
 1 

Single-Cell Gene Expression Profiling and Cell State 
Dynamics: Collecting Data, Correlating Data Points and 
Connecting the Dots 

Carsten Marr1,$, Joseph X. Zhou2,$, Sui Huang2,* 

1Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of 
Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany 

2Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA 

$These authors contributed equally 

*Corresponding author: Sui Huang (sui.huang@systemsbiology.org) 

Abstract 
Single-cell analyses of transcript and protein expression profiles – more precisely, single-cell 
resolution analysis of molecular profiles of cell populations – have now entered the center 
stage with widespread applications of single-cell qPCR, single-cell RNA-Seq and CyTOF. 
These high-dimensional population snapshot techniques are complemented by low-
dimensional time-resolved, microscopy-based monitoring methods. Both fronts of advance 
have exposed a rich heterogeneity of cell states within uniform cell populations in many 
biological contexts, producing a new kind of data that has stimulated a series of 
computational analysis methods for data visualization, dimensionality reduction, and cluster 
(subpopulation) identification. The next step is now to go beyond collecting data and 
correlating data points: to connect the dots, that is, to understand what actually underlies the 
identified data patterns. This entails interpreting the “clouds of points” in state space as a 
manifestation of the underlying molecular regulatory network. In that way control of cell state 
dynamics can be formalized as a quasi-potential landscape, as first proposed by Waddington. 
We summarize key methods of data acquisition and computational analysis and explain the 
principles that link the single-cell resolution measurements to dynamical systems theory. 

Introduction 
A cell state transition is an elementary event in metazoan development. The associated phenotypic 
change, e.g. cell differentiation, cell growth termination or artificial cell reprogramming, has 
traditionally been explained by molecular signaling pathways. Nowadays, a cell state is characterized 
exhaustively by its molecular profile, e.g. its transcriptome or proteome. However, the characterization 
of static molecular profiles cannot explain essential properties of the cell state dynamics, such as 
discreteness of states, stability of states, the binary nature of cell transitions and the directionality of 
cell development. These properties emerge from nonlinear dynamics of the molecular regulatory 
networks involved, such as the gene regulatory network, that govern cell state dynamics. 
  
Only in the past decade has nonlinear dynamical systems theory entered the center stage in the study 
of cell state transitions with the renaissance of Waddington’s epigenetic landscape [1] as a conceptual 
aid in stem cell and developmental biology. Waddington proposed a “landscape” to explain that cells 
differentiate into discrete, robust cell states. In his view, a marble, representing a cell, rolls down a 
hilly landscape towards a number of valleys and must eventually settle in one of them - each 
representing a particular cell type. This landscape is, as we will see, more than a metaphor but has a 
mathematical basis. 
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With the arrival of single-cell technologies we can in principle uncover the topography of the 
landscape by profiling individual cells in as many positions as possible. Technologies for monitoring 
single-cell states can be divided into two complementary types: measurement (i) of a large number of 
variables of a cell state (e.g. abundance of transcripts/proteins) as “snapshot” at a given time point in 
a large number of cells or (ii) of just a handful of variables continuously observed over time in the 
same cell and its descendants. The former destroys the cells during measurement, the latter keeps 
cells alive, allowing for longitudinal monitoring and providing information unique to biological systems, 
such as dependencies between mother and daughter cells. While the analysis of single developing 
cells has a over 100 year old history (see [2] for a recent review), what is new is the massively parallel 
nature and the high-dimensionality: a large number of cells can be analyzed simultaneously for a 
large number of cellular variables. Thus, novel technologies are less about “single-cell”, but rather 
allow analysis of entire cell populations with single-cell resolution. 
  
So far most analyses of single-cell profiles and longitudinal observations are agnostic of the formalism 
of dynamical systems that underlies the intuitive picture of the landscape. Although sometimes 
Waddington’s landscape is invoked, current approaches almost exclusively focus on descriptive 
computational analyses for data visualization, dimension reduction, or statistical pattern identification 
(see [3,4] for reviews). But now the time is ripe to move beyond collecting the data and correlating the 
data points, and to connect the dots: We need to apply the formal theory of dynamical systems that is 
able to explain the uncovered patterns in single-cell data. In the following, we review recent 
technological developments (collecting the data) and the computational tools as a first level data 
organization (correlating the data points) before summarizing the interpretation of data in the light of 
formal concepts of dynamical systems (connecting the dots). 

Collecting the data: snapshot sampling of single cells 
Single-cell techniques, if applied to a sufficiently large number of cells, provide distributions of 
measured variables for the entire population. Such distributions offer an unprecedented wealth of 
information about the dynamics of cell states, far beyond cell-cell variability and higher statistical 
moments. 
  
To appreciate this, one needs to first accept the biological fact that variable distributions even in an 
isogenic uniform population of cells of the nominally same “cell type” do not just reflect 
inconsequential (thermal) fluctuations in gene expression, let alone technical (measurement) noise, 
but also a biologically significant diversity of cellular states with functional consequences. For 
instance, repeated fluorescent activated cell sorting (FACS) analyses have revealed distinct 
subpopulation dynamics among mouse embryonic stem cells (mESCs) with respect to expression of 
the pluripotency factor Nanog [5]. It is also evident that individual cell states are not static but 
dynamic, exposed by the slow noise-driven re-establishment of a heterogeneous marker distribution 
in hematopoietic cells from a sorted subpopulation [6]. The main limitation for FACS is that the 
number of proteins that can be simultaneously analyzed barely exceeds a dozen due to the overlap of 
optical emission spectra. An advancement is single-cell mass cytometry (CyTOF), where antibodies 
are tagged with heavy metals and measured via mass spectrometry [7–9]. The sharper discrimination 
allows for up to 50 proteins to be measured simultaneously in each cell. 

  
Single-cell technologies for measuring transcripts progressed tremendously in recent years. 
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) technology on nanoliter-
scale has been applied to nearly 4,000 cells in different stages of early blood development [10]. 
However, the number of different mRNAs that can be analyzed in one cell is limited in PCR-based 
approaches. Profiling whole transcriptomes can be achieved with single-cell mRNA sequencing (RNA-
Seq), where the crucial step is unbiased amplification of cDNA before sequencing (see [11–13] for 
reviews). Use of unique molecular identifiers (UMIs) that bar-code each molecule, not just each 
transcript species allows a robust quantification by intercepting amplification bias [14]. Cell throughput 
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has been pushed upwards recently (see Figure 1) with the combination of biotechnological methods 
(e.g. barcoding for multiplexing cells to run in the same sequencing reaction, or the use of 
microfluidics and droplets for initial reactions of individual cells). Using Drop-seq, 39 subpopulations of 
mouse retinal cells have been identified in 40,000 cells [15] and population heterogeneity in nearly 
6,000 mESCs has been profiled [16]. A drawback RNA-Seq in single cells is the reduced sensitivity 
such that only the 10-20% most abundant transcripts can be quantitated [17,18]. Careful experimental 
design, balancing the tradeoff between number of cells and transcripts sequenced and sequencing 
depth [17] and appropriate computational post-processing, e.g. to correct for cell-cycle induced 
heterogeneities [19], are crucial for single-cell transcriptomics. 

  
Gene expression manifests cell states only at one particular level. The chromatin state of individual 
cells can be determined with single-cell bisulfite sequencing for DNA methylation [20], the Hi-C 
method for chromosome conformation [21], the transposase-accessible chromatin assay (ATAC-seq) 
[22,23], and immunoprecipitation followed by sequencing (ChIP-seq) for histone methylation [24]. Also 
the spatial context of single cells is now accessible with recent extensions to multiplexed fluorescent 
in situ hybridization [25,26], and imaging mass cytometry [27]. Finally, the feasibility of combining 
genomics and transcriptomics in the same single cell has recently demonstrated [28]. 
 

 
Figure 1: Recent applications of single-cell snapshot technologies sample up to hundreds of 
thousands of single cells while measuring multiple variables, e.g. genome-wide mRNA 
expression. 
 

Correlating the data points: computational data analysis of snapshots 

High-throughput (many cells) and high-dimensional (many variables) single-cell measurements 
provide a wealth of information on molecular profiles in populations. The output for a biological sample 
is now no longer a vector of m components (e.g. the m different mRNA species in a single-cell RNA-
Seq experiment) as in population/tissue omics, but a [m×n] matrix since we now measure expression 
in n individual cells. Mathematically, each cell can be positioned in an m-dimensional space, where 
the axes are the measured variables. Using this notation, which is also the basis for the dynamical 
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systems analysis discussed later, the first generation of computational tools has been developed to 
handle this new type of data: to reduce the m-dimensional space by mapping individual cells onto an 
interpretable lower (two- or three-) dimensional space with minimal loss of information, to identify 
patterns, such as an (pseudo)temporal order of cell states or static clusters, and to visualize the data.  
  
Pearson’s principal component analysis (PCA) identifies genes that vary the most within the profiled 
population of cells and linearly projects the high-dimensional data into a lower dimensional space. It 
has been used for single-cell transcriptomics to classify mouse sensory neurons into novel cellular 
subtypes [29]. The incorporation of censoring of expression values due to non-detected transcripts 
has been achieved by a probabilistic version of PCA [30] and an extension of the factor analysis 
framework [31]. Nonlinear methods are often better suited to identify the low-dimensional manifolds to 
which gene expression is confined. One popular method is t-SNE – a variant of stochastic neighbor 
embedding using the Student-t distribution to calculate pointwise similarity [32]. Recently, it has been 
used to cluster retinal cells [15] and embryonic stem cell populations [16] from droplet-based RNA-
Seq. t-SNE preserves local distances and thus ensures that neighboring data points in the original 
data space are still nearby in the low-dimensional embedding. However, also points distant in the data 
space could be rather close-by in the embedding. Alternative dimension reduction methods, based on 
Gaussian processes [33] and diffusion maps [34,35], preserve global state space distances between 
cells. A comparison of dimension-reduction algorithms for single-cell analyses is provided in [34]. 
  
Several approaches have been developed to identify clusters within the high-dimensional data set, a 
step towards discovering new cell subpopulations of biological significance. Spectral clustering [36] 
and density-based cell population identification [37] for the analysis of FACS data has been proposed. 
For CyTOF data, subpopulations have been identified with a regularized regression-based method 
[38] and a graph-based method with community detection to maximize “modularity” [39]. Cell 
hierarchies have been estimated based on minimum spanning trees [40], and a divisive bi-clustering 
method [41] infers classes of molecularly distinct cells in the mouse brain. Of obvious biological 
interest is also to identify rare cell types outside of abundant clusters. Gruen et al. [42] devised an 
algorithm to do so and predicted and validated a rare intestinal cell type. 
  
A first hint of awareness of a dynamical process underlying the observed patterns is offered by 
methods that seek to quantify interrelatedness between cells by viewing them as snapshots of a 
temporal succession of states despite being measured at the same time. Such “smearing out” of a 
population is plausible given the stochastic asynchrony of biological processes between cells. The 
‘monocle’ package [43] allows the inference of a pseudotemporal order via independent component 
analysis (ICA) and reconstruction of a mean spanning tree based path through the low dimensional 
embedding. An alternative algorithm called Wanderlust [44] reconstructs a developmental trajectory 
based on nearest neighbor graphs in the high-dimensional measurement space. A statistical analysis 
was used to infer oscillatory genes from a single-cell RNA-Seq snapshot, where unsynchronized cells 
were mixed [45]. 

Longitudinal sampling 
The snapshot methods discussed above either destroy the observed sample (e.g. via cell lysis in the 
case of RNA-Seq and qRT-PCR and laser ablation in the case of imaging mass cytometry), fix cells 
(in the case of FISH), or lose the identity of individual cells between two measurement points (during 
repeated FACS). Some biological questions however [46]require monitoring of the molecular state of 
the very same cell at consecutive time points [46]. This is achieved by traditional video microscopy or, 
if cytotoxicity is involved and the process of interest is slow, by time-lapse microscopy. Successful 
implementation requires (i) choice of appropriate markers, (ii) conditions that keep cells in 
physiological conditions under the microscope and (iii) suitable methods for tracking and analysing 
individual cells (see [2,47] for reviews). 
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In mESCs, the dynamics of the heterogeneously expressed pluripotency factor Nanog has been 
scrutinized in this manner, demonstrating the switching between Nanog-high and Nanog-low cells. 
Such longitudinal studies quantified gene expression fluctuations across cell cycles, subpopulations, 
and conditions using reporter systems [48–52] or fusion proteins [53]. To study fundamental aspects 
of gene expression, mRNA levels have be measured using the MS2 system [49], where a specific 
target sequence is incorporated in the non-coding portion of the RNA of interest, forming a RNA stem 
loop that is bound by the constitutively expressed viral MS2 protein fused with a fluorescent protein 
[54]. Naturally, these live cell imaging methods measure low-dimensional dynamics: they monitor a 
relatively small number (typically up to two) of state variables, but in turn they provide a wealth of 
information on the temporal structure of gene expression. 

Connecting the dots: analysis informed by dynamical systems theory 
The patterns discovered by descriptive computational analyses, and how they change as cells switch 
their phenotypic state, must obviously be driven by a force and guided by constraints. A given single-
cell state, for instance, can be stable or unstable, fated towards a particular state or capable of 
choosing between multiple fates [55]. The governing principles of these dynamical properties can be 
comprehended in a formal manner by considering the regulatory network that controls gene 
expression. With that we move from the epistemology of phenomenological analysis to that of a 
formal framework anchored in a set of first principles of physics. 
  
It is in this sense that Waddington‘s landscape enters the interpretation of single-cell data. The 
landscape manifests the constraints on cell state changes ( ) that emanate from the nonlinear 

dynamics of the underlying regulatory system ( ) [1,56–58], which is often theoretically 
embodied by a gene regulatory network (for network inference based on snapshot data see [10,59]). 
The regulatory interactions between genes generate a driving force on the cell - an analog of the force 
in Newtonian mechanics. For instance, if gene A encodes an inhibitor of gene B, then as the 
expression of gene A increases, the expression of gene B will decrease. Such coordinated change of 
expression across all genes takes place until a cell reaches a stable steady state (where 

 and the system is robust to perturbations), which corresponds to a stable 
attractor – the point at the bottom of a potential well. Thus, in principle, the entire behavioral repertoire 
of a cell is encoded in the genome and uniquely maps into a particular landscape [57]. Internal 
fluctuations of gene expression push the cell away from the attractors – “against the uphill slope”. If 
the restoring force is not exceeded, the cell will be pushed back to the attractor. For a cell population, 
this confluence of deterministic and stochastic dynamics gives rise to “clusters” in state space, which 
account for the non-genetic cell-cell variability. Thus, the spread of the cluster around the attractor 
state is a measure of heterogeneity of this specific cell type [60]. Being different from a linear 
dynamical system that can have one attractor at most, nonlinearities in the rate equations describing 
the dynamics of the network are able to produce multiple solutions – multiple attractor states [61]. 

  
In the modern version of Waddington’s landscape [62] we are interested in the relative stability of 
each attractor – the relative “depth” of the valleys. In this perspective, different cell types have distinct 
quasi-potentials. A phenotype change induced by an external perturbation can be imagined as an 
equivalent of “catalysis”:  the barrier (hill) between attractors is lowered because of changes in the 
regulatory interactions conferred by signal transduction. This allows cells to swarm out of the original, 
now flattening attractor and reach new nearby attractor states [63] (see Figure 2). Thus, even from the 
qualitative landscape image, the relative depth of an attractor governs the direction of likely 
transitions. The landscape’s slope embodies the driving force of cell differentiation and the arrow of 
time of development [64]. In theory, a landscape can be computed numerically, in which the quasi-

potential  (the elevation) reflects the probability of transitions between attractors along a “least 

effort path”; but this would require knowledge of the system specifications  from the governing 

rate equations  of the dynamical system, i.e., the architecture of the network and 
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reaction modalities of every regulatory interaction. Since such detailed knowledge is not available and 

constructing  would be computationally expensive if we had the full information, only partial 
landscapes can be derived from models of known gene-gene interactions, which typically consist of 
small circuits [65]. 
 

 
Figure 2: A cell state transition is driven by the quasi-potential (landscape) change induced by 
external signals. In (A) a bistable landscape exists with cells residing mainly in state xa due to 
a high barrier to state xb. In (B) cells transit to xb, caused by the external signals that flatten the 
barrier. 

  
However, single-cell technology and the measurement of high-dimensional states of many cells now 
provide a way to determine the relative occupancy probabilities of attractor states (density of clusters 
in state space) and attractor transition rates (at which a cell moves from one cluster to another). From 
these two measurements, we can phenomenologically obtain the landscape shape, such as relative 
sizes and depths of attractors, and the height of barriers between them, directly from single-cell states 
without knowledge of the specification of the dynamical system. The general idea is that the 
stochasticity of individual cells turns a cell population into a statistical ensemble that “reads out” the 
constrained state space as imposed by the gene regulatory network. For instance, from the cell 
density distribution in state space and at steady-state, we can define attractors. The transition rates 
between attractors can be revealed by sorting cells from one cluster and observing transitions to 
reconstitute another [6]. According to these transition rates, one can estimate their “relative stability” 
based on the theory of quasi-potential energies. A widely used intuitive approximation of the depth of 

an attractor is , where  is the measured density of state  [66,67]. Note, 
however that a difference in this apparent potential is that this is not the source of the force that drives 

the state change: given the rate of state change and the quasi-potential , the driving force is not 

simply [58]  [58]. Exact experimental determination of the transition probabilities 
between attractors would require longitudinal monitoring, in all relevant state dimensions, of cells 
undergoing such transitions – which is currently beyond reach. However, cell transition rates in lower 
dimensions can be measured [53] and have been modeled with a phenomenological bifurcation 
model [68]. 
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Finally, a theory-based interpretation of snapshot data is based on the concept of ergodicity. In 
analogy to the ergodic hypothesis in statistical physics, a static picture of an ensemble of individual 
cells can inform us about the behavior of an individual over time – if the state changes of individuals 
are fast enough relative to the time of observation. The ergodic rate analysis (ERA) was used to 
estimate the rates of cell growth based on snapshots of a cell population [69], and population 
dynamics were deconvolved by tracking individual cells after cancer drug treatment [70]. 

Conclusions 
To understand the cell population substructures manifesting the constraints imposed by the 
underlying dynamical system which can be intuitively and formally depicted as a quasi-potential 
landscape, we need to go beyond descriptive computational data analysis and ad hoc interpretation 
and enter the still little charted terrain of theory-based interpretation. Here the most natural framework 
for understanding why the patterns in the data arise in the first place, is the theory of nonlinear 
stochastic dynamical systems [71]. In the near future we will see progress at all three fronts discussed 
in this article: In collecting data, the costs for profiling individual cells will drop drastically. For instance, 
Drop-seq for will make RNA-Seq with ten thousands of cells affordable, which is critical for a 
statistically robust evaluation of population substructures. Moreover, the combination of different 
profiling methods will enlarge the charted state space. At the front of correlating data points, we 
expect to see a consolidation. First-generation computational tools have served their purpose in 
introducing the intuition of single-cell resolution analysis of high-dimensional cell states, but lack a 
deeper understanding of the underlying regulatory system. At the front of connecting the dots, theory-
based analysis will benefit from progress and sinking costs in data collection, which will permit the 
design of more complex experimental schemes with denser snapshots in order to test the theory. 
However, theoretical concepts, such as the quasi-potential landscape must be further developed and 
linked to data, and the abstract ideas need to be disseminated to a larger community of 
bioinformaticians. 
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