.2.2 Measurement process

For a parameter θj the sensitivities of the population size N(t) and the label distribution p(x|t) are obtained
by differentiating (4) and (5) with respect to θj . We obtain

∂N(t)

∂θj
=
∞∑
i=1

∫
R+

∫
R+

∂n(a, x, i|t)
∂θj

dxda (12)

and

∂pm(ym|t)
∂θj

=

∫ ym

0

(
∂p(y|t)
∂θj

pb(ym − y) + p(y|t)∂pb(ym − x)

∂θj

)
dy, (13)

with
∂p(y|t)
∂θj

= − 1

c2
∂c

∂θj
p
(
x =

y

c

∣∣∣ t)+
1

c

∂p
(
x = y

c

∣∣ t)
∂θj

, (14)

and
∂p(x|t)
∂θj

=
1

N(t)

( ∞∑
i=1

∫
R+

∂n(a, x, i|t)
∂θj

da− p(x|t)∂N(t)

∂θj

)
. (15)

If the proportionality constant is known or not fitted, (14) simplifies to

∂p(y|t)
∂θj

=
1

c

∂p(x|t)
∂θj

∣∣∣∣
x= y

c

(16)

The sensitivities can be evaluated given the state sensitivities snj (a, x, i|t) = ∂n(a, x, i|t)/∂θj and a parametrised
distribution for pb(yb). If the background fluorescence distribution is not parametrised but modelled based
on control experiments, the derivative ∂pb(ym − x)/∂θj is zero.

1.3 Decomposition of solution

The DALSP model is a systems of coupled 2-dimensional PDEs. The numerical simulation of its state
variables and sensitivities can be time-consuming. To reduce the computational complexity, we reuse a
dimensionally reducing decomposition method we introduced for similar models (Hasenauer et al., 2012).
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1.3.1 Model

We proved previously that for degradation rates ν(t, x) = −k(t)x the solution of (1)-(3) can be written as a
product,

n(a, x, i|t) = n(a, i|t)p(x|i, t), (17)

of the solution of a division- and age-structured population (DASP) model, n(a, i|t), and the solution to a
simple label-structured population (LSP) model, p(x|i, t) (Metzger et al., 2012). The DASP model governing
the evolution of n(a, i|t) is

∀i ≥ 0 :
∂n(a, i|t)

∂t
+
∂n(a, i|t)

∂a
= −(αi(t, a) + βi(t, a))n(a, i|t), (18)

with ICs
i = 0 : n(a, i|0) ≡ n0(a),

i ≥ 1 : n(a, i|0) ≡ 0,
(19)

and BCs
i = 0 : n(0, i|t) ≡ 0,

i ≥ 1 : n(0, i|t) ≡ 2

∫
R+

αi−1(t, a)n(a, i− 1|t)da.
(20)

The simple LSP models governing the evolution of p(x|i, t) are

∀i ≥ 0 :
∂p(x|i, t)

∂t
+
∂(ν(t, x)p(x|i, t))

∂x
= 0, p(x, i|0) ≡ 2ip0(2ix). (21)

1.3.2 Sensitivity equation

A similar decomposition can also be applied to the solution of the sensitivity equation (9)-(11) by exploiting
that

snj (a, x, i|t) =
∂n(a, i|t)p(x|t)

∂θj
=
∂n(a, i|t)
∂θj

p(x|t) + n(a, i|t)∂p(x|t)
∂θj

, (22)

with

snj (a, i|t) :=
∂n(a, i|t)
∂θj

and spj (x|t) :=
∂p(x|t)
∂θj

. (23)

The sensitivities snj (a, i|t) and spj (x|t) denote the sensitivities of the solutions of the aforementioned DASP (18)-
(20) and LSP (21) models. The sensitivity equations are obtained by differentiating (18)-(20) and (21),
respectively. The resulting evolution equation for the sensitivity of the solution of the DASP model is

∀i ≥ 0 :
∂snj (a, i|t)

∂t
+
∂snj (a, i|t)

∂a
= −

(
∂αi(t, a)

∂θj
+
∂βi(t, a)

∂θj

)
n(a, i|t)− (αi(t, a) + βi(t, a))snj (a, i|t), (24)

with ICs

i = 0 : sn(a, i|0) ≡ ∂n0(a)

∂θj
,

i ≥ 1 : sn(a, i|0) ≡ 0,

(25)

and BCs
i = 0 : n(0, i|t) ≡ 0,

i ≥ 1 : n(0, i|t) ≡ 2

∫
R+

∂αi−1(t, a)

∂θj
n(a, i− 1|t) + αi−1(t, a)snj (a, i− 1|t)da.

(26)

The evolution of the sensitivity of the solution of the simple LSP models is governed by

∀i ≥ 0 :
∂spj (x|i, t)

∂t
+

∂

∂x

(
∂ν(t, x)

∂θj
p(x|i, t) + ν(t, x)spj (x|i, t)

)
= 0, spj (x, i|0) ≡ 2i

∂p0(2ix)

∂θj
. (27)

The decomposition of solution and sensitivity enables the calculation of the solution by solving a systems of
coupled 1-dimensional PDEs for the division and age structure and a set of decoupled PDEs for the label
structure instead of a system of coupled 2-dimensional PDEs. This does not introduce an approximation
error and due to the reduced dimensionality it can be simulated more efficiently.
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1.4 Analytical results

The decompositions yields a DASP model and set of simple LSP models. These models allow for an analytical
analysis. In this section we present analytical solutions of the models and sensitivity equations.

1.4.1 Division- and age-structured population model

The dynamics of the individual subpopulations in the DASP model (18)-(20) are governed by a Von Foerster -
like equation (von Foerster, 1959). By using the solution of Trucco (Trucco, 1965) for Von Foerster -like
equations repeatedly for the individual subpopulations, we could prove that

i = 0 : n(a, 0|t) =

 n0(a− t) exp

(
−
∫ t

0

χ0(t̃, t̃+ a− t)dt̃
)

, t ≤ a

0 , t > a

i ≥ 1 : n(a, i|t) =


0 , t ≤ a

2

∫
R+

αi−1(t− a, ã)n(ã, i− 1|t− a)dã exp

(
−
∫ a

0

χi(ã+ t− a, ã)dã

)
, t > a,

(28)

with χi(t, a) = αi(t, a) + βi(t, a) (Metzger et al., 2012). By differentiating expression (28) with respect to θj ,
we obtain an expression for the solution of the sensitivity equation (24)-(26),

i = 0 : snj (a, 0|t) =

 exp

(
−
∫ t

0

χ0(t̃, t̃+ a− t)dt̃
)(

∂n0(a− t)
∂θj

− n0(a− t)
∫ t

0

∂χ0(t̃, t̃+ a− t)
∂θj

dt̃

)
, t ≤ a

0 , t > a

i ≥ 1 : snj (a, i|t) =



0 , t ≤ a

2 exp

(
−
∫ a

0

χi(ã+ t− a, ã)dã

)
, t > a,

·

(∫
R+

∂αi−1(t− a, ã)

∂θj
n(ã, i− 1|t− a) + αi−1(t− a, ã)snj (ã, i− 1|t− a)dã

−
∫

R+

αi−1(t− a, ã)n(ã, i− 1|t− a)dã

∫ a

0

∂χi(ã+ t− a, ã)

∂θj
dã

)
(29)

with
∂χi(t, a)

∂θj
=
∂αi(t, a)

∂θj
+
∂βi(t, a)

∂θj
.

The expressions (28) and (29) will be important for the evaluation of states and the sensitivities of the DALSP
model. These expressions provide closed-form solutions of n(a, i|t) and snj (a, i|t) for special cases of α(t, a)
and β(t, a), e.g., if both are constant. For general α(t, a) and β(t, a), solutions of the integrals contained
in (28) and (29) cannot be expressed analytically and, accordingly, we do not get closed-form solutions for
n(a, i|t) and snj (a, i|t).

1.4.2 Simple label-structured population model

For the solution of the simple LSP models (21) we derived previously the expression

∀i ≥ 0 : p(x|i, t) = 2i exp

(∫ t

0

k(t̃)dt̃

)
p0

(
2i exp

(∫ t

0

k(t̃)dt̃

)
x

)
(30)

(Metzger et al., 2012). Differentiation of this expression with respect to the parameter θj yields an expression
for the solution of the sensitivity equation (27), namely

∀i ≥ 0 : spj (x|i, t) = 2i exp

(∫ t

0

k(t̃)dt̃

)(∫ t

0

∂k(t̃)

∂θj
dt̃

)
p0

(
2i exp

(∫ t

0

k(t̃)dt̃

)
x

)
+
dp0

(
2i exp

(∫ t
0
k(t̃)dt̃

)
x
)

dθj

 .

(31)

The expressions (30) and (31) provide closed-form solution for some choices of k(t). Constant degradation
k(t) = k and Gompertz decay process k(t) = kmax exp (−kT t) yield

∀i ≥ 0 : p(x|i, t) = 2i exp(kt)p0

(
2i exp(kt)x

)
(32)
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and

∀i ≥ 0 : p(x|i, t) = 2i exp

(
kmax

kT
(1− exp(−kT t))

)
p0

(
2i exp

(
kmax

kT
(1− exp(−kT t))

)
x

)
, (33)

respectively. For general k(t), numerical methods have to be used to compute the integral
∫ t

0
k(t̃)dt̃.

1.5 Numerical evaluation

As closed-form solutions are generally not available, this section addresses the numerical calculation of state
and outputs of the models.

1.5.1 Proliferation dynamics

Division-, age- and label-structured population model: To compute the solution of the DALSP
model and its sensitivities, we exploit the decompositions (17) and (22). Accordingly, states and sensitivities
can be computed by multiplication/addition of the solutions of the DASP model and the simple LSP models.
If for the given rates α(t, a), β(t, a) and k(t) closed-form solutions for the DASP model and the simple LSP
models are available, these solutions are used. Otherwise, numerical methods are employed.

Division- and age-structured population model: The numerical solution of the DASP model is ob-
tained by iterative evaluation of the expression (28). Starting with i = 0 the solutions n(a, i|t) for the
individual subpopulations are computed. We use a constant discretization of time, space and age. For nu-
merical integration the trapezoidal rule is used, ensuring positivity of the resulting solutions. The integration
error can be evaluated be refining the discretization.

We exploit a similar iterative procedure to evaluate the sensitivity of the DASP model. As the calculation of
the sensitivities requires the solution for the state, states and sensitivities are evaluated simultaneously. This
bears the advantages that we can reuse several parts of the expressions (28) and (29), e.g. the integrals over
χ. The derivatives of αi(t, a) and βi(t, a) are computed using symbolic differentiation.

Simple label-structured population model: The expressions for solution of the simple LSP models (30)
and the corresponding sensitivity equations (31) is rather simple. Using symbolic expressions for the initial
label distribution p0(x) and the degradation rate k(t), merely integrals of k(t) and its derivative have to be
computed numerically to evaluate the expressions (30) and (31). The remaining parts can be obtained by
symbolic calculations. As in this manuscript only linear and Gompertz decay is considered, even closed-form
solutions for the integrals over k(t) and ∂k(t)/∂θj are available.

1.5.2 Measurement process

Population size: The population size N(t) and its derivative ∂N/∂θj is computed from the solution of the
DASP model and its sensitivity by integration over the age a and subsequent summation over the division
number i. For numerical integration the trapezoidal rule is employed.

Fluorescence distribution: The measured fluorescence distribution pm(ym|t) is given by the convolution
integral (5). This convolution integral can be computed using standard numerical integration methods.

In this study we have chosen a different approach. We assume that the initial distribution of CFSE is a
weighted sum of log-normal distributions,

p0(x) =
L∑
l=1

wl logN (x|µl,0, σ2
l,0), (34)

with weights wl ∈ [0, 1], with
∑L
l=1 wl = 1, location parameter µl,0 and scale parameter σ2

l,0. Additionally, we

assume that the autofluorescence is log-normally distributed pb(yb) = logN (yb|µb, σ2
b ). These assumptions

are in general not limiting as smooth distributions with positive support can be approximated by a sum of
log-normal distributions and autofluorescence levels are known to be often roughly log-normally distributed
(see, e.g., (Hawkins et al., 2007)).
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We proved previously that given (34), the time-dependent distribution of CFSE in the subpopulations i is

p(x|i, t) =
L∑
l=1

wl logN (x|µxi,l(t), σ2
l,0), (35)

with

µxi,l(t) = −i log(γ)−
∫ t

0

k(t̃)dt̃+ µl,0. (36)

This follows from the expression (30) for p(x|i, t) and for details we refer to (Hasenauer, 2013). This property
has been denoted as log-normal invariance. Due to the fact that log-normal distributions are conserved under
the flow of the simple LSP model.

From (35) and (36), we obtain the distribution of CFSE induced fluorescence in the subpopulation for y = cx,

p(y|i, t) =
L∑
l=1

wl logN (y|µi,l(t), σ2
l,0), (37)

with

µi,l(t) = −i log(γ)−
∫ t

0

k(t̃)dt̃+ µl,0 + log(c). (38)

Using this formulation, the convolution integral (5) can be restated as

p(ym|t) =
∑
i∈N0

N(i|t)
N(t)

L∑
l=1

wl

∫
R+

logN (y|µi,l(t), σ2
l,0) logN (y − ym|µb, σ2

b )dy, (39)

with N(i|t) =
∫
R+
n(a, i|t)da denoting the number of cells in subpopulation i at time point t. The cell number

N(i|t) =
∫
R+
n(a, i|t)da is computed using numerical integration with the trapezoidal rule. The convolution

integral of the product of the log-normal distributions is approximated using the method proposed by Fenton
(1960). Fenton’s approximation employs that the sum of log-normally distributed random variables is ap-
proximately log-normally distributed with expectation and variance of the actual distribution. Expectation
and variance of p(y|i, t) and pb(yb) are

Ei,ly (t, θ) = exp

(
µi,l(t) +

σ2
l,0

2

)
, Vari,ly (t, θ) = exp

(
2µi,l(t) + σ2

l,0

) (
exp

(
σ2
l,0

)
− 1
)
, (40)

and

Eyb = exp

(
µb +

σ2
b

2

)
, Varyb = exp

(
2µb + σ2

b

) (
exp

(
σ2
b

)
− 1
)
, (41)

respectively. Accordingly, expectation and variance of the actual distribution of the sum are

Ei,lym(t) = Ei,ly (t) + Eyb , Vari,lym(t) = Vari,ly (t) + Varyb . (42)

The log-normal distribution with this expectation and variance possesses the location parameter

µ̂ym,i,l(t) = log(Ei,lym(t))− 1

2
log

 Vari,lym(t)(
Ei,lym(t)

)2 + 1

 (43)

and the scale parameter

σ̂2
ym,i,l(t) = log

 Vari,lym(t)(
Ei,lym(t)

)2 + 1

 , (44)

yielding the approximation∫
R+

logN (y|µi,l(t), σ2
l,0) logN (y − ym|µb, σ2

b )dy ≈ logN (ym|µ̂ym,i,l(t), σ̂2
ym,i,l(t)). (45)
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This approximation of the individual convolution integrals in (39) yields the overall fluorescence distribution

p(ym|t) ≈
∑
i∈N0

N(i|t)
N(t)

L∑
l=1

wl logN (ym|µ̂ym,i,l(t), σ̂2
ym,i,l(t)), (46)

While this is an approximation, our studies revealed that it is in general very accurate. Indeed, it is often
more than a rough numerical integration. For an evaluation of Fenton’s approximation and a comparison to
alternative approximation we refer to Kapraun (2014).

The sensitivity of the approximate fluorescence distribution (47) is obtained by differentiation,

∂p(ym|t)
∂θj

≈
∑
i∈N0

1

N(t)2

(
∂N(i|t)
∂θj

N(t)−N(i|t)∂N(t)

∂θj

) L∑
l=1

wl logN (ym|µ̂ym,i,l(t), σ̂2
ym,i,l(t))

+
∑
i∈N0

N(i|t)
N(t)

L∑
l=1

logN (ym|µ̂ym,i,l(t), σ̂2
ym,i,l(t)) ·

(
∂wl
∂θj

+ wl
log ym − µ̂ym,i,l(t)

σ̂2
ym,i,l

(t)

∂µ̂ym,i,l(t)

∂θj

+wl

(
(log ym − µ̂ym,i,l(t))2

σ̂3
ym,i,l

(t)
− 1

σ̂ym,i,l(t)

)
∂σ̂ym,i,l(t)

∂θj

)
(47)

The derivative ∂N(i|t)/∂θj is computed by integration ∂n(a, i|t)/∂θj with respect to age a and the derivative
∂N(t)/∂θj is discussed above. The weights wl are parameters and their derivatives ∂wl/∂θj can be computed
directly. To compute the derivatives of µ̂ym,i,l(t) and σ̂ym,i,l(t), we differentiate (43) and (44). The resulting
expression can be evaluated analytically in the case of linear and Gompertz decay.

1.5.3 Implementation

All steps of the numerical evaluation are implemented in MATLAB (version R2013b).

2 Parameter Estimation and Model Selection

In this section, we outline the parameter estimation and model selection methods used in this study. Among
others, we introduce the likelihood function and its gradient, optimisation using multi-start and particle-
swarm methods and uncertainty analysis using profile likelihoods and Markov chain Monte Carlo sampling.

2.1 Likelihood function

2.1.1 Noise models

Data for CFSE proliferation assays are collected using cell counting and flow cytometry. Cell counting provides
the overall population size. In this study we assume that the counting data are corrupted by multiplicative,
log-normally distributed measurement noise. After log-transformation we obtain

log N̄k = logN(tk) + ε, with ε ∼ N (0, σ2
noise,N ). (48)

Assuming independence of time points, we obtain the likelihood function

P
(
{N̄k}Kk=1|θ

)
=

K∏
k=1

P
(
N̄k|θ

)
=

K∏
k=1

N (log N̄k| logN(tk), σ2
noise,N ), (49)

in which the predicted cell number N(tk) depends implicitly on the parameters θ.

Flow cytometry measurements provide information about the fluorescence of individual cells. As cytometry
data are mostly binned into finite many intervals the data possess a limited resolution and are usually
presented as histograms. For each bin, j = 1, . . . , J , and time point tk, k = 1, . . . ,K, the number of cells
with measured fluorescence intensities between the lower bound ξj,lb and upper bound ξj,ub of the j-th

histogram bin is denoted by H̄j
k. The likelihood of observing a particular histogram {H̄j

k}Jj=1 follows a
multinomial distribution (Merran et al., 2000),

P
(
{H̄j

k}
J
j=1|θ

)
=

(∑J
j=1 H̄

j
k

)
!∏J

j=1 H̄
j
k!

J∏
j=1

(p(xm,k ∈ Ij |θ))H̄
j
k , (50)

9



with p(xm,k ∈ Ij |θ) denoting the probability of observing a cell at time point tk a cell with fluorescence
xm,k ∈ Ij = (ξj,lb, ξj,ub]. This likelihood function for cytometry data has been introduced simultaneously by
Thompson (2012) and ourselves (Hasenauer et al., 2011).

In the absence of outliers, the probability p(ym ∈ Ij |tk) is the integral of p(ym|tk) over Ij . In the presence of
outliers, we obtain

p(ym ∈ Ij |tk) =

∫ ξj,ub

ξj,lb

((1− woutliers)p(ym|tk) + woutliers poutliers(ym)) dym, (51)

= (1− woutliers)

∫ ξj,ub

ξj,lb

p(ym|tk)dym + woutliers

∫ ξj,ub

ξj,lb

poutliers(ym)dym, (52)

in which woutliers denotes the probability that a measurement is an outlier and poutliers(ym) denote the
distribution of outliers. As the outlier distribution is in general unknown, we assume it to be a uniform
distribution between lower and upper bound, ξ1,lb and ξJ,ub. The outlier probability woutliers can either be
estimated from the data or chosen beforehand. Note that according to this outlier model, with a probability
of woutliers any value can be observed.

Given the likelihood function P
(
{H̄j

k}Jj=1|θ
)

, the distribution of bin counts can be assessed as each individual

bin H̄j
k is binomially distributed,

H̄j
k ∼ bino

 J∑
j=1

H̄j
k, p(ym ∈ Ij |tk)

 . (53)

This can be used to determine confidence intervals for the respective measurements. The 100(1 − α)%
confidence interval for the measured histogram counts is

CIα(H̄j
k) =

binoinv
(α

2

∣∣∣ J∑
j=1

H̄j
k, p(ym ∈ Ij |tk)

 ,binoinv
(

1− α

2

∣∣∣ J∑
j=1

H̄j
k, p(ym ∈ Ij |tk)

 , (54)

in which ‘binoinv’ denotes the inverse of the binomial cumulative distribution function.

2.1.2 Likelihood function

To estimate the model parameters from measurements of the overall population size and binned snapshot
data, D = {{H̄j

k}Jj=1, N̄k}Kk=1, we use the likelihood function

P(D|θ) =
K∏
k=1

P({H̄j
k}
J
j=1|θ)P(N̄k|θ). (55)

This likelihood function assumes independence of the measurement noise, which should in general be fulfilled.
For optimisation and sampling we will in the following use the log-likelihood functions,

logP(D|θ) =
K∑
k=1

logP({H̄j
k}
J
j=1|θ) +

K∑
k=1

logP(N̄k|θ), (56)

with

logP
(
N̄k|θ

)
= −1

2

(
log(2πσ2

noise,N ) +
(log N̄k − logN(tk))2

σ2
noise,N

)
, (57)

logP
(
{H̄j

k}
J
j=1|θ

)
=

∑J
j=1 H̄

j
k∑

n=1

log k −
J∑
j=1

H̄jk∑
k=1

log k +
J∑
j=1

H̄j
k log p(ym ∈ Ij |tk). (58)

The log-likelihood facilitates a more robust numerical evaluation. Furthermore, it is more suited for optimi-
sations due to improved curvature characteristics.

The model properties on which the likelihood depends are the parameter-dependent population size N(t) and
the parameter-dependent bin probabilities p(ym ∈ Ij |tk). The calculation of the former has been addressed
in Section 1. The probability p(ym ∈ Ij |tk) is computed using expression (47). Numerical integration yields
directly the first term in (52). The second term of (52) is evaluated analytically using the analytical formulae
of the outlier distribution.

For a detailed discussion of similar likelihood functions we refer to Hasenauer (2013).
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2.1.3 Gradient of likelihood function

For efficient local optimisation, the gradient of the log-likelihood function is required. This gradient is

∂ logP(D|θ)
∂θj

=
K∑
k=1

∂ logP({H̄j
tk
}Jj=1|θ)

∂θj
+

K∑
k=1

∂ logP(N̄k|θ)
∂θj

, (59)

with

∂ logP
(
N̄k|θ

)
∂θj

=
1

2

1

σ2
noise,N

(
(log N̄k − logN(tk))2

σ2
noise,N

− 1

)
∂σ2

noise,N

∂θj
+

log N̄k − logN(tk)

N(tk)σ2
noise,N

∂N(tk)

∂θj
,

(60)

∂ logP
(
{H̄j

k}Jj=1|θ
)

∂θj
=

J∑
j=1

H̄j
k

p(ym ∈ Ij |tk)

∂p(ym ∈ Ij |tk)

∂θj
. (61)

The calculation of the derivative ∂N(tk)/∂θj is discussed in Section 1.2.2. To calculate ∂p(ym ∈ Ij |tk)/∂θj ,
we differentiate (52) with respect to θj . This yields

∂p(ym ∈ Ij |tk)

∂θj
= + (1− woutliers)

∫ ξj,ub

ξj,lb

∂p(ym|tk)

∂θj
dym + woutliers

∫ ξj,ub

ξj,lb

∂poutliers(ym)

∂θj
dym

− ∂woutliers

∂θj

(∫ ξj,ub

ξb,lb

p(ym|tk)dym −
∫ ξj,ub

ξj,lb

poutliers(ym)dym

)
.

(62)

We computed the different integrals in this work using the trapezoidal rule, thereby ensuring positivity of the
numerically calculated probabilities. Alternatively, the integrals over p(ym|tk) and its derivative might be
computed by exploiting the fact that it is a log-normal distribution and the cumulative distribution function
is known. Similarly, for poutliers(ym) and its derivative also analytical formulas might be available.

2.2 Optimisation

To estimate the parameters of the DALSP model from experimental data, we solve the maximum likelihood
estimation problem

θ = arg max
θ∈Ω

P(D|θ)

by minimizing the negative log-likelihood function (55),

θ = arg min
θ∈Ω
{J (θ) := − logP(D|θ)} .

The optima of both optimisation problems coincide, the use of the negative log-likelihood function is numer-
ically however often advantageous. The search domain is the hypercube Ω = {θ ∈ Rnθ |θmin ≤ θ ≤ θmax}.
The negative log-likelihood function J can possess local minima, therefore, we exploit global optimisation
methods.

2.2.1 Multi-start local optimisation

The most simplistic global optimisation method is a multi-start local optimisation approach. This approach
achieves global exploration by initializing (deterministic) local optimisers at many different starting points.

In this study, the starting points for the local optimisations were generated using latin hypercube sampling.
Local optimisation was performed using the interior point algorithm implemented in the MATLAB function
fmincon.m. To facilitate good convergence we set function tolerances (TolFun) and parameter tolerances
(TolX) to 10−9. Furthermore, we increased the maximum number of iterations (MaxIter) to 103 and the
maximum number of function evaluations (MaxFunEvals) to 103 × nθ, in which nθ denotes the number of
parameters of the considered model. If the gradient of the negative log-likelihood function J was computed,
we set GradObj to on. Otherwise, fmincon.m internally computes a finite difference approximations of the
gradient.

The multi-start implementation is implemented in our in-house Parameter EStimation TOolbx (PESTO).
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2.3 Particle swarm optimisation

In addition to multi-start local optimisation methods we considered the particle swarm optimisation method
implemented in the MATLB toolbox PSwarm (Vaz & Vicente, 2007). We have chosen PSwarm as the imple-
mented global optimisation method proved effective for a variety of optimisation problems. It outperformed
other global optimisers in a series of tests (Vaz & Vicente, 2007).

For our evaluation we used a population size (options.Size) of 10×nθ and a maximum number of function
evaluations (options.MaxObj) of either 103 × nθ or 104 × nθ. To ensure that the number of iterations was
not limiting, we set the maximum number of function evaluations (options.MaxIter) to the same values
as the maximum number of function evaluations (options.MaxObj). All value were higher than the default
setting to improve the convergence of the optimiser.

2.4 Comparison of optimisers

We compared the performance of optimisers in terms of the computation time per ‘converged start’. Unlike
many other publications, we exploit a statistical definition for ‘converged start’. We call a start converged if
it cannot be rejected compared to the best result. For this hypothesis testing problem we used the likelihood
ratio test. Accordingly, a start was converged to significance level α if the inequality

logP(D|θ) > logP(D|θglobal)−
∆α

2
, (63)

holds. Here θ was the result of the current optimisation run, θglobal was the best available estimate and ∆α is
the 100(1−α)th percentile of the χ2-distribution with one degree of freedom. The average computation time
per converged start teffective is the overall computation time for all starts divided by the number of converged
starts,

teffective =
overall computation time for all starts

# number converged starts
. (64)

2.5 Uncertainty analysis

Parameter uncertainties can be assessed using Bayesian and frequentist methodologies. In this study, we
combined both approaches to ensure reliability of our results (Hug et al., 2013; Raue et al., 2013).

2.5.1 Profile likelihood calculation

To compute parameter confidence intervals profile likelihoods, a frequentist methodology, can be used. The
profile likelihood for parameter θi is the maximal feasible value of the likelihood function for a given value
of θi (Murphy & van der Vaart, 2000). Mathematically, the profile likelihood is defined by a constrained
optimisation problem for each value of θi,

PLi(θi) = arg max
θ̄∈Ω
θ̄i=θi

P(D|θ̄). (65)

For the profile likelihood calculation we employed sequential local optimisation. Starting at the optimum,
the parameter θi was slightly increased or decreased and the remaining parameters were optimised using the
MATLAB function fmincon.m with the aforementioned settings. This procedure was repeated until the full
profile likelihood was calculated. Parameter confidence intervals were then derived from the profile likelihood
PLi(θi) using significance cut-offs determined using the likelihood ratio test. For further details we refer to
(Raue et al., 2009).

The profile likelihood calculation method we used is implemented in PESTO and similar to other available
codes (Hug et al., 2013; Raue et al., 2009, 2015).

2.5.2 Markov chain Monte-Carlo sampling

Bayesian uncertainty analysis relies on Bayes’ theorem,

π(θ|D) =
P(D|θ)π(θ)

P(D)
. (66)
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Bayes’ theorem states that the posterior probability density π(θ|D) is the product of the likelihood P(D|θ) and
the prior probability density π(θ) divided by the marginal probability P(D) =

∫
P(D|θ)π(θ)dθ. Accordingly,

besides the data it can account for prior information

In this study, we use a simple uniform prior in Ω. The resulting posterior distribution was sampled us-
ing the delayed rejection adaptive Metropolis Hastings algorithm implemented in the MATLAB toolbox
DRAM (Haario et al., 2006) which is called using PESTO. DRAM is a self-tuning Markov chain Monte-Carlo
(MCMC) sampler which provided good convergence properties. Convergence after burn-in was assessed us-
ing the Geweke test. The parameter chain {θ(l)}l obtained using DRAM can be used to analyse parameter
uncertainties as well as uncertainties of functions g(θ) of the parameters. To assess the latter, samples from
the distribution p(g|D) =

∫
g(θ)p(θ|D)dθ are generated by evaluating g for a representative parameter sam-

ple {θ(l)}l. This is possible for any function g including, e.g., functions which require the simulation of the
DALSP model.

3 Application

We exploit the DALSP model to quantify CFSE proliferation data presented by Luzyanina et al. (2007a). We
used Data Set 2, which has also been analysed in other publications (see, e.g., Banks et al. (2011); Luzyanina
et al. (2007b)) and is therefore well suited for the evaluation and comparison of our approach.

In this study, an ensemble of DASLP models is used to study the CFSE data collected on days 1-5. As a cell
loss might have occurred between day 0 and day 1 (Luzyanina et al., 2007b), experimental data for day 0 are
disregarded and day 1 is considered as starting point for the analysis.

In the following, we shortly describe the setup and report the findings.

3.1 Lower and upper bounds of model parameters

For this study, we used the parameter bounds which are reported in Table 1. These lower and upper bounds
have been chosen based on the following considerations:

Division rates: From day 1 to day 5 the number of cells increases roughly by a factor of 6. Assuming
exponential growth, αi(a) = kα, without cell loss, βi(a) = 0, this implies kα = log(6)/4 ≈ 0.45 d−1. This
provides a rough scale for kα and kα,i. As this value might however be far off, lower bounds of 10−6 d−1 and
upper bounds of 103 d−1 are used for kα and kα,i. These bounds are more than two orders of magnitude
away from the simple estimate.

For the Hill exponent, nα, and the Hill coefficient, Kα, lower and upper bounds of 10−6 d and 102 d are used.
This range of eight orders of magnitude allows for division rates which are almost constant (Kα � 1 d or
nα � 1), far from saturation (Kα � 1 d) and step-like (nα � 1).

Death rates: Bounds for the death rates are difficult to assess from the data. Therefore, we used the same
bounds for kβ , kβ,i, Kβ and nβ as for the corresponding parameters of the proliferation rates. These bounds
allow for scenarios without cell death (kα, kα,i � 1), constant rates of cell death (Kβ � 1 d or nβ � 1) and
a well defined survival time (nα � 1).

Label degradation: For the parameters kdeg and cdeg, lower bounds of 10−4 d−1 and upper bounds of
100 d−1 are used. For kdeg = 1 d−1 and cdeg = 10−4 d−1, more than 98% of the label are degraded from day 1
to day 5. For kdeg = 10−4 d−1 and cdeg = 1 d−1, less than 0.1% of the label is degraded from day 1 to day 5.
Accordingly, these lower and upper bounds allow for a spectrum of label properties, ranging from fast label
degradation to high label stability.

Background fluorescence: The background fluorescence is assumed to be log-normally distributed with
location parameter, µnoise, and scale parameter, σnoise,

pb(yb) =
1√

2πσnoiseyb
exp

{
−1

2

(
log(yb)− µnoise

σnoise

)2
}
. (67)
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Supplement Table 1: Nominal values, lower bounds, upper bounds and units for the model parameters. The
nominal values are only used for model parameters which are not fitted.

Parameter Nominal value Lower bound Upper bound Unit Fitted

division rates

kα - 10−6 103 d−1 yes
kα,i - 10−6 103 d−1 yes
Kα - 10−6 102 d yes
nα - 10−6 102 - yes

death rates

kβ - 10−6 103 d−1 yes
kβ,i - 10−6 103 d−1 yes
Kβ - 10−6 102 d yes
nβ - 10−6 102 - yes

label degradation
kdeg - 10−4 100 d−1 yes
cdeg - 10−4 100 d−1 yes

background
µnoise - 0 4 - yes
σnoise - 10−1 101 - yes

initial cell population

N0 - 100 104 cell yes
rx,1 - 10−1 101 - yes
µx,1 - 6 8 - yes
µx,2 - 6 8 - yes
σx,1 - 10−1 100 - yes
σx,2 - 10−1 100 - yes

proportionality const. c 1 - - UFI/UC no

To obtain a plausible regime for these parameters, we fitted the fluorescence distribution on day 5 with a
log-normal distribution, yielding µnoise ≈ 3.5 and σnoise ≈ 0.8. As the fluorescence distribution observed on
day 5 contains a significant portion of label induced fluorescence, wide lower and upper bounds are chosen
which contain the estimates, namely, µnoise ∈ [0, 4] and σnoise ∈ [10−1, 101].

Initial conditions: The initial label distribution is modeled as a weighted sum of two log-normal distri-
butions,

p0(x) =
2∑
j=1

rx,j
1√

2πσx,jx
exp

{
−1

2

(
log(x)− µx,j

σx,j

)2
}
. (68)

A plausible regime for the location parameters µx,j and scale parameter σx,j , with j = 1, 2, was obtained by
fitting the fluorescence distribution of day 1 with a single log-normal distribution assuming the proportionality
constant c = 1 UFI/UC. We obtained a location parameter of ≈ 6.6 and a scale parameter of ≈ 0.4. Based
on this, we chose µx,j ∈ [6, 8] and σx,j ∈ [10−1, 100]. The weighting of the log-normal distributions is rx,1
and rx,2 = (1− rx,1) with rx,1 ∈ [0, 1].

A plausible range for the size of the initial population, N0, was derived from the measurement data. We used
N0 ∈ [100, 104] cell.

3.2 Comparison of optimisation methods

We evaluated three different optimisation methods:

• multi-start local optimisation with sensitivity equations;

• multi-start local optimisation with finite differences; and

• particle swarm optimisation.

For model M1, M2 and M16 we report all results while for the remaining models merely the results for
multi-start local optimisation with sensitivity equations are depicted.

For the model M1 which possessed merely 12 unknown parameters, all these optimisation method provided
reasonable convergence result (Supplement Figure 2A). The highest percentage of converged starts was for

14



model M1 achieved using particle swarm optimisations. The highest computational efficiency, measured
in run time per start (Supplement Figure 2B) as well as in average computation time per converged start
(Supplement Figure 2C), is attained using multi-start local optimisation with sensitivity equations.

As the dimensionality of the parameter space increased, the convergence of all methods suffered. Particle
swarm optimisation did not yield a single converged start for modelM16 (Supplement Figure 2D). For multi-
start local optimisation with sensitivity equations and finite differences we still observed convergence and
merely the number of converged starts was reduced (Figure 3A and Supplement Figure 2D). This indicated
that the particle swarm optimisation implemented in PSwarm scales significantly worse with the number of
parameters than simple gradient-based optimisation methods.

For all models multi-start local optimisation with sensitivity equations achieved the best objective function
value (see zooms in Figure 3A and Supplement Figure 2A,D). Furthermore, the average computation time
per converged start, which is in our opinion the most important performance measured for a global optimiser,
was at least 10-fold lower than for the other methods (Figure 3B and Supplement Figure 2C,F).

3.3 Multi-start local optimisation with forward sensitivity equation

As multi-start local optimisation with sensitivity equations yielded the best convergence and the highest
computational efficiency, this methods has been used to optimise the remaining models, M3 to M15. The
optimisation results for all models are depicted in Supplement Figure 3. As reference the relative difference
to the likelihood of the most general model, M16, is shown. The y-axis in Supplement Figure 3 indicated
p(D|θ(16),M16)− p(D|θ(m),Mm) + 1. Note that we added the one toe allow for visualization in log-space.

Our analysis of the optimisation results indicated reproducibility of the results. For a few models, the global
optimum was however found only a few times. The best fits of the individual models to the data are depicted
in Supplement Figure 4 and 5.

3.4 Profile likelihood and Bayesian uncertainty analysis

For the models M1, M2 and M16 the parameter uncertainties were assessed. Therefore, we used profile
likelihoods as well as samples from the posterior distribution. While the profile likelihoods were computed
using PESTO, the MCMC samples were obtained using DRAM. As no convergence has been observed for
random initial conditions, we started the sampling at the maximum likelihood estimate computed using
multi-start local optimisation. In this case a burn-in of 2 · 104 samples and a sample size of 105 was sufficient
for model M1 and M2 to achieve Geweke values > 0.9. For model M16 we used a burn-in of 1.5 · 105

samples and sampled 3.5 · 105 points, yielding Geweke values > 0.85. The slower convergence of DRAM for
model M16 is probably related to the increased dimensionality of the parameter space and the parameter
non-identifiabilities. A visualization of the chains is provided in Supplement Figure 6.

The profiles and sampling results for the models M1, M2 and M16 are depicted in Supplement Figure 7, 8
and 9. It is apparent that likelihood profiles and marginals of the MCMC samples agree well, indicating
reliability of the results. The study of the scatter plot matrices depicted in Supplement Figure 10, 11 and 12
revealed parameter correlations. The path of the profile likelihood seemed to be roughly aligned with the
main axis of the MCMC samples.

3.5 Division number-dependence of the rates of cell division

The model selection revealed that the age-dependence of the rates of cell division is most important for a
good description of the experimental data. Second most important is the division number-dependence of the
rate of cell division. As previous modelling (Banks et al., 2014, 2015, 2013; Kapraun, 2014) and experimental
work (Gett & Hodgkin, 2000) reported that the difference in the rates of cell division between the 0th-
subpopulation (= no divisions) and the remaining subpopulations are most pronounced, we considered the
model M2/4 with

αi(a) =

{
kα,0a

nα

Knα
α +anα

for i = 0
kα,1a

nα

Knα
α +anα

otherwise,
(69)

and ∀i ≥ 0 : βi(a) = kβ . Model M2/4 is an intermediate between model M2 (age-dependent rate of cell
division) and model M4 (division number- and age-dependent rate of cell division).

Model M2/4 was fitted to the experimental data using multi-start local optimisation with sensitivity equa-
tions, yielding an BIC value of 2.994 × 104. The comparison of the BIC values for models M2, M2/4 and
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M4:

• BIC for M2: 3.058× 104

• BIC for M2/4: 2.994× 104

• BIC for M4: 2.974× 104

reveals that
3.058× 104 − 2.994× 104

3.058× 104 − 2.974× 104
= 76.2% (70)

of the improvement in the BIC value from M2 to M4 can be achieved by allowing different values of kα,i
for the 0th-subpopulation and the remaining subpopulations. The fit of the models M2, M2/4 and M4 is
depicted in Supplement Figure 13.
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Supplement Figure 2: Performance of different optimisation methods for (A, B, C) model M1 and (D,
E, F) model M16. (A, D) Negative log-likelihoods for 250 runs of deterministic local and global optimisers
and 250 randomly samples parameter values. Missing points indicate failed objective function evaluations
and optimisation runs. The dashed line indicates the significance threshold for converged starts. (B, E) Box
plot of the computation time per optimisation run. (C, F) Average computation time per converged start.
In (F) the average computation time per converged start of particle swarm optimisation is missing as not a
single start converged.
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Supplement Figure 3: Result of multi-start local optimisation with forward sensitivity equation models M1

toM16. The individual subplots depict the negative log-likelihood values achieved after optimising from 250
different starting points, sorted in decreasing order, in comparison to the best result achieved using model
M16. The local optimisation identified for most models suboptimal solutions (plateaus in the plots), as well
as other stopping points. For all models the optimum seems to have been found several times.
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Supplement Figure 4: Comparison of (A, left) measured CFSE distributions and (A, right) measured overall
cell counts with the best fits of model (B)M1, (C)M2, (D)M3, (E)M4, (F)M5, (G)M6, (H)M7 and
(I) M8. The region in between the fine black lines (==) indicates the 90% confidence interval (5-th to 95-th
percentile) of the bin counts for the particular number of measured cells for the optimal parameters. For a
plausible model most data should be contained in the confidence intervals.
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Supplement Figure 5: Comparison of (A, left) measured CFSE distributions and (A, right) measured overall
cell counts with the best fits of model (B)M9, (C)M10, (D)M11, (E)M12, (F)M13, (G)M14, (H)M15

and (I) M16. The region in between the fine black lines (==) indicates the 90% confidence interval (5-th to
95-th percentile) of the bin counts for the particular number of measured cells for the optimal parameters.
For a plausible model most data should be contained in the confidence intervals.
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Supplement Figure 7: Parameter uncertainties for model M1. The maximum likelihood estimate (◦), the
profile likelihoods (—) and the histograms of the MCMC samples (�) are indicated. To handle the symmetry
of (rx,1, µx,1, σx,1) and (rx,2 = 1− rx,1, µx,2, σx,2), the estimation results are transformed such that rx,1 < 0.5
for all parameter vectors.
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Supplement Figure 8: Parameter uncertainties for model M2. The maximum likelihood estimate (◦), the
profile likelihoods (—) and the histograms of the MCMC samples (�) are indicated. To handle the symmetry
of (rx,1, µx,1, σx,1) and (rx,2 = 1− rx,1, µx,2, σx,2), the estimation results are transformed such that rx,1 < 0.5
for all parameter vectors.
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Supplement Figure 9: Parameter uncertainties for model M16. The maximum likelihood estimate (◦), the
profile likelihoods (—) and the histograms of the MCMC samples (�) are indicated. To handle the symmetry
of (rx,1, µx,1, σx,1) and (rx,2 = 1− rx,1, µx,2, σx,2), the estimation results are transformed such that rx,1 < 0.5
for all parameter vectors.
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Supplement Figure 10: Correlation of parameter estimates for model M1. The scatterplot matrix for the
MCMC samples (·) are depicted. The maximum likelihood estimate (◦) and the profile likelihoods with
respect to the parameter in the x-axis (light red line, —) and y-axis (dark red line, —) are indicated. To
handle the symmetry of (rx,1, µx,1, σx,1) and (rx,2 = 1−rx,1, µx,2, σx,2), the estimation results are transformed
such that rx,1 < 0.5 for all parameter vectors.
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Supplement Figure 11: Correlation of parameter estimates for model M2. The scatterplot matrix for the
MCMC samples (·) are depicted. The maximum likelihood estimate (◦) and the profile likelihoods with
respect to the parameter in the x-axis (light red line, —) and y-axis (dark red line, —) are indicated. To
handle the symmetry of (rx,1, µx,1, σx,1) and (rx,2 = 1−rx,1, µx,2, σx,2), the estimation results are transformed
such that rx,1 < 0.5 for all parameter vectors.
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Supplement Figure 12: Correlation of parameter estimates for model M16. The scatterplot matrix for the
MCMC samples (·) are depicted. The maximum likelihood estimate (◦) and the profile likelihoods with
respect to the parameter in the x-axis (light red line, —) and y-axis (dark red line, —) are indicated. To
handle the symmetry of (rx,1, µx,1, σx,1) and (rx,2 = 1−rx,1, µx,2, σx,2), the estimation results are transformed
such that rx,1 < 0.5 for all parameter vectors.
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Supplement Figure 13: Comparison of (A, left) measured CFSE distributions and (A, right) measured overall
cell counts with the best fits of model (B)M2, (C)M2/4, and (D)M4. The region in between the fine black
lines (==) indicates the 90% confidence interval (5-th to 95-th percentile) of the bin counts for the particular
number of measured cells for the optimal parameters. For a plausible model most data should be contained
in the confidence intervals.

27


	Modeling of CFSE proliferation assay
	Model
	Proliferation dynamics
	Measurement process

	Sensitivity equation
	Proliferation dynamics
	Measurement process

	Decomposition of solution
	Model
	Sensitivity equation

	Analytical results
	Division- and age-structured population model
	Simple label-structured population model

	Numerical evaluation
	Proliferation dynamics
	Measurement process
	Implementation


	Parameter Estimation and Model Selection
	Likelihood function
	Noise models
	Likelihood function
	Gradient of likelihood function

	Optimisation
	Multi-start local optimisation

	Particle swarm optimisation
	Comparison of optimisers
	Uncertainty analysis
	Profile likelihood calculation
	Markov chain Monte-Carlo sampling


	Application
	Lower and upper bounds of model parameters
	Comparison of optimisation methods
	Multi-start local optimisation with forward sensitivity equation
	Profile likelihood and Bayesian uncertainty analysis
	Division number-dependence of the rates of cell division


