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Abstract
In recent years, genome-wide association studies (GWAS) have identified many loci that

are shared among common disorders and this has raised interest in pleiotropy. For perform-

ing appropriate analysis, several methods have been proposed, e.g. conducting a look-up

in external sources or exploiting GWAS results by meta-analysis based methods. We

recently proposed the Compare & Contrast Meta-Analysis (CCMA) approach where signifi-

cance thresholds were obtained by simulation. Here we present analytical formulae for the

density and cumulative distribution function of the CCMA test statistic under the null hypoth-

esis of no pleiotropy and no association, which, conveniently for practical reasons, turns out

to be exponentially distributed. This allows researchers to apply the CCMAmethod without

having to rely on simulations. Finally, we show that CCMA demonstrates power to detect

disease-specific, agonistic and antagonistic loci comparable to the frequently used Subset-

Based Meta-Analysis approach, while better controlling the type I error rate.

Introduction
Genome-wide association studies (GWAS) have identified many loci that are shared among
common disorders. [1] The interest in pleiotropy, “the multi-functionality of a gene in pheno-
type presentation”, [2] has increased in recent years. Customized arrays have been designed by
consortia of related diseases (e.g. the Immunochip array for immune-mediated disorders), to
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fine map established GWAS loci at high resolution and identify single nucleotide variants
(SNVs) shared among different traits.

For performing an appropriate analysis, several methods [1, 2] have been proposed that use
external sources such as the GWAS catalog. [3] Others exploit GWAS results using meta-anal-
ysis based methods. [4, 5] We have recently proposed the Compare & Contrast Meta-Analysis
(CCMA) approach [6] and have found suitable P-value thresholds corresponding to standard
suggestive (P< 10−5) and genome wide significant (P< 10−8) association by simulation. In
this work we present an analytical cumulative distribution function for the CCMA test statistic,
which is in good accordance with the levels derived by simulation studies.

Materials and Methods
As we previously described [6], the CCMA uses z-scores from GWAS of two different traits, T1

and T2, which are asymptotically normally distributed and signed according to the direction of
effect of a certain reference allele. Furthermore, two z-scores for meta analysis are defined,
assuming an agonistic or an antagonistic action of the variant on the two traits [6]. Then the
CCMA test statistic is constructed as

Tmax ¼ max ðjT1j; jT2j; jT12;agonisticj; jT12;antagonisticjÞ ð1Þ

where

T12;agonistic ¼ T1 þ T2ffiffiffi
2

p and

T12;antagonistic ¼ T1 � T2ffiffiffi
2

p :

In order to derive a P-value for an observed realization tmax, the null distribution was empir-
ically determined by simulating R = 1,000,000,000 replicates of two normally distributed ran-

dom variables Z1 and Z2. Then Z12;agonistic ¼ Z1þZ2ffiffi
2

p , Z12;antagonistic ¼ Z1�Z2ffiffi
2

p and

Zmax ¼ max ðjZ1j; jZ2j; jZ12;agonisticj; jZ12;antagonisticjÞ ð2Þ

was calculated for each replicate. The empirical P-values can be derived as

Pemp ¼
#ðZmax > tmaxÞ þ 1

Rþ 1

In order to find an analytic formulation of the P-value distribution we consider the squared
values of the test statistics Z2

1 ;Z
2
2 ;Z

2
12;agonistic;Z

2
12;antagonistic under the null hypothesis (H0) of no

pleiotropy and no association between the SNV and any trait. By design, each of the four trans-
formed variables follows a w21 distribution with Z2

1?Z2
2 and Z

2
12;agonistic?Z2

12;antagonistic under H0 (see

S1 Appendix). Thus, the transformed CCMA test statistic can be expressed as

Z2
max ¼ max ðZ2

1 ;Z
2
2 ;Z

2
12;agonistic;Z

2
12;antagonisticÞ ð3Þ

and empirical P-values can be calculated for an observed realization by

Pemp ¼
#ðZ2

max > t2maxÞ þ 1

Rþ 1
ð4Þ

Plotting −log10(Pemp) against Z2
max suggests that the relationship can be expressed by a

straight line (Fig 1).
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Fig 1. Five empirical evaluations of the −log10(P)-distribution of the Z2
max statistic, each obtained by simulating 2 × 109 replicates. The theoretical

distribution was obtained by fitting a straight line. The grey shaded area reflects the 95% Clopper-Pearson confidence interval [7].

doi:10.1371/journal.pone.0154872.g001
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A general formula for the distribution and density function of the maximum of independent
identically-distributed (iid) variables has been described in Chapter 2.11 of Ewens & Grant [8].
Let X1, X2, . . ., Xk be continuous iid variables and Xmax = max(X1, X2, . . ., Xk) their maximum,
then the cumulative distribution function of Xmax can be written as follows:

PðXmax � xÞ ¼ PðX1 � x \ X2 � x \ � � � \ Xk � xÞ ¼ fPðX � xÞgk

¼ FXmax
ðxÞ ¼ fFXðxÞgk

ð5Þ

Formula (5) cannot be applied directly to our situation, since we do not have four indepen-
dent variables. However, we can divide them into two independent blocks of iid w21-distributed
variables Z2

1?Z2
2 and Z

2
12;agonistic?Z2

12;antagonistic. We let Fw2
1
ðzÞ be the distribution function of each

variable Z2
1 ;Z

2
2 ;Z

2
12;agonistic;Z

2
12;antagonistic and let FZ2�max

ðzÞ denote the distribution function of Z2�
max ¼

maxðZ2
1 ;Z

2
2Þ or Z2�

max ¼ maxðZ2
12;agonistic;Z

2
12;antagonisticÞ, then

FZ2�max
ðzÞ ¼ fFw2

1
ðzÞg2 ð6Þ

Furthermore it is known that the sum of two iid w21-distributed variables is w
2
2-distributed

with the cumulative distribution function Fw2
2
ðzÞ. Since we have only two independent random

variables Z2
1 and Z

2
2 , we may postulate the following boundaries for FZ2max

ðzÞ:
FZ2�max

ðzÞ � FZ2max
ðzÞ � Fw2

2
ðzÞ ð7Þ

To prove that FZA
(z)� FZB

(z) for two test statistics ZA and ZB, we have to show that ZA � ZB
for every scenario, i.e., for every set of Z2

1 and Z
2
2 . It can be seen that maxðZ2

1 ;Z
2
2Þ � Z2

1 þ Z2
2

and thus FZ2�max
ðzÞ � Fw2

2
ðzÞ. Furthermore, it is obvious that maxðZ2

1 ;Z
2
2Þ �

max Z2
1 ;Z

2
2 ;

ðZ1þZ2Þ2
2

; ðZ1�Z2Þ2
2

� �
and therefore FZ2�max

ðzÞ � FZ2max
ðzÞ. Finally, we prove that

FZ2max
ðzÞ � Fw2

2
ðzÞ by showing that max Z2

1 ;Z
2
2 ;

ðZ1þZ2Þ2
2

; ðZ1�Z2Þ2
2

� �
� Z2

1 þ Z2
2 . Since obviously

Z2
1 � Z2

1 þ Z2
2 and Z

2
2 � Z2

1 þ Z2
2 , it remains to be shown that ðZ1þZ2Þ2

2
� Z2

1 þ Z2
2 and

ðZ1�Z2Þ2
2

�
Z2
1 þ Z2

2 (see S2 Appendix).
This concludes the proof of Eq (7). Therefore, with Formula (7) we have established explicit

boundaries for FZ2max
ðzÞ, which are visualized in Fig 2.

It is important that FZ2max
ðzÞ is exponentially distributed. To derive that, note that Fw2

2
ðzÞ can

be expressed in terms of an exponential distribution Fλ(z) with scale parameter l ¼ 1
2

FlðzÞ ¼ 1� e�l�z ð8Þ

and Fλ(z) is connected to z by a log-linear relation

FlðzÞ ¼ 1� e�l�z ()� log ð1� FlðzÞÞ ¼ l � z ð9Þ

Given the fact that the relationship of −log10(P) and Z2
max under H0 is a straight line (Fig 1),

the cumulative distribution function of Z2
max is

� log 10ðPÞ ¼ b � z
P ¼ 10�b�z

FZ2max
ðzÞ ¼ 1� P ¼ 1� 10�b�z

ð10Þ
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Fig 2. Comparison of FZ2�max
ðzÞ, FZ2max

ðzÞ and Fw2
2
ðzÞ.

doi:10.1371/journal.pone.0154872.g002
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Using the relationship 10x = elog(10)�x, we can write FZ2max
ðzÞ as an exponential distribution

FZ2max
ðzÞ ¼ 1� 10�b�z

¼ 1� e� log ð10Þ�b�z

¼ 1� e�lz with l ¼ log ð10Þ � b
ð11Þ

In conclusion, from the empirically derived linear relation between the log10-transformed
P-value and the test statistic it follows that Z2

max is exponentially distributed.
In order to determine the theoretical distribution, we searched for the optimal slope param-

eter b. To this end, we conducted two simulations of 100 empirical Z2
max distributions with

R = 1,000,000,000 replicates and 5 empirical Z2
max distributions with R = 2,000,000,000 repli-

cates, respectively. We estimated the slope parameter by means of linear regression and found
a consistent estimate of b� 0.228 (Table 1).

With Eqs (10) and (11) we can give a formula for the cumulative distribution function of
the original (not squared) Zmax statistic:

FZmax
ðzÞ ¼ 1� 10�b�z2

¼ 1� e� log ð10Þ�b�z2 ; z � 0
ð12Þ

Formula (12) represents the cumulative distribution function of the original Zmax statistic
and we compare it with its simulated values from the previous study. We find theoretical
thresholds for suggestive (10−5) and genomewide (10−8) significance of Zmax = 4.68 and Zmax =
5.92, respectively (S1 Fig). These thresholds correspond well to the values of 4.7 and 6 derived
by our previous simulation study (see Methods section in Baurecht et al. [6]).

Results
We compared the power and type 1 error (see S3 Appendix) of the CCMAmethod with the
Subset-Based Meta-Analysis [5] implemented in the R-package ASSET [9] by simulations. To
this end, we generated a fixed population of n = 20,000 individuals with respective genotypes
according to the specified minor allele frequency (MAF) for a single SNV in exact Hardy-
Weinberg Equilibrium. Then, we drew n = 8,000 individuals and simulated their phenotypes
by applying a multinomial model with baseline risks for two diseases of 0.1 and 0.05 (e.g. AD
and psoriasis), mimicking the respective prevalence using a previously described algorithm
[10]. For simplicity the controls were distributed equally between both case sets. We varied the
minor allele frequencies (MAF) 2 (0.1, 0.2, 0.3) and the odds ratios (OR) 2 (1.15, 1.2, 1.3).
Power was estimated for levels of α = 0.001 and α = 10−5 with R = 1,000 replicates to detect (a)
disease specific, (b) agonistic and (c) antagonistic effects.

In the simulation-based power analysis we found that the CCMAmethod is only marginally
less powerful for detecting disease specific, agonistic and antagonistic effects than the ASSET

Table 1. Distribution of the slope parameter b of simulated Z2
max distributions by different simulation settings. sim. = simulations, repl. = replicates.

Setting Min Q1 Median Q3 Max Mean Std Dev

100 sim.with 1 × 109 repl. 0.22786 0.22795 0.22797 0.2280 0.22809 0.22797 3.88 � 10−5
5 sim. with 2 × 109 repl. 0.22796 0.22797 0.22798 0.22798 0.22799 0.22798 1.08 � 10−5

doi:10.1371/journal.pone.0154872.t001
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method (S2, S3, S4 Figs, Table 2). However, CCMA provides better control over the type 1
error rate (see S1 Table and S5 Fig). These results demonstrate the trade off between power and
controlling type 1 error. If we would use e.g. the inflated ASSET threshold of 0.01205 for
CCMA (S1 Table: OR = 1.3, MAF = 0.2, α = 0.01), then ASSET and CCMA exhibit almost
identical power (disease-specific: PowerASSET = 0.830, PowerCCMA = 0.839; agonistic: PowerAS-
SET = 0.976, PowerCCMA = 0.974; antagonistic: PowerASSET = 0.952, PowerCCMA = 0.955). We
obtained comparable results by setting equal baseline risks for both diseases (data not shown).

A minor modification of the CCMA test statistic allows taking study size into account by
using weights w1 and w2 (see S4 Appendix), which improves power for detecting either agonis-
tic or antagonistic effects, depending on the specification of the transformation matrix (S2
Table).

If we distribute the controls in proportion to the case sets, which is a reasonable scenario in
practice, the power of both methods is mostly increased. Of note, for disease specific and antag-
onistic effects and α = 10−5 the power of CCMA and its modified version is in most cases
higher than the power of ASSET (S3 Table).

Discussion
We have previously shown that the CCMAmethod is an appealing approach to screen for
shared and disease-specific loci as well as to leverage additional cross-phenotype association
information using available GWAS data [6]. We have now determined the null distribution for

Table 2. Power comparison of the CCMA and Subset-Based Meta-Analysis (ASSET) for detection of true associations at a significance level of α =
0.001 and α = 10−5. For each power estimate, we ran R = 1,000 simulations with n = 8,000 individuals for various MAF and OR values and assigned the dis-
ease status by a multinomial model.

MAF OR disease-specific effect agonistic effect antagonistic effect

ASSET CCMA ASSET CCMA ASSET CCMA

α = 0.001

0.1 1.15 0.0320 0.0270 0.0600 0.0520 0.0430 0.0360

1.2 0.0900 0.0860 0.1620 0.1400 0.1140 0.1060

1.3 0.2760 0.2660 0.5780 0.5420 0.4470 0.4330

0.2 1.15 0.0780 0.0690 0.1820 0.1700 0.1340 0.1300

1.2 0.1760 0.1730 0.4430 0.4160 0.3450 0.3270

1.3 0.6200 0.6070 0.9050 0.8920 0.8320 0.8200

0.3 1.15 0.1100 0.1090 0.2460 0.2240 0.2130 0.2000

1.2 0.2950 0.2830 0.6130 0.5830 0.5330 0.5060

1.3 0.8170 0.8150 0.9760 0.9670 0.9430 0.9360

α = 10−5

0.1 1.15 0.0010 0.0010 0.0030 0.0020 0.0010 0.0020

1.2 0.0080 0.0100 0.0220 0.0220 0.0140 0.0110

1.3 0.0540 0.0540 0.1980 0.1880 0.0940 0.0910

0.2 1.15 0.0080 0.0090 0.0190 0.0190 0.0070 0.0070

1.2 0.0240 0.0260 0.1010 0.0900 0.0630 0.0580

1.3 0.2320 0.2280 0.5800 0.5540 0.4490 0.4210

0.3 1.15 0.0130 0.0100 0.0300 0.0260 0.0230 0.0240

1.2 0.0560 0.0540 0.2090 0.1940 0.1380 0.1290

1.3 0.4160 0.4190 0.8000 0.7830 0.6960 0.6790

doi:10.1371/journal.pone.0154872.t002
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the CCMA test statistic, which corresponds to an exponential distribution, and we show that
CCMA demonstrates comparable power for detecting disease-specific, agonistic and antago-
nistic loci to the frequently used Subset-Based Meta-Analysis [5] (ASSET) approach, while bet-
ter controlling the type I error. The CCMAmethod, which is calculated in a straightforward
way, allows us to infer the mode of pleiotropy directly by looking at which of the four constitu-
ent statistics T1, T2, T12,agonistic or T12,antagonistic yields the maximum. Finally, the CCMA
method can also be applied to other genome-wide molecular data (e.g. gene expression, epige-
nomics, metabolomics) as well as to other research questions such as those encountered in
environmental epidemiology. Here, the influence of environmental exposures or lifestyle fac-
tors on two different traits of interest can be analyzed with regard to their concordant or con-
trasting effects.

In subgroup meta-analysis similar questions are addressed by e.g. comparing group A vs.

group B using a Z-test ZDiff ¼ ðeffA � eff BÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeffAÞ þ VarðeffBÞ

p
[11]. This Z-test allows

only to contrast two effects, but neither to consider disease-specific, agonistic and antagonistic
effects simultaneously nor to distinguish between them. A canonical method to approach such
questions would be a multinomial regression model followed by Wald tests for testing effect
contrasts [12]. Although the multinomial regression model allows to incorporate covariates, it
is not applicable if only summary statistics are available and it requires by far more computing
time if applied on a genome-wide level.

In conclusion, the proposed CCMAmethod has some attractive properties for investigating
the effect of exposure variables on two different traits. The simply constructed test statistic fol-
lows an exponential distribution under the null hypothesis, which allows a fast and easy imple-
mentation as well as a direct deduction of the mode of pleiotropy. The method can be
conveniently applied to similar questions in other domains and can also exploit summary sta-
tistics from two single studies.

Supporting Information
S1 Fig. Empirical and theoretical −log10(P)-distribution of Zmax with parameter b = 0.228.
Dotted and solid grey lines indicate the thresholds of suggestive (Zmax = 4.68) and genomewide
significance (Zmax = 5.92).
(TIF)

S2 Fig. Simulation-based power comparison of CCMA and Subset-Based Meta-Analysis
(ASSET) for detecting a disease-specific effect. For each power estimate, we ran R = 1,000
simulations with n = 8,000 individuals for various MAF and OR values and assigned the disease
status by a multinomial model. A significance threshold of α = 0.001 and α = 10−5 was applied.
(PDF)

S3 Fig. Simulation-based power comparison of CCMA and Subset-Based Meta-Analysis
(ASSET) for detecting an agonistic effect. For each power estimate, we ran R = 1,000 simula-
tions with n = 8,000 individuals for various MAF and OR values and assigned the disease status
by a multinomial model. A significance threshold of α = 0.001 and α = 10−5 was applied.
(PDF)

S4 Fig. Simulation-based power comparison of CCMA and Subset-Based Meta-Analysis
(ASSET) for detecting an antagonistic effect. For each power estimate, we ran R = 1,000 sim-
ulations with n = 8,000 individuals for various MAF and OR values and assigned the disease
status by a multinomial model. A significance threshold of α = 0.001 and α = 10−5 was applied.
(PDF)
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S5 Fig. Simulation-based type 1 error comparison of CCMA, wCCMA and the Subset-
Based Meta-Analysis (ASSET) under H0.We ran R = 100,000 simulations with n = 8,000
individuals for various MAF values under H0. Several significance thresholds were considered
for comparison α = (0.001, 0.005, 0.01, 0.05).
(PDF)

S1 Table. Type 1 error comparison of CCMA, wCCMA and the Subset-Based Meta-Analy-
sis (ASSET) under H0.We ran R = 100,000 simulations with n = 8,000 individuals for various
MAF under H0. Several significance thresholds were considered for comparison α = (0.001,
0.005, 0.01, 0.05).
(PDF)

S2 Table. Power comparison of the CCMA, wCCMA and Subset-Based Meta-Analysis
(ASSET) for detection of true associations at a significance level of α = 0.001 and α = 10−5.
For each power estimate, we ran R = 1,000 simulations with n = 8,000 individuals for various
MAF and OR values and assigned the disease status by a multinomial model and distributed
controls equally to both case sets.
(PDF)

S3 Table. Power comparison of the CCMA, wCCMA and Subset-Based Meta-Analysis
(ASSET) for detection of true associations at a significance level of α = 0.001 and α = 10−5.
For each power estimate, we ran R = 1,000 simulations with n = 8,000 individuals for various
MAF and OR values and assigned the disease status by a multinomial model and distributed
controls proportionally to the case sets.
(PDF)

S1 Appendix. Proof of Independence between Z12,agonistic and Z12,antagonistic.
(PDF)

S2 Appendix. Proof that ðZ1þZ2Þ2
2

� Z2
1 þ Z2

2 and
ðZ1�Z2Þ2

2
� Z2

1 þ Z2
2 .

(PDF)

S3 Appendix. Comparison of the Type 1 Error.
(PDF)

S4 Appendix. Weighted CCMA Test Statistic (wCCMA).
(PDF)
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