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1 Abstract

Motivation: In vitro and in vivo cell proliferation is often studied using the dye Carboxyflu-
orescein succinimidyl ester (CFSE). The CFSE time-series data provides information about
the proliferation history of populations of cells. While the experimental procedures are well
established and widely used, the analysis of CFSE time-series data is still challenging. Many
available analysis tools do not account for cell age and employ optimisation methods which
are inefficient (or even unreliable).
Results: We present a new model-based analysis method for CFSE time-series data. This
method uses a flexible description of proliferating cell populations, namely, a division-, age-
and label-structured population model. Efficient maximum likelihood and Bayesian estima-
tion algorithms are introduced to infer the model parameters and their uncertainties. These
methods exploit the forward sensitivity equations of the underlying partial differential equa-
tion model for efficient and accurate gradient calculation, thereby improving computational
efficiency and reliability compared to alternative approaches and accelerating uncertainty
analysis. The performance of the method is assessed by studying a dataset for immune cell
proliferation. This revealed the importance of different factors on the proliferation rates of
individual cells. Among others, the predominate effect of the cell-age on the division rate is
found which was not revealed by available computational methods.
Availability: The MATLAB source code implementing the models and algorithms is avail-
able from http://janhasenauer.github.io/ShAPE-DALSP/.
Contact: jan.hasenauer@helmholtz-muenchen.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1

http://janhasenauer.github.io/ShAPE-DALSP/
jan.hasenauer@helmholtz-muenchen.de


2 Introduction

Proliferation is essential in many biological processes, ranging from development to wound
healing, immune response and stem cell renewal. Due to this eminent role, a key challenge in
cell biology is to quantify proliferation dynamics. Nowadays there are different experimental
methods available to assess cell proliferation, e.g., time-lapse microscopy (Schroeder, 2011)
and proliferation assays based upon Carboxyfluorescein succinimidyl ester (CFSE) labeling
(Lyons and Parish, 1994). While time-lapse microscopy is highly informative, it is difficult to
apply in vivo. CFSE-based proliferation assays can be employed in vivo and in vitro but the
data analysis is more intricate and no single-cell time courses are available.

To study proliferation using CFSE, cells are incubated with carboxyfluorescein diacetate
succinimidyl ester (CFDA-SE). CFDA-SE can diffuse across the cell membrane and once in
the cytoplasm is converted to CFSE, which binds covalently to intracellular proteins. CFSE
is a fluorescent dye and its concentration is reduced by protein degradation as well as cell
division. During cell division, CFSE is distributed approximately equally among daughter
cells (Lyons and Parish, 1994), hence, proliferation results in a progressive dilution of the dye
(Figure 1A) which can be recorded using flow cytometry. As the individual cells do not, in
general, divide with the same rates, an initially uni-modal distribution (Figure 1B) becomes
multi-modal as time progresses (Figure 1C). The modes are related to different numbers
of cell divisions (Hawkins et al., 2007a); however, often the cells with different numbers of
divisions are not strictly separated. For this reason, the calculation of the number of cells
with a certain division number using peak detection and deconvolution methods (Hawkins
et al., 2007a; Luzyanina et al., 2007a) is error-prone. Furthermore, even knowledge about the
number of cells with a particular division number does not enable the comparison of different
hypotheses regarding, e.g., the proliferation rates.

The need for quantitative data analysis and hypothesis testing inspired the development of
a multitude of model-based approaches. Nowadays, age-structured population (ASP) models
(Bernard et al., 2003; Hawkins et al., 2007b), division-structured population (DSP) models (De
Boer et al., 2006), label-structured population (LSP) models (Banks et al., 2010; Luzyanina
et al., 2007b), age- and division-structured population (ADSP) models (Hawkins et al., 2007b),
and division- and label-structured population (DLSP) models (Hasenauer et al., 2012; Schittler
et al., 2011) are used to study CFSE data. These classes of population balance models account
for up to two properties of individual cells:

• number of divisions i (→ DSP and DLSP model)

• CFSE concentration x (→ LSP and DLSP model)

• cell’s age a (→ ASP and ADSP model)

and are mostly written as systems of ordinary differential equations (ODEs) or partial dif-
ferential equations (PDEs). Population balance models which account for the cell age – the
time passed since cell division –, i.e., ASP and ADSP, can also be formulated as sets of nested
integrals (De Boer and Perelson, 2013). This alternative formulation is employed for the
Smith-Martin model (Smith and Martin, 1973) and the cyton model (Hawkins et al., 2007b).
For the Smith-Martin model and the cyton model (with progression fraction equal to zero),
equivalent PDE formulations are available (Bernard et al., 2003; De Boer and Perelson, 2013).
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Figure 1: Illustration of proliferation assay showing (A) one labeled cell and its descendants,
(B) the frequency of different CFSE concentration in the cell population at t = 0, and (C)
the frequency of different CFSE concentration in the cell population at t = T . Shades from
dark to light gray correspond to high and low CFSE concentration, respectively.

For a comprehensive introduction to structured population models, we refer to the review by
De Boer and Perelson (2013).

As the population models available in the literature did not capture the complexity of the
process, we recently introduced the division-, age- and label-structured population (DALSP)
model (Metzger et al., 2012). The DALSP model, a system of coupled partial differential
equations (PDEs), provides a flexible description of proliferation dynamics (Metzger et al.,
2012), but it has never been used to analyse CFSE data. Accordingly, no parameter estima-
tion, model selection and uncertainty analysis methods have been available for this type of
model until now.

In this manuscript, we introduce methods to infer the parameters of DALSP models from
CFSE distribution time-series data and to assess the dependency of the proliferation rates on
factors such as the cell age. For this we introduce a statistical model linking predictions of
the DALSP model to measured CFSE data and formulate the corresponding inverse problem.
As the optimisation problem is nonlinear, we compare different optimisation procedures. Fur-
thermore, we implement the first identifiability and uncertainty analysis methods for DALSP
models. Combined with model selection methods, these methods facilitate an in-depth anal-
ysis of CFSE time-series data, which we illustrate for a published dataset.

3 Methods

To analyse CFSE data, we combine mechanistic and statistical models of the biological process
and the measurement process. In the following we present the different ingredients as well
as the inference methods. A more detailed description is provided in the Supplementary
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Information.

Notation: We denote the set of non-negative real numbers by R+ := [0,∞) and the set of
natural numbers with zero by N0 := {0, 1, 2, . . .}. The units used in the following equations
are number of cells (cells), unit of concentration (UC), unit of fluorescence intensity (UFI)
and unit of time (UT). For simplicity, we assume that age and time are measured in the same
units, generalizations are straight forward.

3.1 DALSP model

The state variable of the DALSP model is the joint number density of age, label concentration
and cell division number, n(a, x, i|t) (in cells/UC/UT). Its dynamics are governed by a system
of coupled 2-dimensional PDEs,

∂n(a, x, i|t)
∂t

+
∂n(a, x, i|t)

∂a
+
∂(ν(t, x)n(a, x, i|t))

∂x
= − (αi(t, a) + βi(t, a))n(a, x, i|t)

(1)

with initial conditions (ICs)

i = 0 : n(a, x, 0|0) ≡ n0(a)p0(x),

∀i ≥ 1 : n(a, x, i|0) ≡ 0,
(2)

and boundary conditions (BCs)

i = 0 : n(0, x, 0|t) ≡ 0,

i ≥ 1 : n(0, x, i|t) ≡ 4

∫
R+

αi−1(t, a)n(a, 2x, i− 1|t)da. (3)

The i-th PDE describes the dynamics of cells with i divisions. The factorization of the
initial condition, n(a, x, 0|0) ≡ n0(a)p0(x), in initial age distribution n0(a) (in cells/UT) and
initial label density p0(x) (in 1/UC), is biologically plausible as the labeling efficiency should
not depend on the cell age. This factorization will allow for an efficient numerical solution
algorithm.

In (1)-(3), αi(t, a) and βi(t, a) denote the rates (in 1/UT) of cell division and cell death for
cells with i divisions. The rate of cellular label degradation is denoted by ν(t, x) = −k(t)x (in
1/UT), with rate constant k(t) (in 1/UT/UC). Accordingly, the following terms contribute
to the temporal change of the density n(a, x, i|t):

• ∂(ν(t, x)n(a, x, i|t))/∂x, change of label x with rate ν(t, x),

• ∂(n(a, x, i|t))/∂a, increase of cell age a, and

• − (αi(t, a) + βi(t, a))n(a, x, i|t), loss of cells from the i-th subpopulation due to cell
division and due to cell death,

and possess units cells/UC/UT2. The loss of cells from the (i − 1)-th subpopulation due to
cell division results in the birth of cells in the i-th subpopulation with age a = 0, defining the
BCs (3). The BCs are obtained by integrating αi−1(t, a)n(a, 2x, i− 1|t) over the age. As the
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cells double (factor 2) and the label distribution is rescaled due to the halving of the label
concentration (factor 2), this integral is multiplied by a factor 4.

The rates as well as the initial conditions are usually unknown and have to be estimated
from experimental data. Therefore, rates and initial conditions are parameterized in terms of
a parameter vector θ ∈ Rnθ (see Results section). For a more detailed statement of the model
we refer to the Supplementary Information, Section 1.1.1.

3.2 Modeled and measured quantities

The number density n(a, x, i|t) encodes the properties of the proliferating cell population. By
marginalizing n(a, x, i|t) over all cell ages and label concentrations, the number of cells which
underwent i divisions,

N(i|t) =

∫
R+

∫
R+

n(a, x, i|t)dxda,

is obtained. The subsequent summation over the division number i yields the overall number
of cells, N(t) =

∑
i∈N0

N(i|t). Marginalization over label concentrations and division number
and subsequent normalization with the number of cells yields the age distribution,

p(a|t) =
1

N(t)

∑
i∈N0

∫
R+

n(a, x, i|t)dx.

The label distribution, p(x|t), is obtained by marginalizing over cell age and division number
and normalizing with the overall cell number,

p(x|t) =
1

N(t)

∑
i∈N0

∫
R+

n(a, x, i|t)da.

Proliferation assays provide information about the overall number of cells as well as the
sum of label induced fluorescence (Figure 1B and C) and cellular background fluorescence.
The label induced fluorescence, y (in UFI), is proportional to the label concentration, y = cx
with x ∼ p(x|t) and proportionality constant c > 0 (UFI/UC). The background fluorescence
yb is a random variable, yb ∼ pb(yb) (in UFI), whose distribution (pb) depends potentially on
the biological system, the measurement procedure and technical factors. The distribution of
the total measured fluorescence, ym = y + yb (in UFI), obeys the convolution integral,

p(ym|t) =

∫ ym

0
p(y|t)pb(ym − y)dy,

with p(y|t) =
1

c
p
(
x =

y

c

∣∣∣ t)
(see Supplementary Information, Section 1.1.2 ). In the presence of outliers, p(ym|t) can be
mixed with an outlier distribution, poutliers(yo) (see Supplementary Information, Section 2.1 ).
The measurement of the fluorescence distribution p(ym|t) does not provide information about
the absolute values of the concentration x. Any changes in c can be compensated by changes
in the initial label distribution p0(x) and k(t) (Hasenauer, 2013), rendering c = 1 (UFI/UC)
a valid parameterization.

Commonly used measurement devices possess a finite resolution and collect interval cen-
sored samples from p(ym|t). The resulting binned snapshot data provides the number of cells
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H̄j
k observed in a bin j with intensity range Ij at time tk. These counts {H̄j

k}Jj=1 along with

intervals {Ij}Jj=1 provide a histogram. The probability p(ym ∈ Ij |tk) of observing an individ-
ual cell at time point tk in bin j is the integral of p(ym|tk) over Ij . The overall cell count

measured at time point tk is denoted by N̄k =
∑J

j=1 H̄
j
k.

3.3 Numerical simulation

To compute the number density n(a, x, i|t) and further model properties, the DALSP model (1)-
(3) is solved numerically. For this we exploit that the solution of the system of coupled two-
dimensional PDEs (1)-(3) is factorable (Metzger et al., 2012). The first factor is the solution
to a system of coupled one-dimensional PDEs describing an age- and division-structured pop-
ulation. This solution is computed using an efficient iterative numerical scheme. The second
factor is the solution to a set of decoupled one-dimensional PDEs describing the label distribu-
tion in cellular subpopulations with similar division number. This solution can be determined
analytically. The factorization accelerates the numerical evaluation by several orders of mag-
nitude compared to naive numerical methods. A similar decomposition approach is used to
compute the sensitivities of n(a, x, i|t) with respect to the parameters θi, ∂n(a, x, i|t)/∂θi.
Given n(a, x, i|t) and its sensitivities, the model properties and their derivatives are deter-
mined via numerical integration. The convolution integral defining the measured fluorescence
intensity is evaluated using Fenton’s approximation (Fenton, 1960). For further details we
refer to the Supplementary Information, Section 1.2 to 1.5.

3.4 Parameter estimation and uncertainty analysis

We employed maximum likelihood and Bayesian parameter estimation to determine the un-
known model parameters θ, with θ ∈ Θ ⊆ Rnθ , from the collection of binned snapshot data
D = {{H̄j

k}Jj=1, N̄k}Kk=1. To account for measurement noise in the measured overall cell num-
ber and the histograms, the likelihood function

P(D|θ) =
K∏
k=1

P({H̄j
tk
}Jj=1|θ)P(N̄k|θ)

is used (Hasenauer, 2013). The likelihood P({H̄j
tk
}Jj=1|θ) of observing the histogram {H̄j

tk
}Jj=1

follows a multinomial distribution with category probabilities {p(xm∈ Ij |tk)}Jj=1. The likeli-

hood P(N̄k|θ) of observing the overall population size N̄k assumes a log-normally distributed
measurement error. A detailed statement of the likelihood functions is provided in the Sup-
plementary Information, Section 2.1. Prior and posterior distribution for Bayesian parameter
estimation are denoted by π(θ) and π(θ|D), with π(θ|D) ∝ P(D|θ)π(θ). A log-uniform prior
π(θ) is employed.

The maximum likelihood estimates θML and maximum a posteriori parameter estimates
θMAP are obtained by maximizing the respective objective functions. To improve the numer-
ical evaluation and the optimiser convergence, we maximize the logarithms of the objective
functions, e.g.

θML = arg max
θ∈Θ

logP(D|θ).

These nonlinear optimisation problems are solved using stochastic global optimisation (Weise,
2009) and multi-start local optimisation (Raue et al., 2013). For stochastic global optimisation
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the particle-swarm pattern search method PSwarm (Vaz and Vicente, 2007) is employed.
For multi-start local optimisation, parameters are drawn from the parameter domain Θ and
used as starting points for the local optimiser. For local optimisation the MATLAB routine
fmincon.m is used with and without user-supplied gradients. The user supplied gradients are
computed using the forward sensitivity equations of the DALSP model (see Supplementary
Information, Section 1.2 and 2.1.)

The estimated parameter values reveal properties of the proliferation dynamics. To assess
the parameter identifiabilities and uncertainties we calculate profile likelihoods (Raue et al.,
2009) using our in-house Parameter Estimation Toolbox (PESTO) and sample the posterior
distribution using the Delayed Rejection Adaptive Metropolis (DRAM) sampler developed by
Haario et al. (2006). The posterior sample is employed to study parameter correlations and
prediction uncertainties (Hug et al., 2013). For details on the optimiser and sampler settings
we refer to the Supplementary Information, Section 2.2-2.4.

3.5 Hypothesis testing

Competing hypotheses regarding the mode of proliferation can be encoded in the rates α(t, a)
and β(t, a). Each of the resulting models is assessed using the Akaike information criterion
(AIC),

AIC = −2 logP(D|θML) + 2nθ,

and the Bayesian information criterion (BIC)

BIC = −2 logP(D|θML) + log(nD)nθ,

in which the maximum likelihood estimate and the number of parameters for the model of
interest are denoted by θML and nθ. The number of independent data points is denoted by
nD. AIC and BIC account for the likelihood of the data and penalize model complexity. Low
AIC and BIC values are favorable. We consider a difference > 10 between AIC/BIC values
of different models as substantial (Burnham and Anderson, 2002).

3.6 Implementation

All implementations are available as MATLAB toolbox from GitHub (http://janhasenauer.github.io/ShAPE-
DALSP/). As the MATLAB Symbolic Math Toolbox is used to construct the models and
sensitivity equations, a variety of alternative rates αi(t, a), βi(t, a) and ν(t, x) = −k(t)x can
be analysed easily.

4 Application

We illustrate the proposed model-based quantification method by studying T lymphocyte
proliferation. T lymphocytes are part of the adaptive immune system and their pool expands
upon pathogen recognition. This expansion is frequently monitored using CFSE labeling
(Hawkins et al., 2007a)
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4.1 Experimental data and mechanistic model

We considered T lymphocyte proliferation upon treatment with antibodies against CD3 and
CD28 receptors. Experimental data for this setting has been collected by Luzyanina et al.
(2007b) and analysed in a series of studies (Banks et al., 2010, 2011; Hasenauer, 2013; Luzyan-
ina et al., 2007b; Thompson, 2012). This multitude of preceding studies underlines the im-
portance of the dataset and renders it ideal for the evaluation of our approach.

In this study, an ensemble of DALSP models is used to study the CFSE data collected on
days 1-5 post treatment. To capture the observed heterogeneity, the initial CFSE distribution
(on day 1), p0(x), is modeled by a weighted sum of two log-normal distributions and the
distribution of the autofluorescence, pa(xa) is modeled by a single log-normal distribution.
After considering different alternatives, we set initial cell age to zero, such that the initial
condition is given by n0(a) = N0δ(a). N0 is the initial number of cells and δ denotes the
Dirac delta distribution. We considered rates of cell division which are constant, age- and/or
division number-dependent, i.e.,

αi(a) =



kα → constant

kα,i → division number dependent

kαanα

Knα
α +anα

→ age dependent

kα,ia
nα

Knα
α +anα

→ division number and age dependent,

and the same holds for the rate of cell death, βi(a). The age-dependence is modeled by Hill-
type functions with maximal rates kα,i and kβ,i which can depend on the division number
i. Similar to previous publications the intracellular CFSE degradation is described using
Gompertz decay, k(t) = −kdeg exp(−cdegt) (Banks et al., 2013b). The constants used to
model the rates, e.g., kα,i, kβ,i, kdeg and cdeg, and the parameters of the initial conditions are
part of the parameter vector θ and estimated from the data. Lower and upper bounds for
these parameters are reported and discussed in the Supplementary Information, Section 3.1.

The combinations of the different hypotheses regarding αi(a) and βi(a) give rise to 16
model alternatives with 12 to 29 parameters. We denote these models with M1 through
M16 and their properties are summarized in Table 1. In the following sections, these model
alternatives are compared and used to interpret the CFSE time-series data.
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Table 1: Number of parameters, negative log-likelihood, Akaike information criterion (AIC) and Bayesian information criterion
(BIC) for the 16 model alternatives. Rows two to five indicate the dependencies considered in the different models. Dependencies
are indicated using fnc, e.g. α = fnc(a) indicates that α depends on a. The values for AIC and BIC are for the maximum likelihood
estimate found after 250 runs of a deterministic local optimiser exploiting forward sensitivity equations.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

α = fnc(a) × × × × × × × ×
α = fnc(i) × × × × × × × ×
β = fnc(a) × × × × × × × ×
β = fnc(i) × × × × × × × ×
nθ 12 14 18 20 14 16 20 22 19 21 25 27 21 23 27 29
− logP (×104) 2.242 1.521 2.185 1.476 2.089 1.521 2.016 1.476 2.176 1.508 2.138 1.350 2.033 1.497 1.987 1.345
AIC (×104) 4.486 3.044 4.374 2.956 4.180 3.045 4.036 2.956 4.356 3.021 4.281 2.705 4.070 2.998 3.980 2.696
BIC (×104) 4.497 3.058 4.391 2.974 4.194 3.060 4.056 2.977 4.374 3.041 4.305 2.730 4.090 3.020 4.006 2.723
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4.2 Comparison of optimisation methods

We estimated the parameters of all 16 model alternatives using the particle-swarm opti-
misation algorithm implemented in PSwarm and the multi-start local optimisation method
implemented in PESTO. The latter performs individual deterministic optimisations using gra-
dients obtained by finite differences or sensitivity equations. For all optimisation methods we
assessed the percentage of ‘converged starts’ using the likelihood ratio test with a significance
level of 0.05 (see Supplementary Information, Section 2.4 ). This is a weak, statistically mo-
tivated measure of convergence and can be checked easily also for complex problems. Beyond
converged starts, we considered the distribution of computation times for individual starts
as well as the average computation time per converged start. The latter is computed by
dividing the overall computation time by the number of converged starts (see Supplementary
Information, Section 2.4 ). This yields a measure for the overall optimiser efficiency.

The results for 250 runs of PSwarm, 250 runs of the deterministic optimisers used in multi-
start local optimisation and 250 random parameter samples for different model alternatives
are depicted in Figure 2 and Figure S2. For M2 all optimisers achieve a significant improve-
ment compared to random samples. For M2 the percentages of converged starts were for all
optimisers comparable (Figure 2A), but deterministic optimisers using sensitivity equations
were two orders of magnitude faster than PSwarm (Figure 2B and C) and the only algorithms
able to reproduce the global optimum. For model alternatives with more parameters, the
difference in the performance of multi-start methods and PSwarm becomes even more ap-
parent (Figure S2). Hence, although PSwarm is known to outperform most available global
optimisation algorithms (Vaz and Vicente, 2007), we found that multi-start local optimisation
yields better results for DALSP models.

4.3 Evaluation of age-dependent proliferation rates

Model M1 to M16 describe different dependencies of the proliferation rates on cell age and
division number. A comparison of the measured distributions and cell counts (Figure 3A)
with the best fits for these model hypotheses is provided in Figure 3, S4 and S5. We found
that already model M1, which assumes constant rates of cell division and cell death, fits a
large fraction of the data well (Figure 3B). ModelM2, which accounts for age-dependence of
the division rate, already provides a good visual agreement of model and data (Figure 3C).
The fit tends to improve further as additional degrees of freedom (i.e., model parameters) are
introduced (Figure 3D). To our surprise, we found only a weak correlation between the log-
likelihood and the number of parameters of a model (Figure 4A). In contrast, age-dependence
of the division rate separates the models in those with high log-likelihood values (→ good
fits) and those with low log-likelihood values (→ bad fits). Taken together, this indicates that
missing age-dependence of the rates of cell division cannot be compensated by increasing the
number of parameters and the model complexity.

To assess the importance of individual dependencies of proliferation rates we computed
the AIC and the BIC values (Table 1). Both information criteria provided identical rankings
and revealed the model hierarchy visualized in Figure 4B and C. The best eight models were
those with age-dependence of the rates of cell division, including M2. The best four models
were those with age- and division-dependent rates of cell division. The best two models were
those possessing in addition a dependence of the rates of cell death on the division number.
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Figure 2: Performance of different optimisation methods for model M2. (A) Negative
log-likelihoods for 250 runs of deterministic local and global optimisers and 250 randomly
sampled parameter values. Missing points indicate failed objective function evaluations and
optimisation runs. The dashed line indicates the significance threshold for converged starts.
(B) Box plot of the computation time per optimisation run. (C) Average computation time
per converged start.

In the best model the rates of cell division and cell death depended on cell age and division
number.

Previous studies relying on LSP and DLSP models assumed time- and/or CFSE concentration-
dependent division rates. The estimates of these division rates were multi-modal, difficult to
interpret and possessed many unknowns (see, e.g., (Banks et al., 2010, Figure 8) and (Thomp-
son, 2012, Figure 3.10)). The DALSP models proposed here possess fewer parameters and
the age-dependent rates of cell division are interpretable, e.g. in terms of inter-division times
(Metzger et al., 2012). Furthermore, age-dependent rates provide a direct link to the cell
cycle-dependent gene expression during T lymphocyte proliferation and differentiation (Bird
et al., 1998). Accordingly, DALSP models facilitated an accurate description and a meaningful
interpretation of CFSE time-series data in terms of model parameters.

4.4 Analysis of parameter and prediction uncertainties

As estimated parameters and predicted model properties are potentially non-identifiable from
available CFSE time-series data, we assessed their uncertainties using profile likelihoods and
MCMC sampling. We evaluated the optimisation procedures and found that only determin-
istic optimisation with sensitivity equations yields accurate profile likelihoods. Furthermore,
despite the use of state-of-the-art adaptive MCMC sampling procedures, random initialization
of the starting point did not yield a sample within 30 CPU days that passes the Geweke test
(Brooks and Roberts, 1998), a convergence diagnostic. In contrast, initialization at the MAP
estimate resulted after only 2 CPU days in a sample which passes the Geweke test. This
demonstrated the importance of reliable and efficient optimisation methods for uncertainty
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Figure 3: Comparison of measured CFSE distributions (A, left) and measured overall cell
counts (A, right) with the best fits of model M1 (B), M2 (C), and M16 (D). The region
in between the fine black lines (==) indicates the 90% confidence interval (5-th to 95-th per-
centile) of the bin counts for the particular number of measured cells. A coverage/overplotting
of the experimental data by the confidence interval indicates a good fit.

analysis. The results of the uncertainty analysis for M1, M2 and M16 are visualized in
Figure S7-S12.

For M2, the simplest model which provides a good visual agreement of model and data,
we found that most parameters are practically identifiable (Figure S8). The maximum rate
of cell division, kα, as well as the age at which the half maximum value of the division
rates is reached, Kα, were tightly constrained (Figure 5A). For the Hill coefficient, nα, we
considered the range of 10−6 to 102 and found a lower bound of 45.4. Accordingly, the age-
dependent division rates, αi(a), is close to the scaled Heaviside step function kαh(a − Kα)
which would be reached for nα → ∞ (Figure 5B). This indicates that the upper bound for
nα chosen in the study, nα ≤ 102, does not influence the estimation results significantly. For
the estimated division rate, the inter-division time (in the absence of cell death) is similar to
a shifted exponential distribution (Figure 5C). This is the distribution assumed in the Smith-
Martin model (Smith and Martin, 1973). The rate of cell death, β(a) = kβ, was significantly
smaller than the maximal rate of cell division, kα (Figure 5D). As the rate of cell death is
constant, the time to cell death (in the absence of cell division) is exponentially distributed
(Figure 5D). The estimated parameters of the rates of cell division and cell death are correlated
(Figure S11). The good agreement of profile likelihoods and histograms obtained using Markov
chain Monte Carlo sampling underpin the functioning of the methods. Confidence intervals
for all parameters of model M2 are provided in Table 2.

Beyond the quantification of parameter uncertainties, we assessed model predictions. As
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Figure 4: Model selection results for proliferation models M1 - M16. (A) Optimal log-
likelihood value vs. number of parameter for the individual models. (B) Ordering of models
implied by BIC values, starting with the best model. Crosses in the table indicate depen-
dencies of the rate of cell division, α and cell death, β. (C) Visualization of the hierarchy
of models according to the minimal set of dependencies, which are color-coded consistently
across all subplots. (A,B,C) Visualization of AIC instead of BIC yields the same results as
AIC and BIC values differ merely in the third significant digit.

CFSE time-series data are most frequently used to determine the number of cells with a certain
number of divisions, N(i|t), we used samples from the posterior distribution π(θ|D) obtained
by MCMC to quantify this property and its uncertainty. The results for M2 (Figure 5C)
revealed that the uncertainties are relatively small. A second property providing insights
into the proliferation dynamics is the age distribution. While this property could not be
assessed with LSP and DLSP models, the DALSP model revealed its structure. Due to the
continuous renewal, cells tended to be young with a maximum at a = 0 d. Between a = 0 d
and a = 0.41 d the density slowly decreases, mostly due to cell death. At a = 0.41 d ≈ Kα cell
division sets in and results in an accelerated decline. Although CFSE time-series data do not
directly provide information about the cell age distribution, DALSP models could be used to
quantify it accurately, which is indicated by narrow credible intervals. This is also true for
other properties such as intracellular CFSE degradation.

5 Conclusion

In vivo and in vitro proliferation assays using CFSE require accurate tools for quantifying
biologically meaningful parameters (Hawkins et al., 2007a). To meet this requirement, we
propose to use DALSP models which account for the age of individual cells. In contrast to
the frequently used LSP and DLSP models, DALSP models allow for non-exponential inter-
division time. To exploit DALSP models for the analysis of CFSE time-series data, we derived
sensitivity equations for gradient calculation and we developed a tailored numerical scheme
exploiting the hierarchical structure of DALSP models.

As an accurate model-based analysis of experimental data requires reliable inference, we
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Figure 5: Parameter and prediction uncertainties for modelM2. Parameterization of (A) age-
dependent division rate and (D) death rates along with the uncertainty of the corresponding
model parameters. Histograms of the MCMC samples (gray boxes) and profile likelihoods
the individual parameters (red line) are depicted along with the statistical threshold for the
95% confidence intervals (dashed black line). Median (lines) and 99% credible interval (semi-
transparent areas) for (B) the age-dependent rate of cell division, (C) the distribution of the
inter-division time (in the absence of cell death), (E) the distribution of the time to cell death
(in the absence of cell division), (F) the size of the subpopulations and the overall population
and (G) the age distribution on day 5. Uncertainty assessment reveals that parameter and
prediction uncertainties are small. (F,G) Zooms are provided to visualize the uncertainties.

compared different optimisation algorithms with respect to convergence and computation
time. Our comparison, which is to the best of our knowledge the first comparison of this kind
for structured population models, revealed that multi-start local optimisation outperforms
stochastic global optimisation for this class of PDE models. This confirms results by Raue
et al. (2013) for ODE models. Indeed, for some DALSP models the evaluated stochastic
global optimisers did not even converge if a large number of function evaluations (> 105)
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Table 2: Parameter estimates and confidence intervals for model M2.

Name ML estimate 95% confidence interval Unit

kα 1.499 (1.474, 1.524) d−1

nα 100.0 (45.39,≥ 100) -
Kα 0.410 (0.406, 0.414) d
kβ 0.204 (0.197, 0.211) d−1

kdeg 0.190 (0.184, 0.196) d−1

cdeg 0.076 (0.057, 0.095) d−1

µnoise 2.150 (2.132, 2.169) -
σnoise 0.333 (0.321, 0.344) -
N0 7012 (6902, 7123) cells
rx,1 0.746 (0.735, 0.757) -
µx,1 6.402 (6.396, 6.407) -
µx,2 7.302 (7.270, 7.335) -
σx,1 0.177 (0.174, 0.179) -
σx,2 0.741 (0.724, 0.758) -

was allowed. For the same models, multi-start local optimisation with accurate gradients
provided reproducible results. This underpined the importance of using sensitivity equations,
which have so far not been described for LSP and DLSP models. The latter raising questions
regarding the reliability of previous estimation results.

The efficient deterministic optimisers were used to maximize a likelihood function which
accounts for the stochasticity of the acquisition process. This likelihood function is statisti-
cally more meaningful than least-squares type objective functions (Banks et al., 2010, 2011).
We employed the proposed likelihood function for model selection and found evidence for a
dependence of the division rate on the cell age. More precisely, the Hill-type division rate with
a high degree, nα � 1, indicated a lower bound for the inter-division time, which could be
interpreted as a minimal length of the cell cycle. This seems biologically more plausible than
the time- and CFSE concentration-dependent division rates proposed in previous publications
(Banks et al., 2010, 2011; Luzyanina et al., 2007b). Furthermore, age-dependent rates of cell
division have been reported for similar biological systems using time-lapse microscopy data
(Duffy et al., 2012; Shokhirev et al., 2015).

Beyond model selection, we provided the first detailed Bayesian uncertainty analysis for
structured population models. This was challenging due to the computational complexity of
PDE models and the number of unknown parameters. We established computational feasibil-
ity by exploiting tailored numerical methods and an initialization using optimisation results.
The posterior samples obtained using MCMC methods revealed a low level of uncertainties
for latent properties, such as the age distribution and the parameters of the cell division
rate. In addition, the marginal distribution of the parameters are consistent with the profile
likelihoods, which substantiated the results further.

All the modeling, simulation, parameter estimation and model selection methods used
in this publication are implemented in the open-source MATLAB toolbox ShAPE-DALSP.
The availability of the code will facilitate the application of the method and simplify the
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development of extensions, e.g., towards multiple cell-types (Schittler et al., 2012), asymmetric
cell division (Banks et al., 2015; Bocharov et al., 2013; Kapraun, 2014; Luzyanina et al., 2014)
and alternative DALSP models (Banks et al., 2013a, 2014, 2015; Kapraun, 2014; Luzyanina
et al., 2014). In particular the implementation of a cyton-based model (Banks et al., 2013a,
2014, 2015; Kapraun, 2014) would be interesting as these models allow for a fraction of non-
dividing cells. In addition to extensions, alternative parameterizations can be included, e.g.,
a parameterization of the probability density functions for a cell to divide and die at age a
(as used in the cyton models) in contrast to a parameterization of the age-dependent rate of
cell division and cell death. The incorporation of the features in ShAPE-DALSP would allow
for an even broader spectrum of applications and improve user-friendliness.

In summary, this study presents a novel model-based analysis method for CFSE time-series
data. Besides a statistical model, we present findings regarding optimiser performance and
uncertainty analysis. These findings and the methods we developed can be easily transferred to
other structured population models and might also be applicable to other types of population
balance models. Accordingly, this study will help to make the most of CFSE time-series data
and other data requiring cell-cycle corrections.
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