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Abstract 68 

With only three living individuals left on this planet, the northern white rhinoceros (Ceratotherium 69 

simum cottoni) could be considered doomed for extinction. It might still be possible, however, to 70 

rescue the species by combining novel stem cell and assisted reproductive technologies. To discuss the 71 

various practical options available to us, we convened a multidisciplinary meeting under the name 72 

“Conservation by Cellular Technologies”. The outcome of this meeting and the proposed road map 73 

that, if successfully implemented, would ultimately lead to a self-sustaining population of an 74 

extremely endangered species are outlined here. The ideas discussed here, while centered on the 75 

northern white rhinoceros, are equally applicable, after proper adjustments, to other mammals on the 76 

brink of extinction. Through implementation of these ideas we hope to establish the foundation for 77 

reversal of some of the effects of what has been termed the sixth mass extinction event in the history 78 

of Earth, and the first anthropogenic one.  79 

 80 

Keywords: Conservation; Endangered species; Biodiversity; Induced pluripotent stem cells (iPSCs); 81 

Gametes; Assisted reproductive technologies (ART); Rhinoceros; Public awareness. 82 

83 
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The white rhinoceros – conservation success, and failure 84 

The white rhinoceros (Ceratotherium simum) is a species with complicated history. The species 85 

includes two sub-species, the southern white rhinoceros (SWR; C. simum simum) and the northern 86 

white rhinoceros (NWR; C. simum cottoni). Whether these are two sub-species or two separate species 87 

is still under debate (Groves et al., 2010). Once roaming much of southern Africa, the SWR was 88 

brought to the brink of extinction during the 19th century. Conservation efforts, protection against 89 

poachers, and natural breeding helped turn this tragic decline into a huge conservation success story. 90 

As of December 2010, the population size estimates exceeded 20,000 animals residing primarily in 91 

South Africa, Namibia, Zimbabwe, and Kenya (Emslie, 2012). Poaching is still a major threat (Traffic, 92 

2011; Van Noorden, 2016) but extensive protection efforts manage to help the SWR survive and even 93 

flourish. 94 

The story of the NWR is far less rosy. This (sub)species used to range over parts of Uganda, Chad, 95 

Sudan, Central African Republic, and the Democratic Republic of the Congo. In the 1960s the 96 

population numbered around 2,360 animals (Emslie and Brooks, 1999). Poaching and civil wars, 97 

however, reduced the NWR down to one confirmed wild population at the Garamba National Park in 98 

northeastern Democratic Republic of the Congo. Despite poaching pressure and armed conflicts in the 99 

area, conservation and protection efforts at the park, led by Kes Hillman-Smith, managed, through 100 

more than 20 years of work, to double the size of the population from the 15 animals counted in the 101 

1980s and maintain it as a stable population (Hillman Smith and Ndey, 2005). Despite adequate 102 

reproduction, the 30 or so individuals counted in April 2003 were unsuccessful in overcoming the 103 

extreme poaching pressure and a year later the wild population dwindled to only four animals. The last 104 

live wild NWR was seen in 2006 and the last fresh dung and foot prints signs were found in 2007 105 

(Emslie, 2012). The NWR is now considered extinct in the wild.  106 

The captive population did not fare much better. According to the white rhinoceros international 107 

studbook, the record keeping chronicle of the species in captivity (Christman, 2012), a total of 21 108 

NWR (9.12.1) were captured in the wild and brought into captivity between 1948 and the mid 1970s. 109 

Despite efforts to breed them in Zoo Dvůr Králové (Czech Republic) and in San Diego Zoo Safari 110 

Park (USA), only one of the captured females (Nasima, studbook # 351) reproduced in captivity. She 111 

gave birth in Zoo Dvůr Králové to one (0.1) hybrid (NWR+SWR), three live NWR offspring (1.2), 112 
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and one stillborn (0.1). One of her NWR offspring (Najin, studbook # 943) gave birth in 2000 to the 113 

only F2 offspring (Fatu, studbook # 1305) and the last NWR to be born in captivity. In an attempt to 114 

breed the remaining animals, four NWR (2.2) were transferred to the Ol Pejeta Conservancy in Kenya 115 

in 2009 (Holeckova, 2009). Although matings were observed, no pregnancy was achieved. 116 

Meanwhile, the remaining captive animals aged and gradually died. Of the 10 living captive NWR in 117 

2000 (4.6), only three are still alive – Sudan, a 42 year-old male, his daughter, Najin, a 26 year-old 118 

female, and her daughter, Fatu, who is now 15 years old, all presently at the Ol Pejeta Conservancy in 119 

Kenya. Based on the last reproductive health assessment, Sudan has a very low sperm count and 120 

shows degeneration in his testicular tissue. Najin has very weak hind limbs due to bilateral alterations 121 

of the Achilles tendons and, as a consequence, cannot support the weight of a mounting male or of 122 

pregnancy. Her daughter, Fatu, developed degenerated endometrium of unknown cause over her entire 123 

uterus, untreatable based on present medical knowledge. This will prevent successful embryo 124 

implantation and thus excludes her from carrying a pregnancy. With existing assisted reproductive 125 

technologies ruled out, what chances do the NWR have? They can be considered doomed for 126 

extinction, unless extraordinary efforts are made to prevent this outcome. 127 

 128 

A brighter future 129 

Whether the NWR is really doomed for extinction, and what and if conservation efforts should be 130 

continued is under debate. We, among others, think the NWR has a chance to survive into the future. 131 

Under the title “Conservation by Cellular Technologies” we gathered in Vienna, Austria, in December 132 

2015 to discuss the rescue options for the NWR and to formulate a road map that can eventually lead 133 

to a viable and prospering population. We can all imagine a wide array of futuristic techniques that are 134 

still to be developed, but relying on such dreams would be unrealistic. Being pragmatic in attitude, and 135 

with very concrete goals in mind, we elected to concentrate exclusively on options that have been 136 

demonstrated successfully in at least one species and can thus be reasonably applicable to the NWR, 137 

once the necessary modifications have been performed (Figure 1). 138 

We have defined three main objectives to be achieved. Our first and most pressing objective is to 139 

identify, develop, refine, and customize the measures needed to produce a NWR offspring. Once this 140 

has been achieved, our second goal would be to increase the population as fast as possible so as to 141 
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remove the species from immediate extinction risk (Reed et al., 2003). The third and long-term 142 

objective of the NWR recovery program would be the generation of multiple healthy, resilient, 143 

demographically and ecologically functional, genetically robust, and self-sustaining populations 144 

(Redford et al., 2011). Any such long-term program would need to ensure stakeholders’ involvement 145 

and habitat restoration and/or protection as essential measures for success (Crees et al., 2015). All 146 

three objectives are important and require meticulous planning. The following text is dedicated 147 

primarily to the first of these objectives. As we progress, follow-up meetings will include experts in 148 

population management, genetics, and other related fields to detail the plan for the following two 149 

objectives. 150 

 151 

Natural Gametes 152 

The first option to be considered is obviously natural mating. Regrettably, judging from the NWR’s 153 

relatively short history in captivity, natural breeding does not seem to hold much promise. Of all 12 154 

wild-caught females ever held in captivity, only one reproduced, and the only F1 female to reproduce 155 

was one of her daughters. As noted above, neither of the two living females nor the only surviving 156 

male is fit for natural breeding. Thus, the way forward will require a range of assisted reproductive 157 

technologies. The meeting in Vienna produced a number of possible options and suggested the 158 

collaborations needed to achieve them. 159 

To generate a NWR offspring, an embryo must implant and grow in a uterus to parturition. The 160 

simplest route to an embryo is the fertilization of an oocyte by a spermatozoon. Oocytes from NWR 161 

have not been collected and stored. The alternative would be to perform ovum pick-up (OPU) with or 162 

without preceding super-stimulation of ovarian activity (superovulation). Although not yet fully 163 

functional, the procedure has been reported in rhinoceroses (Hermes et al., 2009a; Hildebrandt et al., 164 

2007a). As oocyte collection requires full anesthesia (Walzer et al., 2000), the procedure cannot be 165 

performed frequently on the same animal. Safer anesthesia protocols developed recently for 166 

rhinoceroses (Göritz et al., manuscript in preparation) allow performing multiple OPU procedures on 167 

the same animal, however frequent application is limited. Furthermore, the only two surviving NWR 168 

females are at a private conservancy in Kenya, away from any fully-equipped laboratory capable of 169 

performing in vitro fertilization (IVF), the process of fertilizing an oocyte in the laboratory by 170 
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exposing it to motile sperm or by injecting a spermatozoon into the oocyte (intracytoplasmic sperm 171 

injection or ICSI). The procedure will have to be further mastered on model animals, and logistics 172 

related to handling and transporting the oocytes would need to be developed. Once oocyte collection, 173 

maturation, and IVF procedures are established, they will first be applied to SWR to ensure process 174 

flow and functionality, and only then used in the NWR. Collecting fertilization-competent oocytes, 175 

however, is not enough. The second component is the spermatozoon. The only living male NWR is 176 

Sudan who, as mentioned before, is old and with low sperm count. As electroejaculation is, at present, 177 

the only practical method to collect semen from him, any attempt to do so will require anesthesia, a 178 

risky procedure in such an old animal. Semen collected from him in 2014 is in storage in Kenya. If 179 

more semen is collected before he dies, or extracted from his epididymides after his death, it can also 180 

be cryopreserved for future use in IVF procedures that, in rhinoceroses, are not yet fully developed. 181 

Sperm cryopreservation protocols have been performed (Reid et al., 2009) and pregnancy with fresh 182 

and frozen-thawed sperm following artificial insemination has been reported in rhinoceroses (Hermes 183 

et al., 2009b; Hildebrandt et al., 2007b). Viable and non-viable frozen semen from four other NWR 184 

males is also available in storage under liquid nitrogen and can be used for IVF (Table 1). 185 

Regenerating the NWR population with a few oocytes collected from the two surviving females and 186 

semen from a few different males means an extremely small founder population and very few gametes 187 

to use for testing and process optimization. The genetic variation is even further narrowed since the 188 

two living females are a mother and her daughter, and Sudan is Najin’s father and Fatu’s grandfather. 189 

It is thus clear that we need to seek other sources for NWR gametes if we wish to establish a 190 

genetically healthy, or at least healthier, population. 191 

 192 

Other sources for NWR gametes for assisted reproduction 193 

While the three living animals may be a source for a small number of gametes with very limited 194 

genetic diversity, this would be insufficient to save the species from extinction. Another source of 195 

gametes could be germ cell precursors from animal tissue. Spermatogonial stem cells are present in 196 

the testicular tissue and their injection into testicles of a sterile recipient, even from another species, 197 

was demonstrated to produce spermatozoa of the introduced species in vitro (Sato et al., 2011a; Sato et 198 

al., 2011b) and in vivo (Hamra et al., 2002). The concept of isolating spermatogonial stem cells from 199 
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fresh or frozen testicular tissue, amplifying their numbers in vitro, and transplanting them into a 200 

recipient testis for re-deriving a germ line is a conservation tool applicable to endangered species 201 

(Oatley and Brinster, 2012). Alternatively, spermatozoa may be generated from the spermatogonial 202 

stem cells in vitro as was done in mice, thus overcoming the difficulties associated with 203 

xenotransplanations. To do so, many host-specific and species-specific factors will need to be 204 

identified and details cellular and molecular biology of rhinoceros spermatogenesis confirmed 205 

(González and Dobrinski, 2015). This procedure can be tested in interspecies spermatogonial injection 206 

of testicular tissue from SWR and, once perfected, applied to NWR. NWR germ line cells from Sudan 207 

and from cryopreserved testicular tissue of two other NWR males can be used. Regardless of the way 208 

somatic cells or spermatogonial stem cells are used, because diploid cells generate haploid gametes, 209 

all alleles can be recovered during meiosis, thus maximizing the genetic diversity. 210 

From around the time of birth, depending on the species, gonads harbor primordial germ cells that 211 

become oocytes or spermatogonial stem cells, both with the potential of developing into mature 212 

gametes. In case of perinatal death, gonads can be harvested and used as a source for native gametes. 213 

At present there are no NWR pregnancies and so no potential fetal or newborn death in this 214 

(sub)species. In the future, however, as the population grows, such cases are likely to occur and 215 

preparations can be made in their anticipation. In the meantime we can explore the possibility of 216 

collecting gonads from dead neonates or fetuses of SWR and growing them by xenotransplantation. 217 

One possible host to consider is the macropodid marsupial (kangaroos and wallabies). Marsupials are 218 

unique in the fact that their pouch young are immunotolerant (in kangaroos until about day 150 of 219 

their post-natal development) (Renfree et al., 2009). However, their small size might preclude such 220 

use as an in vivo system to support further development of the gonads. Xenotransplantation into other 221 

species should also be explored, for example into nude mice (Honaramooz et al., 2002), though these 222 

are even smaller than a pouch young. 223 

Finally, there is one more potential source for native gametes. One of the most pressing problems in 224 

human medicine today is the severe shortage of replacement organs for transplantation. To overcome 225 

this problem, the idea of growing human organs in large domestic animals is considered. Several 226 

advancements have been made in this direction over the past few years, using a technique known as 227 

knockout gene replacement. By knocking out a specific endogenous gene responsible for the 228 
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development of a selected organ during embryonic development, the developing animal will lack the 229 

respective organ. If embryonic stem cells or induced pluripotent stem cells (iPSCs) from the target 230 

species (e.g. human) are then inserted into such knockout embryos, the human pluripotent stem cells 231 

are likely to exploit the vacated niche. The idea has been demonstrated by pancreas complementation 232 

in mice using rat’s iPSCs (Kobayashi et al., 2010), use of mouse iPSCs for kidney regeneration in 233 

mice knocked out for the Sall1 gene (Usui et al., 2012), or by pancreatic complementation using 234 

allogenic blastomers in pigs (Matsunari et al., 2013). Hypothetically, this paradigm can be applied to 235 

large domestic animals knocked out for a gene responsible for germ cell development and 236 

complementing the embryos with NWR iPSCs, resulting in animals carrying NWR germ cells. Of a 237 

number of genes essential for germ cell proliferation and migration, one mutation, identified in mice, 238 

shows no undesired side effects and was termed germ-cell deficient (gcd) (Pellas et al., 1991). 239 

Supplementing embryos of gdc animals with normal NWR iPSCs can, in principal, result in a mouse 240 

or a pig or a horse with NWR germ cells. Thinking further, if an animal is knocked out for a gene 241 

responsible for germ cells development, that animal will not produce gametes, so blastocysts would 242 

not be available for insertion of NWR iPSCs. A work-around technique, such as conditional knockout 243 

or gene disruption in oocytes using DNA nucleases, would be incorporated to produce blastocysts. To 244 

do that we would need to elucidate the NWR gamete development pathways so that target genes can 245 

be identified. NWR iPSCs can then be injected into the embryos to generate animals carrying NWR 246 

germ cells. These NWR germ cells can then rely on the host’s endocrine system to develop, mature, 247 

and eventually produce NWR gametes that can be harvested and used for in vitro fertilization 248 

procedures.  249 

 250 

The hope in artificial gametes 251 

Instead of natural gametes, artificial production of gametes is now possible by directed differentiation 252 

of pluripotent stem cells (PSCs) in vitro, or combined with maturation in vivo, into germline 253 

stem/progenitor cells (Easley IV et al., 2015; Hayashi and Saitou, 2013; Hendriks et al., 2015; 254 

Nayernia et al., 2006). Pluripotent stem cells are characterized by indefinite self-renewal and 255 

maintenance of the capability of making all of the cell types of an animal. Pluripotent cells exist 256 

transiently in early embryos, but can be isolated and propagated in cell culture. They were thus coined 257 
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embryonic stem cells (ESCs). ESCs were first derived from mouse preimplantation embryos at the 258 

blastocyst stage (Evans and Kaufman, 1981; Martin, 1981). Mouse ESCs have been shown to be 259 

pluripotent by injecting them into preimplantation embryos that are then gestated in a surrogate 260 

mother. The resulting chimeric pups often harbor germ cells derived from the transplanted ESCs, 261 

allowing transmission of their genotype to subsequent generations (Kuehn et al., 1987). Human ESCs 262 

generation was accomplished in 1998 from in vitro-produced human blastocysts donated for research, 263 

using methods similar to the mouse (Thomson et al., 1998). Interestingly, ESCs from other species, 264 

such as the rat, pig and dog proved much more difficult to produce and no germ line chimeras have yet 265 

been generated from large animals (Ezashi et al., 2016). 266 

In 2006 a transformative technology enabled the derivation of pluripotent stem cells through cellular 267 

reprogramming, using somatic cells such as skin fibroblasts or peripheral blood mononuclear cells, by 268 

introducing four transcription factors (Pou5f1, Sox2, Klf4, and Myc) that are highly expressed in ESCs 269 

(Takahashi and Yamanaka, 2006; Takahashi et al., 2007). Addition of these transcription factors 270 

overcomes the dogma of cellular differentiation as a unidirectional, non-revertible, developmental 271 

processes, remodels the epigenome of terminally differentiated somatic cells and induces them to 272 

become pluripotent cells that have the same developmental potential as ESCs (Yamanaka and Blau, 273 

2010). These cells were consequently coined induced PSCs (iPSCs). In mice, iPSCs have been shown 274 

to be capable of generating all tissue types of the animal, including functional gonads and gametes. 275 

Multiple tissue samples and/or fibroblast cell lines from 13 (5.8) different NWR individuals and one 276 

(0.1) NWR × SWR hybrid are stored at the Leibniz Institute for Zoo and Wildlife Research (IZW), the 277 

San Diego Zoo Global (SDZG), and elsewhere (Table 1). Tissue biopsies have been collected from the 278 

three living individuals and primary fibroblast cell lines were generated from them. Importantly, these 279 

somatic cells will likely serve as the source for NWR artificial gametes in multiple ways.  280 

One way to generate artificial gametes is to generate iPSCs from these fibroblasts and then the use in 281 

vitro methods to direct them to develop into gametes. Successful generation of gametes from PSCs 282 

and birth of offspring have been reported in mice (Hayashi et al., 2011; Hayashi et al., 2012). Notably, 283 

iPSCs have been generated from a NWR fibroblast culture using retroviruses to deliver the 284 

reprogramming factors and, surprisingly, human transcription factors were able to reprogram 285 

rhinoceros cells (Friedrich Ben-Nun et al., 2011). Delivery of reprogramming factors by retroviruses, 286 
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however, results in integration of the exogenous reprogramming factors into the genome. These 287 

factors can become reactive later in life, leading to development of tumors (Okita and Yamanaka, 288 

2011). Because of this potential risk, integration-free cellular reprogramming techniques have been 289 

developed for clinical and therapeutic applications in humans, and two of these methods, plasmids and 290 

non-integrating Sendai virus, have been used successfully to generate iPSCs from NWR fibroblasts 291 

(SD, MD, and JFL, unpublished results). Once optimized, we envision production of iPSCs lines from 292 

tissue of each of the available 13 living and dead NWR individuals to maximize the genetic diversity. 293 

After establishing the NWR iPSC lines, transcriptome analysis will be necessary to determine the state 294 

of reprogramming and pluripotency characteristic by gene expression (Muller et al., 2008) and in 295 

comparison to PSCs from other species. Multilineage in vitro differentiation potential will also have to 296 

be demonstrated as part of quality control procedures. Recently, concerns were raised, suggesting that 297 

reprogrammed cells harbor mutations that might be hazardous for therapies (Bhutani et al., 2016). 298 

Culturing of ESCs and iPSCs also favor, by selection, cells that contain duplications of pluripotency-299 

associated genes (Laurent et al., 2011), aneuploidies (Draper et al., 2004), and, in some cases, loss of 300 

tumor suppressor genes that inhibit cancerous processes (Garitaonandia et al., 2015). iPSCs may also 301 

exhibit epigenetic differences pertaining to depth of reprogramming and duration of culturing (Laurent 302 

et al., 2010). Known effects include reactivation of the inactive X-chromosome in female cells and 303 

abnormal imprinting of certain genes (Nazor et al., 2012). It will be necessary to apply similar 304 

analyses on NWR iPSCs, including RNA sequencing and whole genome DNA sequencing to discover 305 

abnormalities that may arise during culture of these cells. 306 

As mentioned above, a method to generate artificial gametes from iPSCs in mice has been 307 

demonstrated, with fertile offspring born from these gametes (Hayashi et al., 2011; Hayashi et al., 308 

2012; Hayashi and Saitou, 2013; Nayernia et al., 2006; Zhu et al., 2012) and ongoing experiments 309 

indicate that human gametes could also be generated (Aflatoonian et al., 2009; Eguizabal et al., 2011; 310 

Panula et al., 2011). Translating this knowledge to rhinoceroses is a major challenge. In mice, 311 

producing the gametes in vitro requires co-culture with approximately 50,000 fetal mouse gonadal 312 

cells per ovarian organoid (Hayashi et al., 2012).  If the relevant components are highly conserved 313 

through evolution, it is possible that the mouse gonadal tissue would also work for co-culture of 314 

rhinoceros cells. If mouse tissue does not suffice to support development of rhinoceros gametes, 315 
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research will be necessary to clarify what factors co-culture cells provide so that these may be 316 

replaced or supplemented. To detect germ line cells development from NWR iPSCs, integration of 317 

reporter constructs under the control of germ cell genes such as Blimp1 or Stella (Hayashi et al., 2012) 318 

would be helpful. 319 

It would be difficult, but not impossible, to obtain SWR fetal gonadal tissue if experiments indicate 320 

that a closer species match is necessary. When using SWR fetal gonadal tissue, a method will need to 321 

be developed to differentiate between NWR and SWR cells so that only the desired cells can 322 

eventually be harvested from the culture, a feasible prospect with whole genome sequencing data. A 323 

genome assembly for the SWR is available through Genbank (GCA_000283155.1). The San Diego 324 

Zoo institute for Conservation Research has acquired ~12X Illumina short read sequences for 8 NWR 325 

and 4 SWR for use in the effort for genetic rescue of NWR (Tunstall et al., unpublished). With these 326 

data it will be possible to identify the homologs of mouse genes and regulatory loci that are involved 327 

in the development of germ cells. Whole genome sequence data will also facilitate estimation of 328 

mutation rates in NWR iPSCs, a parameter important for excluding abnormal cell lines. 329 

Second, as an alternative for iPSC lines, generation of ESCs by somatic cell nuclear transfer (SCNT) 330 

can be used. Generating embryos through transfer of adult cell nuclei into recipient enucleated oocytes 331 

was first reported for mammals almost 20 years ago (Wilmut et al., 1997) and has since been 332 

performed successfully in more than 20 different species, including humans. Because the NWR and 333 

SWR are closely related (sub)species, the probability of success in (inter)species SCNT (iSCNT) is 334 

high (Loi et al., 2011). The resultant embryos would be transferred into surrogate females or, once 335 

reaching the blastocyst stage in culture, can become the source for ESCs that can then be used to 336 

generate more gametes. A large number of iSCNT reports are available in the literature, yet offspring 337 

were produced only when the transfer was done between congeneric species or conspecific sub-338 

species or breeds (Folch et al., 2009; Gómez et al., 2004; Gómez et al., 2008; Hwang et al., 2013; Kim 339 

et al., 2007; Loi et al., 2001; Meirelles et al., 2001; Srirattana et al., 2012; Woods et al., 2003). iSCNT 340 

cells, however, will inherit the mitochondrial DNA of the oocyte donor, in this case the SWR. As 341 

described above, differentiation potential and genomic integrity of these cells will need to be 342 

determined before use, a process that may prove to be challenging (Lagutina et al., 2013).  343 
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Regardless of the source of the gametes, there is one more technology that can be utilized to hasten 344 

our advancement once a small and stable population has been established. To produce a large number 345 

of offspring within a short time span, it is best if the breeding population is biased towards females 346 

(Wedekind, 2002). The technology to achieve this kind of a sex ratio bias was developed in the 1980’s 347 

(Johnson et al., 1987). The process relies on the difference in DNA content between X and Y 348 

chromosome-bearing spermatozoa to sort sperm samples into X- and Y-chromosome enriched 349 

fractions, discarding dead or mal-oriented spermatozoa. The technology has by now become 350 

commercial and is widely used in the cattle industry. Sperm sex sorting has also been attempted in 351 

white and black (Diceros bicornis) rhinoceroses (Behr et al., 2009) but to date no pregnancy has been 352 

reported. Further pursuing this technology and using the sorted sperm for ICSI would increase the 353 

chances of generating female embryos that can be transferred. During the initial stages we cannot be 354 

too selective, but in the future we can further consider verifying the sex of the embryo before it is 355 

transferred to ensure offspring production of the desired sex. This is very important during the early 356 

stages of building up the NWR population. 357 

It should be noted that epigenetic properties of artificial gametes might be different from natural 358 

gametes. Mouse preimplantation embryos go through global methylation erasure (Howlett and Reik, 359 

1991; Santos et al., 2002). Germ cell reprogramming of epigenetic marks takes place at different times 360 

in sperm and oocytes development and this reprogramming is essential for normal development 361 

(Barlow and Bartolomei, 2007; Smallwood and Kelsey, 2012). In Mice, after implantation, de novo 362 

methylation takes place, starting at the epiblast stage. This is followed, however, by a second wave of 363 

demethylation during primordial germ cell development so that by E13.5 demethylation reaches nadir 364 

levels of 14% in male and 7% in female embryos (Seisenberger et al., 2012). Almost nothing is known 365 

about the methylation and demethylation dynamics in rhinoceros gametes and embryos. It is also not 366 

known how the process will be affected when artificial gametes are used. Demethylation patterns and 367 

extent can be investigated in preimplantation SWR embryos produced by IVF, but studies of 368 

methylation in post-implantation embryos would not be pursued. 369 

  370 

From gametes to live birth 371 
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Irrespective of the source of the gametes, be it natural or artificial, our goal is to reproduce the NWR 372 

population. Phylogenetically, the domestic horse (Equus caballus) is the closest domestic relative of 373 

the rhinoceros (Murphy et al., 2001; Price and Bininda-Emonds, 2009) and knowledge from horses 374 

has been applied to studies on rhinoceroses (Portas et al., 2012; Roth et al., 2004; Stoops et al., 2011). 375 

Considering the scarcity of NWR, many of the assisted reproductive technologies will need to be 376 

developed in domestic animals, SWR, and perhaps other species before they can be applied to NWR. 377 

Much is known about the domestic horse estrous cycle, follicular dynamics, oocyte development and 378 

maturation, and in vitro fertilization (including intracytoplasmic sperm injection, ICSI), somatic cell 379 

nuclear transfer, embryo culture, and embryo transfer techniques have been developed (Galli et al., 380 

2007; Galli et al., 2014). There is also extensive knowledge of pregnancy in mares. Although 381 

information is accumulating with respect to the white rhinoceros (Hermes et al., 2007; Hermes et al., 382 

2012; Radcliffe et al., 1997; van der Goot et al., 2015), there are still large gaps in our knowledge. In 383 

horses, it is known, for example, that developmental competence of oocytes is proportional to 384 

follicular size, and that competent oocytes can be rarely collected from mares when follicular size is 385 

smaller than about 10 mm (Goudet et al., 1997). Although ovarian super-stimulation and ovum pick-386 

up have been reported in rhinoceroses (Hermes et al., 2009a; Hildebrandt et al., 2007a), the parallel 387 

minimal follicular size and follicular dynamics following super-stimulation are still unknown and 388 

should be studied in the SWR. Also unknown at present are the optimal conditions for in vitro oocyte 389 

maturation in white rhinoceroses, a process now under study in SWR. Based on knowledge 390 

accumulated thus far in horses (Galli et al., 2007) and in rhinoceroses, a realistic estimate for in vitro 391 

oocyte maturation for rhinoceroses is considerably lower compared to over 80% in the mare 392 

(Dell'Aquila et al., 1996) or as high as 95% in the cow (Zhang et al., 1992). 393 

Once matured oocytes are available, be it natural (NWR or SWR) or artificial, the most efficient 394 

method to produce embryos will likely be by ICSI. With the limited amount of cryopreserved NWR 395 

sperm available in storage, each straw and tube should be thawed in small portions and sperm used as 396 

economically as conceivably possible, at least until a fully functional method for NWR artificial sperm 397 

production has been developed or enough male offspring have been produced and have reached 398 

maturity. However, although ICSI is routinely and successfully performed in horses, and culture 399 

conditions are well known in this species, the procedure is not yet developed in rhinoceroses and 400 
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efficiency in the few attempts performed so far is low and should be improved through work on SWR 401 

or, in line with the strategy of the African Rhino Specialist Group (AfRSG) of the Union for 402 

Conservation of Nature and Natural Resources (IUCN), through hybridization by ICSI between SWR 403 

× NWR. Embryo production efficiency in domestic species is in the range of 5-50%, depending on the 404 

species and reporting method (Cocero et al., 2011; Galli et al., 2007; Galli et al., 2014; Vajta et al., 405 

1996). Efficiency will be notably lower in rhinoceroses as there is no information on the kinetics and 406 

timing of pre-implantation embryonic development in vivo and will require a long learning process, 407 

using SWR oocytes or artificial gametes. When artificial gametes are used, efficiency is expected to be 408 

even lower.  409 

In vivo-produced embryos are normally of better quality and have better chances of leading to 410 

pregnancy after transfer (Greve et al., 1993), however, embryo flushing from rhinoceroses 411 

reproductive tract is obviously not practical, not ethical, and not recommended. The next best option 412 

appears to be culturing the newly generated embryos in sheep oviducts. The technique has been tested 413 

on a number of domestic species and shown to produce embryos of almost as high quality as in vivo-414 

produced embryos (Lazzari et al., 2010). Alternatively, in vitro embryo culture in cell-free and serum-415 

free simple media should also be evaluated. The limitations in numbers of ova and recipients suggest 416 

that efforts need to be made to assure that embryos of the highest quality are transferred. Achieving 417 

this desired result will require development of quality control. While the embryos are produced and 418 

grown, epigenetic modifications and the dynamics of methylation and demethylation should be studied 419 

and the relevant factors identified. This, and other parameters such as morphology, fertilization 420 

potential, and developmental competence, should all be part of such quality control process. 421 

Information gathered on epigenetic factors is of prime importance as it may determine which host will 422 

ultimately be used to carry the embryos. 423 

As no NWR females are available to carry pregnancies, at least not until a large enough population has 424 

been produced, surrogate dams from other species or sub-species should be considered and evaluated. 425 

The SWR would be the ideal selection for surrogacy. For the surrogate female to be ready to receive 426 

the embryos, its estrous cycle should be synchronized, a procedure that has been reported in this 427 

species (Hermes et al., 2012; Hildebrandt et al., 2007b). Transferring embryos into the rhinoceros 428 

uterus, however, is going to be a very challenging procedure. The rhinoceros’ cervix is highly 429 
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convoluted and impossible to penetrate. Laparoscopic transfer, a procedure routinely performed in 430 

domestic animals, is also problematic in rhinoceroses because of the thickness of their skin, difficulty 431 

to control intra-abdominal pressure, and highly restricted wound healing-management. Other 432 

approaches will therefore need to be developed to gain access to the uterus and work is being done in 433 

this direction. If no solution for embryo transfer in SWR is found, and keeping in mind the size of the 434 

offspring and the ethical issues involved, the horse can be considered possible candidates, at least until 435 

there are enough NWR adults to allow natural mating and/or artificial insemination. When using other 436 

species, however, there are two major issues that will need to be studied and addressed, besides the 437 

natural mechanisms that prevent or at least restrict breeding between species. Pregnancy length in 438 

horses is about one year while it is about 16-18 months in white rhinoceroses. Normally, pregnancy is 439 

terminated when progesterone (or its metabolites) drops to below baseline levels. If progesterone 440 

levels drop prematurely, pregnancy may be supported and possibly even extended by a month or two 441 

through administration of exogenous progesterone to facilitate fetal growth to a stage when it can be 442 

delivered and survive with some support. Pregnancy has been maintained in horses (Vanderwall et al., 443 

2007) or supplemented in Indian rhinoceros (Rhinoceros unicornis) (Stoops et al., 2013; Durrant, 444 

unpublished results) by administration of exogenous progesterone. This alternative can be considered 445 

as a way to extend pregnancy closer to the natural length. That is, of course, under the assumption that 446 

a rhinoceros fetus will require longer pregnancy even when growing in a horse, and that it is not the 447 

fetus that controls the length of its own pregnancy (Condon et al., 2004). Transferring into any other 448 

species may also involve potential divergence of genes associated with placental and embryonic 449 

development. These possibilities will need to be studied, and the surrogate mother’s safety will have to 450 

be verified before any further consideration. Another aspect to consider is the passage of the fetus 451 

through the birthing canal. The shape and size of the fetus in each species fits the anatomy of the 452 

birthing canal in the same species or in closely related species of very similar body shape and fetal 453 

size. Birth weight of a white rhinoceros (~65 kg) is similar to that in horses (between ~45 kg in 454 

thoroughbred and ~90 kg in draft horses) and much higher than the ~10-30 kg in various donkey 455 

breeds. From crosses between horses and donkeys (mules and hinnies) we know that birth weight in 456 

the hybrids is directly related to maternal weight (Walton and Hammond, 1938). In other words, birth 457 

weight of a mule may be twice that of a hinny. We can therefore expect a smaller rhinoceros fetus at 458 
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birth when grown in a horse. The shape of the fetus is a more complicated issue. Conformation of the 459 

horse fetus is different from that of the rhinoceros. This difference may hinder fetal passage through 460 

the birthing canal, resulting in dystocia. If this will prove to be the case, rhino fetuses grown in mares 461 

may need to be delivered by elective cesarean section (Freeman et al., 1999). Another consideration is 462 

associated with placentation. The horse has a placenta that occupies both uterine horns. Similarly, the 463 

rhinoceros placenta implants in both uterine horns in a way that the fetus is located mostly in one horn 464 

and the placenta extends into the other horn. The rhinoceros placenta is essentially an epitheliochorial 465 

type with diffuse villi or microcotyledons and trophoblast that does not invade the maternal tissues 466 

(Benirschke and Lowenstine, 1995). The chorionic girdle of the horse placenta produces equine 467 

placental gonadotrophin (equine CG or eCG) similar in function to human CG (hCG) that is essential 468 

during early pregnancy. We do not yet know the nature of the rhinoceros CG but it is likely to have 469 

similar functions. Since the placenta is diffuse, and the trophoblast does not invade the uterus, it is 470 

likely that rejection would not occur and it seems feasible that a transferred rhinoceros embryo would 471 

survive in a horse uterus. 472 

Another issue associated with transferring rhinoceros embryo into a surrogate mother of a different 473 

species is the risk of maternal incompatibility associated with embryonic rejection. A work-around 474 

approach that will be tested is the use of inner cell mass transfer to generate surrogate species-475 

rhinoceros chimeras. Following this procedure, blastocysts of the donor species (rhinoceros) and 476 

recipient species (e.g. horse) are grown in parallel in the laboratory. The inner cell mass of the 477 

recipient blastocyst is first removed to get an empty trophoblastic vesicle. The inner cell mass of the 478 

donor blastocyst is then collected by micromanipulation and injected into the recipient vesicle. The 479 

resulting embryo is, in this example, a rhinoceros embryo in a horse trophoblast. This technique 480 

considerably reduces the risk of rejection when transferring embryos between species (Boediono, 481 

2006). As a proof of concept, and stemming from cooperation discussed during the “Conservation by 482 

Cellular Technologies” meeting, a challenging demonstration following the general approach of 483 

working first in model animals will reconstruct sheep (Ovis aries) embryos by transferring roe deer 484 

(Capreolus capreolus) inner cell masses into them. The resulting chimeras will then be transferred into 485 

sheep for development to term, whereupon the sheep will give birth to roe deer fawns. The study has 486 

many merits beyond the proof of concept. It will be part of an on-going study on fetal-maternal 487 
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interaction, including blood groups and diapause. Once this procedure is established and confirmed, 488 

the next step to be studied would probably be the transfer of a SWR inner cell mass into a blastocyst 489 

of another species to be transferred into the recipient animal. Such pregnancies will be closely 490 

monitored by 3D ultrasonography to ensure normal development of the conceptus and maternal safety 491 

throughout this process. Otherwise, we will enact medical termination of the pregnancy. 492 

If our approach is successful, it may be possible to deliver NWR offspring within a decade or so. Such 493 

offspring will attain maturity once they have reached the age of around 6-7 years for females and 494 

around 8-10 years for males. When this has happened, the population can be further propagated in 495 

three different venues – (i) through natural mating between the generated offspring, (ii) using assisted 496 

reproductive technologies such as artificial insemination, IVF and embryo transfer, and (iii) by 497 

continuing the most refined process that has led to the birth of the first generation of offspring. This 498 

last process will naturally continue to generate offspring during the years the first generation grows to 499 

maturity. It is thus estimated that at least 50 years will be required for the NWR population to grow 500 

out of its current critically endangered status. 501 

 502 

Banking for the future 503 

About 35 years ago the idea of biobanking for the purpose of conservation was brought to the attention 504 

of the scientific community (Veprintsev and Rott, 1979). Since then several others have further 505 

stressed the importance of setting up genome resource banks (Benirschke, 1984; Holt et al., 1996; 506 

Saragusty, 2012; Wildt, 1992) and consortia such as the Frozen Ark consortium 507 

(http://www.frozenark.org) or the Amphibian Ark (http://www.amphibianark.org) were established. 508 

Furthermore, the Convention on Biological Diversity (1992) calls all 196 parties to the convention to 509 

set up cells and gametes repositories from species in their respective territories to counter biodiversity 510 

decline worldwide. Being aware of the dire situation we face now with the NWR (and many other 511 

species), an important part of a project to save this species from extinction would be to set up a 512 

genome resource bank for the NWR with samples stored in at least two separate locations for safety 513 

reasons. To do that, cryopreservation techniques should be developed or, when already available, 514 

optimized for both natural and artificial gametes, embryos generated by various techniques, and iPSCs 515 
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and fibroblast cell lines from all individuals, as well as various tissues including ovarian and testicular 516 

slices, and fetal gonads when available. 517 

 518 

Ethical considerations 519 

A plan like this is not devoid of ethical issues that will need to be considered and addressed. It is 520 

generally assumed that resources available for conservation activities are limited and should be used 521 

wisely, in the most cost-effective fashion, for the benefit of the largest number of species possible. 522 

Following this line of thought, there would always be competition for resources between species or 523 

between species and habitat conservation. Should the limited resources be spent on rescuing a single 524 

(sub)species that is, by standard accounts, already extinct? Wouldn’t it be more desirable to spend that 525 

much money on protecting the habitat or on saving other species that have not yet gone over the brink 526 

of extinction? It is well known that when a species’ abundance is high, societal spending per animal is 527 

low and the bulk of the money goes toward preserving the natural resources that will ensure survival 528 

of the species. When abundance goes down to just a handful of animals, society’s investment per 529 

individual animal goes drastically up to save the species from extinction while investment in the 530 

habitat goes down on the priority list. In the case discussed here, investment required for the research 531 

leading to generation of NWR offspring goes far beyond the individual species in question. Much of 532 

the knowledge that will be gained along the process is in the domain of basic science and as such it 533 

can be applied, after the necessary modifications, to other mammalian species facing the risk of 534 

extinction as well as to other, not yet identified medical and veterinary niches. The learning process 535 

itself is also very important. Problems encountered in undertaking the project described here will be 536 

addressed using high ethical standards. We expect that in both anticipated and unanticipated 537 

challenges this project faces, our efforts will benefit future endeavors targeting other species. 538 

 To be able to develop the technologies that are crucial for the success of the program, oocytes will 539 

have to be collected from the two living NWR as well as from SWR, being their closest relatives and 540 

most suitable model animal. A philosophical question can thus be asked here – is rescuing a species or 541 

a subspecies important enough to justify subjecting members of another species or subspecies to 542 

medical interventions such as ovum pick up or embryo transfer? As SWR reproduction in captivity is 543 

not satisfactory, and at times zoos resort to assisted reproductive technologies, studying these various 544 
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techniques in SWR is not solely for the benefit of the NWR. They will also benefit SWR reproduction 545 

in captivity. A further question to be asked concerns the use of surrogate mothers, especially when a 546 

completely different species is involved. Is the cause a good enough justification for this? And how 547 

would the offspring be handled once born? Would it be separated from its surrogate mother after 548 

birth? After all, it may need to be hand-raised if the dam’s milk is not suitable for rhinoceros neonates. 549 

How would such separation affect the surrogate mother? And what effect will it have on the newborn? 550 

Should it be raised in the company of members of the surrogate mother’s species? Or with other 551 

rhinoceroses? If SWR will be used as surrogate mothers, many of these issues will naturally be 552 

resolved. Some of the procedures discussed above will involve other animals, possibly including nude 553 

mice, macropodid marsupials, organ knockout animals and more. Use of these experimental animals 554 

poses the standard ethical issues faced by any medical research that involves the use of animals. All 555 

participants in the “Conservation by Cellular Technologies” are committed to the principle of the three 556 

Rs in animal research (Replacement, Reduction, Refinement) (Russell and Burch, 1959) and will 557 

strive to find in vitro alternatives wherever and whenever possible. 558 

 559 

Public awareness  560 

Every time one of these elusive NWR died, the international media was interested in covering “the 561 

story”. Not too long afterwards the interest subsided, even though this species got a step closed to 562 

becoming extinct. International support for saving the NWR from extinction is nearly nonexistent. The 563 

critical case of the NWR should be used to campaign the idea of “Rewinding the process of 564 

mammalian extinction”. Project partners will join forces to raise the public awareness needed for 565 

achieving a number of objectives. To name just a few of them: Engaging other supportive partners; 566 

generating financial resources; societal acceptance of “cellular techniques” application for 567 

conservation; educating the next generation; and changing the attitude of poachers and consumers of 568 

their poached animals parts. 569 

 570 

Conclusions 571 

With three individuals left, the northern white rhinoceros could be considered doomed for extinction. 572 

The meeting convened during early December 2015 discussed cellular and assisted reproductive 573 
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technologies that could save this species and be applicable to other mammalian species facing similar 574 

risk of extinction. Using the resources available – three living animals and stored tissue samples, cell 575 

lines, and spermatozoa from these and already deceased individuals, we plan to embark on a journey 576 

that will involve development of stem cell (including iPSCs) technologies, collection of natural and 577 

production of artificial gametes, in vitro embryo production and culture, embryo transfer into 578 

surrogate mothers, pregnancy maintenance, and rearing of offspring. Our ultimate goal, possibly 579 

several decades in the future, is to establish viable, self-sustaining northern white rhinoceros 580 

populations. 581 
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Figure legend 884 

 885 

Figure 1: Flow diagram detailing the various options discussed during the “Conservation by 886 

Cellular Technologies” meeting that took place in Vienna in December 2015. Detailed are the 887 

resources and flow of the process using natural gametes (right side of the diagram) or 888 

constructed gametes (left side of the diagram), leading eventually, so we hope, to live birth of a 889 

northern white rhinoceros (NWR) and later on to a viable and self sustaining NWR population. 890 

SWR = southern white rhinoceros; KOGR = knockout gene replacement; PM = post mortem; 891 

IVF = in vitro fertilization; ICSI = intracytoplasmic sperm injection; iPSCs = induced 892 

pluripotent stem cells; PGCs = primordial germ cells; ICM = inner cell mass. 893 

894 
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Table 1. Available Northern white rhinoceros resources 895 
 896 

Name Sex Studbook # Sample type Sample location 

Lucy F 28 Established cell culture SDZSP 

Dinka M 74 
Established cell culture 
Frozen spermatozoa 

SDZSP 
SDZSP 

Angalifu M 348 

Established cell culture 
Frozen testicular tissue 
Cryopreserved adipose tissue 
Frozen spermatozoa 
iPSCs  (unpublished) 

SDZSP 
SDZSP 
SDZSP 
IZW 
SDZSP/TSRI 

Nasima F 351 Established cell culture SDZSP 

Sudan M 372 

Live animal 
Established cell culture 
Cryopreserved tissue 
Frozen spermatozoa (Quality issues1) 
Frozen spermatozoa 

OP 
SDZSP 
OP 
OP   
IZW 

Saut M 373 
Established cell culture 
Frozen spermatozoa 

SDZSP 
IZW 

Nola F 374 
Established cell culture 
Cryopreserved adipose tissue 

SDZSP 
SDZSP 

Nadi F 376 
Established cell culture 
Cryopreserved ovarian tissue 

SDZSP 
SDZSP  

Nesari F 377 Only DNA, no cell culture SDZSP 

Nasi (hybrid) F 476 
Established cell culture 
Frozen tissue (Quality unknown2) 

SDZSP  
IZW  

Suni M 630 

Established cell culture 
Established cell culture 
Established cell culture 
Frozen tissue (Quality unknown3) 
Frozen testicular tissue (Quality unknown3) 
Frozen spermatozoa (Quality issues4) 
Frozen spermatozoa 

SDZSP  
IZW 
FLI 
OP   
OP   
IZW  
OP 

Nabire F 789 

Established cell culture 
Established cell culture 
Established cell culture 
Cryopreserved tissue 
Blood in EDTA & heparin 
iPSCs (unpublished) 
iPSCs  (unpublished) 

SDZSP  
IZW 
FLI 
IZW 
IZW 
MDC 
HCM 

Najin F 943 

Live animal 
Established cell culture 
Established cell culture 
Established cell culture 
Cryopreserved tissue 
Frozen blood in EDTA 

OP 
SDZSP  
IZW 
FLI 
OP 
IZW 
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Fatu F 1305 

Live animal 
Established cell culture 
Established cell culture 
Established cell culture 
Cryopreserved tissue 
iPSCs  (Published, 20115) 

OP 
SDZSP  
IZW 
FLI 
OP 
SDZSP/TSRI 

 897 

1. Frozen semen of very poor quality. Not suitable for AI. 898 

2. Tissue quality is not known due to questionable cryoprotective agent. 899 

3. Tissue quality is not known since samples were collected about 36 h after the animal died. 900 

4. Frozen spermatozoa are immotile so cannot be used for AI. 901 

5. Friedrich Ben-Nun I, Montague SC, Houck ML, Tran HT, Garitaonandia I, Leonardo TR, 902 

Wang Y-C, Charter SJ, Laurent LC, Ryder OA, Loring JF. 2011. Induced pluripotent stem 903 

cells from highly endangered species. Nat Methods 8(10): 829-831. 904 

 905 

SDZSP = San Diego Zoo Safari Park, USA; IZW = Leibniz Institute for Zoo and Wildlife 906 

Research, Berlin, Germany; Dvur = ZOO Dvůr Králové, Czech Republic; OP = Ol Pejeta 907 

Conservancy, Kenya; FLI = Friedrich Loeffler Institute on the Isle of Riems, Germany; MDC = 908 

Max Delbrück Center for Molecular Medicine, Berlin, Germany; HCM = Helmholtz Center 909 

Munich, Germany. TSRI= The Scripps Research Institute, La Jolla, CA, USA. 910 

 911 
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Figure 1: Flow diagram detailing the various options discussed during the “Conservation by Cellular 
Technologies” meeting that took place in Vienna in December 2015. Detailed are the resources and flow of 
the process using natural gametes (right side of the diagram) or constructed gametes (left side of the 

diagram), leading eventually, so we hope, to live birth of a northern white rhinoceros (NWR) and later on to 
a viable and self sustaining NWR population.  

SWR = southern white rhinoceros; KOGR = knockout gene replacement; PM = post mortem; IVF = in vitro 
fertilization; ICSI = intracytoplasmic sperm injection; iPSCs = induced pluripotent stem cells; PGCs = 

primordial germ cells; ICM = inner cell mass.  
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