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Abstract

In systems biology, one is often interested in the communication patterns
between several species, such as genes, enzymes or proteins. These patterns
become more recognisable when time-resolved experiments are performed
under possibly several conditions. The time-resolved communication be-
tween such species can often be structured by reaction networks such as gene
regulatory networks, biochemical networks or signalling pathways. Mathe-
matical modelling of data arising from such networks often reveals important
details, thus helping better to understand the studied system. In many cases,
however, corresponding models still deviate from the observed data. This
may be due to unknown but present catalytic reactions. From a modelling
perspective, the question of whether a certain reaction is catalysed leads to a
large increase of model candidates. For large networks the calibration of all
possible models becomes computationally infeasible very fast. We propose
a method which determines a substantially reduced set of appropriate model
candidates and identifies the catalyst of each reaction at the same time. To
that end, we propose a multiple-step procedure which first extends the net-
work by additional latent variables and subsequently identifies catalyst can-
didates using similarity analysis methods. The developed method is applied
on several simulated examples. Results suggest a good performance even for
non-informative data with few observations. This method is applied on CD95
apoptotic pathway and provides new insights into apoptosis regulation.
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1 Introduction

A central objective in systems biology is to derive a mathematical model which is

used to explain multivariate readouts and thus serves as a tool for detailed inves-

tigation of a given biochemical process [1, 2]. Although there are many ways in

constructing such models, they generally share the well-known dilemma of mod-

els being always only an approximation of reality. This means that regardless of

the quality of the model performance, there always remains uncertainty when ex-

plaining a biological phenomenon [3]. This uncertainty may arise from different

sources, some of which are: the collected data may be subject to various kinds of

noise; parameters of complex models may be unidentifiable and thus lead to equal

quality of several competing models; the model topology may be specified in a

wrong way, e. g. providing a too extreme simplification of reality.

Describing the connection between several variables can be conveniently done

using networks or pathways [4]. This has successfully been applied in the field

of biology in past decades [5]. In fact, the number of available biological models

and reactions has been extensively growing throughout the last decade [6]. For

example, signalling pathways are known to be the core mechanism of numerous

biochemical processes, such as cell differentiation, cell death or cell division. Ad-

ditionally, the intracellular behaviour of small molecules can be described in a

detailed manner [7, 8]. Small differences in this behaviour may determine the cell

fate and thus are of major importance for the overall understanding of the mod-

elled system. Interactions between single components of such networks can occur

in various complexities e. g. linear, higher-order or catalytic reactions. The iden-

tification of catalytic reactions can be especially challenging if the catalyst of an

interaction is not known.

One way of better understanding the underlying mechanisms is to study these

pathways over time. Typically the time-resolved data for such systems provides
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concentration time-series for some parts of the signalling pathway. For example,

immunoblotting [9] allows the assessment of phosphorylation states of proteins

and thus provides a measure for the total sum of all phosphorylated molecules in

the studied system. Repeated over time, this method provides a time-series of rel-

ative protein concentrations which can be used for further analysis. Mathematical

modelling of time-resolved variables in a network arrangement is often done by

ordinary differential equations (ODEs) [10]. Depending on the size of the studied

system, the calibration of ODEs based on data may be computationally demanding.

Considering the possibility that reactions are catalysed expands the model can-

didate space in an exponential way. To address this challenge, some established

model selection techniques, such as greedy stepwise model selection or full best-

subset model selection, can be applied [11]. However, these model selection tech-

niques often fail to find the most appropriate model for given data due to either

not taking correlation of network components into account or overfitting to data.

This means that reducing the model candidate space often comes at a high price of

reduced method performance.

Recently, a novel scheme of catalysis identification has been proposed [12].

Here, the authors suggest a model reduction technique which is a graphical ap-

proach, taking into account the network topology of the system. Although their ap-

proach is able to vastly reduce the model candidate space, this reduction is mostly

achieved by eliminating catalysis from certain reactions due to biological prior

knowledge rather than performing a statistical comparative study. Furthermore,

their approach needs user input suggesting which reactions should be investigated

for catalysis.

This manuscript proposes a novel approach for identification of catalysis in

biological systems. We first extend the known network by including hidden com-

ponents and estimate their time courses with a combination of smoothing splines
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and least squares approach. In the next step, we compare those time courses of the

hidden components to the time courses of network components. Here, we measure

similarity between two time courses based on correlation and L2-distance and as-

sociate each comparison with a score. Subsequently, we choose a threshold and

only consider components with high scores to be relevant catalyst candidates. The

reduced number of model candidates is finally calibrated and the best model is

chosen via maximum likelihood.

We propose this approach as an extension of our previous work [13] where we

considered a systematic network extension by by estimating the time courses of

latent network components. The work in the present manuscript extends the avail-

able method in several ways. First, we now consider multiple latent components as

opposed to the identification of a single additional component. Moreover, we for-

mulate the coupling of the additional latent components to the original components

in a non-linear way as opposed to the linear network extensions in our previous ap-

proach. Most importantly, we compare these latent components to the original

network components and replace them accordingly if we find high similarity. The

final models do not contain any unspecified components. This is different from

having a single final model with an open for interpretation additional component.

Overall, our new approach is an application-driven method extension of [13].

Concerning the application, the goal of the proposed method is not a dramatic

alteration of the network topology of the studied biological system. In that sense,

we do not want to introduce new reactions in the system but only check if an

alteration of existing ones (provided e. g. by literature knowledge) in terms of

catalysis significantly improves the explanation of a given dataset. General network

topology identification is a complex field studied extensively in literature [4, 5, 14,

15] and is beyond the scope of this manuscript.

This paper is organised as follows: In Section 2 we define our modelling ap-
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proach and explain how we estimate model parameters. This ultimately leads to

building a score for every network component, which describes its affinity to catal-

yse a certain reaction. Section 3 applies the developed technique to different sim-

ulated scenarios and to a real data example - the CD95 apoptosis pathway. Sec-

tion 4 concludes this paper and discusses strengths and limitations of the proposed

method.

2 Methods

In this section, we present the developed method for inferring catalytic reactions

in biological systems. We first describe the types of systems we aim to study with

this method in the context of catalysis. Then, we introduce the individual steps of

the estimation procedure. In brief, we model an extended system with external or

hidden catalysts and afterwards compare these external catalysts to observed net-

work components by construction of a similarity score. This allows us to preselect

only a small number of model candidates, which we then compare in more detail

with a likelihood approach. Overall, this results in obtaining the most appropriate

model for the data without wasting computational resources.

2.1 Mathematical formulation of catalysis

We consider N-dimensional ODEs with m reaction fluxes, which can be formulated

as

dxxx(t)
dt

= ẋxx(t) = SSSvvv(xxx(t);kkk) =
m

∑
g=1

sss·,gvg(xxx(t);kkk) (1)

with N×m stoichiometry matrix SSS with scalars si,g ∈Z. sss·,g is the g-th N-dimensional

column of this matrix and vvv(xxx(t);kkk) = (v1(xxx(t);kkk), . . . ,vm(xxx(t);kkk))T : RN ×Rp→

Rm is an m-dimensional flux function with arguments xxx(t) = (x1(t), . . . ,xN(t))T ∈
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RN
≥0 as the non-negative network component concentration functions and kkk ∈Rp as

the reaction rate constants. We assume the individual flux functions vg(xxx(t);kkk) to

be linear combinations of xxx(t). We further denote xi(ttt) = (xi(t0), . . . ,xi(tn))T as the

values of the i-th component at time points tl and we choose suitable initial values

xi(t0), where t ≥ t0 represents the time. Furthermore, ẋxx(t) = (ẋ1(t), . . . , ẋN(t))T is

the derivative of x(t) with respect to time. The components xi(t) may be observed

or unobserved. From a biological point of view, the components xxx(t) describe the

time courses of e. g. metabolite concentrations in blood; the stoichiometry matrix SSS

holds the integer-valued stoichiometric coefficients that represent the net change by

a particular reaction; the vector vvv(xxx(t);kkk) represents the flux through all reactions

in the network.

Modelling network dynamics as in (1) presents a general way of describing

biological systems. However, this description is often not sufficient to explain the

observed network dynamics. To improve the discrepancies between model fit and

observed data, one can choose different strategies. Examples of such approaches

include more complex interactions, time-varying reaction rates or complex forma-

tions introducing external latent variables [13]. Catalysis is an additional way of

improving the model fit and at the same time maintaining a low level of model

complexity. Furthermore, it represents the modelling of a realistic scenario since

catalysis is an often-occurring pattern in many biological systems [16]. A catalytic

reaction can be included into (1) by

ẋxx(t) = SSS(vvv(xxx(t);kkk)◦hhh(t)) =
m

∑
g=1

sss·,gvg(xxx(t);kkk)hg(t) = ψ(SSS,vvv,xxx(t),kkk,hhh(t)) (2)

with ◦ denoting the Hadamard product (componentwise multiplication), hhh(t) =

(h1(t), . . . ,hm(t))T ∈Rm
≥0 representing the concentration of the m non-negative cat-

alysts and ψ as a summarizing function for the right-hand side of the ODE. We will
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later estimate the unknown catalysts hhh(t). From a biological point of view the com-

ponents hhh(t) can be regarded as components of a network holding the time-resolved

concentration measurements in the same way as xxx(t). The difference between hhh(t)

and xxx(t) is that hhh(t) are unknown components as opposed to xxx(t) which represent

species which were already used for the construction of the network. We further

restrict our models to hhh(t) having a meaningful effect on ψ and thus require

∀ε > 0,∀t ≥ t0,∀h2(t) ∈Uε(h1(t)) : ψ(h1(t)) 6= ψ(h2(t)) (3)

with Uε(h1(t)) = {h2(t) ∈ R≥0 :|| h1(t)−h2(t) ||2< ε} and || · ||2 denoting the L2

norm. Furthermore, for the rest of the manuscript we assume SSS and vvv to be known

in parametric form, e. g. from literature. This assumption can be relaxed and SSS and

vvv can also be estimated with our method, which increases the number of unknown

parameters. The assumption seems reasonable since we want to apply our method

to well-studied systems where information about SSS and vvv is available.

2.2 Estimation of hidden catalysts

In the first part of the proposed method, we estimate hhh(t) and interaction param-

eters kkk. Here, we approximate the observed time courses of xxx(t) by smoothing

splines as done e. g. in [13] resulting in an estimtate x̂xx(t). This also presents an

immediate approximation of ẋxx(t) as ˆ̇xxx(t) = ∂

∂ t x̂xx(t). Subsequently, we plug in these

approximations into (2) and estimate the unknowns hhh(t) and kkk by minimizing the

quadratic distance between ˆ̇xxx(t) and the predicted time courses:

(k̂kk, ĥhh(t)) = argmin
kkk,hhh(t)

[
|| ˆ̇xxx(t)−ψ(SSS,vvv, x̂xx(t),kkk,hhh(t)) ||2

]
(4)

with || · ||2 denoting the L2 norm. In general, (4) has more unknown parameters

than the ODE dimension and thus some estimated parameters in (4) may not be
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identifiable. One possibility to reduce the estimated parameter space is to set non-

identifiable parameter entries in kkk to a constant, e. g. to 1. Such non-identifiable

parameters can occur wherever the ODE has entries such as sss·,gvg(xxx(t);kkk)hg(t)

where both kkk and hg(t) cannot be estimated simultaneously without additional prior

information or constraints due to sss·,gvg(xxx(t);kkk)hg(t) = (ahg(t)) · sss·,gvg(xxx(t);kkk)
a , ∀a ∈

R 6=0, ∀t > t0 . Approximations for the non-identifiable entries in kkk will be found in

the second step of the proposed method. After elimination of such non-identifiable

parameters, (4) is numerically optimized e.g. by a gradient descent method. The

result of this first step are the approximations of the components of hhh(t), which can

be grouped in a set:

H = {ĥg(t j)}g=1,...,m; j=0,...,n. (5)

Once these approximations are found, we perform similarity analysis to relate them

to the network components which we describe in the following.

2.3 Relating hidden catalysts to network components

In the second step, we compare the entries of H to the set

X= {Xi j | Xi j = x̂i(t j) if i≤ N,XN+1(t j) = 1}i=1,...,N+1; j=0,...,n, (6)

which contains the spline-approximated time courses of the network components

x̂xx with an additional component xN+1(t), which is equated to 1 for all t and is thus

comparable to the intercept term in a regression context. This comparison between

entries in H and X is done in terms of two different measures of similarity. On

the one hand, we measure similar time-course shapes of x̂xx and ĥhh by calculating the

Pearson correlation coefficient between entries in H and X, resulting in the set of
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correlations C:

C= {Cig |Cig = cor(Xi·,Hg·)}i=1,...,N;g=1,...,m. (7)

On the other hand, the proximity between X and H is measured by the L2 distance

and these values are collected in a set L:

L= {min
κig∈R

(|| Xi·−κigHg·) ||2)}i=1,...,N+1;g=1,...,m (8)

with scaling parameters κig, which are used to find the best scaling of Hg· so that

the L2-distance to Xi· is minimized. Recall that while optimizing (4), we set the

non-identifiable parameters in k̂kk equal to 1. With the optimization in (8), these

parameters can now be estimated as the minimizers in (8).

The two sets, C and L, measure two different aspects of similarity (shape and

proximity), which are suitable for comparing two time series. Furthermore, smaller

values in L and larger values in C correspond to higher similarities. Therefore, they

are combined and weighted to form a set of scores S, which can be used to easily

identify catalysis candidates. To construct such a set, single entries of C and L are

combined and scaled in the unit interval. Formally, we build

S=

{
α

max(Li·)−Lig

max(Li·)−min(Li·)
+(1−α)

Cig−min(Ci·)

max(Ci·)−min(Ci·)

}
i=1,...,N+1;g=1,...,m

(9)

with max(Li·) := max
g′
{Lig′ | g′ = 1, . . . ,m} and min(Li·), max(Ci·) and min(Ci·)

defined in the same way. The special cases of max(Li·) = min(Li·) and max(Ci·) =

min(Ci·) can be excluded without loss of generality. If one of those cases occurs, it

means that we cannot distinguish between all candidates either on basis of distance

or correlation. In this case all candidates describe the data equally and no candidate

reduction can be achieved. The scalar weighting parameter α ∈ [0,1] presents a
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possibility to manually adapt the importance of the two different measures. For

values α > 0.5, the proximity measure L gets a higher weight in the overall score

computation and contrarily for α < 0.5 the correlation measure C becomes more

influential on the score calculation. In the examples in this manuscript we used

α = 0.5 which leads to equal weighting of both measures. Overall, S has values in

the unit interval with a value of 1 in Si,g meaning that Xi· is best correlated and has

the lowest L2 distance (after scaling) to H j·, making Xi· the most obvious catalyst

candidate for the g-th reaction. It is possible that multiple entries of Xi· have a

high score close to 1 which may then all be considered as catalyst candidates. We

define a threshold τ , which is used to filter components with high associations for

catalysts of a given reaction by the rule:

Si,g > 1− τ ⇒ Xi· candidate for g-th reaction. (10)

The index τ can be used in various ways. If τ equals 1, all components are

classified as possible catalyst candidates (no model reduction), whereas if τ equals

0, at most one component per reaction is chosen as a possible catalyst (and only if it

outperforms all other components in distance and correlation measure). Generally,

τ can be used to control the trade-off between a large number of acceptable models

and a high probability of finding the most appropriate model with the proposed

algorithm. In practice and for the examples presented in this manuscript, we found

that setting τ to 0.1 presents a reasonable choice.

2.4 Choosing most appropriate model from reduced model candidates

with maximum likelihood

After performing the described steps above, a reduced set of models Mτ is obtained

as a subset of all possible models, M. Additionally, we obtain the set M̄τ , which
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describes the models which are not considered to be appropriate for the charac-

terization of the studied system. It holds that Mτ ⊆ M and for large systems and

for small τ we usually obtain | Mτ |�| M |. Without loss of generality, we can

assume that | Mτ |> 1 and we still need to find the most appropriate model from

the set Mτ . In this context, we apply a maximum likelihood optimization scheme

to determine the model of choice. Therefore, we first specify an error distribution

of the observed data:

xobs
i (t j) = xi(t j)+ εi j, εi j

iid∼N
(
0,σ2) . (11)

In applications, xobs
i (t j) often has a positive domain in which case (11) might be

ill-defined. One possible solution for this might be log-normally distributed mul-

tiplicative noise as in [13]. Such error model is straightforward here, however,

for reasons of notation simplicity, we only consider normally distributed errors in

the manuscript and in the example section. The distribution of εi j immediately

propagates to the measurements:

xobs
i (t j)

∣∣xi(t j)
iid∼N

(
xi(t j),σ

2) . (12)

While the true time course xi(t) is unknown, it has already been approximated by

smoothing splines and we can plug in this approximation in (12):

xobs
i (t j)

∣∣x̂i(t j)
iid∼N

(
x̂i(t j),σ

2
)
. (13)

With this last approximation, we are now able to formulate a likelihood function,

which measures the overall agreement between model and data depending on the

model parameters

L(θθθ) =
N

∏
i=1

n

∏
j=0

fθθθ (xobs
i (t j)) (14)
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with fθθθ (xobs
i (t j)) representing the probability density function of the normal dis-

tribution in (13) and θθθ representing the conglomerate of parameters (kkk,σ2)T . The

maximum of the likelihood function can be found using a gradient descent method

and the parameters corresponding to this optimum are then called θ̂θθ . The dimen-

sion of θ̂θθ does not change regardless of the number of reactions catalysed and the

different combinations of catalytic reactions. Therefore, comparing models only

by comparing likelihoods instead of using e. g. information criteria is possible in

this setting.

In the next section, we will test the developed method on several artificial

datasets and also apply it on real-world data from a biochemical pathway.

3 Applications

In this section, we apply our method on artificial and real-world data. We perform

two excessive simulations in which we test the applicability and effectiveness of

our method. First, we simulate random networks of different sizes and estimate

the reaction catalysts in those networks. Second, we fix the network size at N = 5

and test our method by comparing it to two other common approaches in model

selection – the computationally demanding best subset selection and the greedy

forward selection. Finally, as a third application, we apply our method to real-

world data collected from the CD95 pathway. All computations were performed

using the open source software R [17], version 3.2.1 and associated packages fda

[18] for the smoothing spline estimation and deSolve [19] for estimating ODEs.

3.1 Simulation 1: random networks and random catalysts

We use several simulation runs to test the general applicability of the proposed

method. To that end, we consider networks consisting of 2 to 10 nodes and sampled
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from

ẋi(t) =
N

∑
g=1

(kigxg(t)hig(t)− kgixi(t)hgi(t)) , (15)

where the reaction rates kig are chosen randomly from U (−1
N , 1

N ) and the catalysts

hgi(t) are chosen randomly to equal one of (1,x1, . . . ,xN) with equal probability,

where 1 is a constant function equal to 1. Furthermore, the initial values xxx(0) are

chosen randomly from U (1,100). To achieve more realistic sparse networks, we

randomly delete approximately a fraction of 2
N of the possible reactions by setting

the corresponding reaction rates kig to 0. After forward simulation of the randomly

chosen network, we add normally distributed measurement noise ε ∼ N (0,σ2)

to the simulated time snapshots and arrive at the observed measurement points

used for further analysis. The number of observed time points per component xxxi(t)

and the noise parameter σ2 are also chosen at random for each simulation run

from U (10,30) and U (1,15), respectively. In the described setting, we run 100

simulation runs per fixed network size and estimate the catalyst of each reaction.

The results are shown in Fig. 1.

Fig. 1A shows violin plots of the fraction of models to be estimated after ap-

plying the latent catalyst method depending on the network size. Additionally, the

average time needed to compute either all possible combinations for a given net-

work size or the reduced set of models is shown with solid lines. Here, we observe

that computing all possible combinations for networks of size 2 or 3 is faster than

computing only a reduced number of models. This can be explained by the com-

putational time needed to fit the splines as shown in (13) and the relatively low

number of possible candidate models for such small network sizes. With increas-

ing network size, this relationship switches very fast and already at network size 5

the computational time needed to identify the correct catalysts with our method is
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Figure 1: Results of simulation 1. A: Violin plots show fraction of model can-
didates chosen by application of the latent catalysts method compared to all pos-
sible models. The reduction of model candidates becomes more pronounced for
larger networks. Additionally, lines show the average computational time in (log-
scale) needed to estimate either all possible models (solid line) or the reduced set
of model candidates (dashed line). Stars mark computational times that were es-
timated based on a fraction of completed model computations. B: Violin plots of
the fraction of correctly classified catalysts. The reduced model candidates include
the correct model that was used to generate the data in almost all simulation runs.
This is consistent for all studied network sizes.
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less than 0.1% of the time needed to compute all possible models. For networks

larger than N = 7, we stopped computations after two weeks of parallel computa-

tion of 120 models and estimated the computational times based on the fraction of

finished models. In the violin plots, a value of 100% means that no reduction of

model candidates was achieved with our method and all possible models have to

be computed. We observe a dramatic decrease of model candidates for networks

consisting of more than 4 nodes. This shows the efficiency of our method, which

potentially allows a reduction of computational time from days to minutes depend-

ing on the studied system.

This efficiency would not be meaningful if the reduced number of models did

not include the correct model, which was used to generate the data. However, as

Fig. 1B suggests, in most simulation runs the correct model is part of the reduced

model candidates. More specifically, this is true on average for 85.1% of the sim-

ulation runs. This is consistent for all studied network sizes as can be observed in

Table 1.

Table 1: Fraction of simulation runs for which the correct model is part of the
reduced space of model candidates depending on network size N. Data is simulated
based on (15).

network size N 2 3 4 5 6 7 8 9 10
correct classification [%] 92 91 86 91 80 85 86 78 77

Although the method may also miss the correct model in certain simulation

scenarios with e. g. large noise or many similarly shaped component dynamics,

we observe a median of above 90% correctly identified catalysts by applying our

method. Additionally, we note that we used a threshold parameter τ = 0.1 for all

simulations. If we set this parameter to a higher value, we will capture more correct

models in the model candidates, however at the cost of lower efficiency and higher

computational demand.
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3.2 Simulation 2: catalysis in common network motifs in systems bi-

ology

Fig. 2 shows artificial networks with and without catalytic interactions. This net-

work consists of 5 nodes x1− x5 and a total of 7 regulatory interactions between

those nodes. In Fig. 2A, we first show a version of the network with no catalytic

x1 x2

x3

x4 x5

A
x1 x2

x3

x4 x5

B

Figure 2: Network of interest for simulation 2. A: ”core network” with no catalysis
involved. B: network with catalysis from which data is sampled.

reactions in order to demonstrate the general connection between the nodes. In

Fig. 2B, we include catalysis in the network structure and use this network to

simulate artificial data. We chose this network to further investigate our method

performance because it captures several patterns which are commonly observed in

systems biology. First, x1 and x2 are engaged in a mutual activation pattern and

whichever of the two dominates this pattern also dominates the flow to x3. Second,

a typical motif is presented by the conversion from x5 to x3 for which there is either

a direct way and also an indirect or lagged reaction through x4. Finally, we observe

both layers to be connected by the key node x3 and several catalytic connections

which contribute to the overall pattern of the studied network.

We sampled data from the network shown in Fig. 2B by choosing random

reaction rate parameters from U (−1,1), random initial values xl(0)∼U (0,100),

l = 1, . . . ,5 at equidistant time points between t0 = 0 and tn = 1 with ti+1− ti =

0.1. We also added normally distributed measurement noise ε ∼ N(0,10) to each
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simulated data point as shown in Fig. 3.
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Figure 3: Simulated data from network shown in Fig. 2B and used for simulation
study in section 3.2.

The next step in this simulation was to apply three techniques in order to es-

timate the correct catalyst for each reaction. First, we applied a very extensive

search for the best model in which we fitted all possible models. In this case there

are 67 ≈ 300000 different models (5 network components which may act as cata-

lyst as well as no catalysis as a sixth possibility for each one of the 7 reactions). For

each model, we calculated a loglikelihood function as described in (14). The mod-

els were then ordered by the loglikelihood values with the most appropriate model

having the highest loglikelihood value. Results of selected models are shown in

Table 2.

Second, we applied a greedy forward selection method. Here, the idea is to start

from the null model with no catalysis in the network (Fig. 2A) and subsequently

allow for one catalytic reaction after another. For the studied network, it means that

we calculate the loglikelihood of only one model in the first step, then 35 models

in the second step (we have 5 possible catalysts for 7 different reactions) with

35 corresponding loglikelihoods. Subsequently, we choose one catalyst for one
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Table 2: Results of fitting all possible models for the network shown in Fig. 2.
Here, we see the best six models and the worst model with respect to negative
loglikelihood value. The model used to generate the data is highlighted in red.

rank x1→ x2 x2→ x1 x1→ x3 x2→ x3 x3→ x4 x3→ x5 x4→ x5 -(loglikelihood)
1 x3 x3 x4 x1 x4 x4 x2 324.34
2 x3 x5 x4 x3 x4 x5 x2 325.37
3 x3 x3 x1 x1 x5 x2 1 326.50
4 x3 x4 x1 x1 x5 x2 x2 326.57
5 x3 x1 x5 x3 x5 x5 1 326.75
6 x3 x1 x5 x1 x5 x4 x2 327.65

279936 1 1 1 x2 x1 1 x5 1331.40

reaction corresponding to the model with the highest loglikelihood value and move

on to the third step where another catalyst is selected from 30 different models in

the same manner. We stop when the loglikelihood is not longer increased by a

subsequent step. The results of this procedure are shown in Table 3.

Finally, we applied our method and selected model candidates with threshold

τ = 0.1. With our approach we select 288 model candidates and compute the

corresponding loglikelihood. The component candidates for each model are shown

in Table 4.

Table 3: Results of applying a forward model selection to the network shown in Fig.
2. The best model, corresponding to the highest loglikelihood value, is achieved in
step 2. The data-generating (”true”) model does not equal the chosen one.

steps x1→ x2 x2→ x1 x1→ x3 x2→ x3 x3→ x4 x3→ x5 x4→ x5 -(log likelihood)
step 0 1 1 1 1 1 1 1 436.57
step 1 x3 1 1 1 1 1 1 394.10
step 2 x3 1 1 1 x5 1 1 386.92
step 3 x3 1 1 1 x5 1 x2 411.28

Table 4: Results of application of our latent catalyst approach to the network shown
in Fig. 2. Each reaction has a different number of possible components which may
act as a catalyst. The data generating model is highlighted in red.

x1→ x2 x2→ x1 x1→ x3 x2→ x3 x3→ x4 x3→ x5 x4→ x5
{x3} {x1, x3, x4, x5} {x1, x4, x5} {x1, x3} {x4, x5} {x2, x4, x5} {1, x2}

Application of the three different model selection techniques revealed different

aspects. On the one hand, the forward selection is very fast due to the low number

of models being fitted, however it fails in detecting a model that can fit the data
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reasonably well. On the other hand, the best subset selection does not only find the

correct model which was used to generate the data shown in Fig. 3 but it also finds

four models which fit the data more appropriately. This can be explained by the

fact that we added a high amount of measurement noise to the true ODE solutions

and thus created data situations where the data generating model is not anymore the

model that best fits the data. Nevertheless, we believe that this represents a scenario

which is much more realistic for real-world applications than looking at the true

ODE solutions as measurements where the data generating model will fit the data

best by a large margin. The computational cost of this procedure is very high even

for this medium-sized example as it runs a total of 1818.963 hours on a single

core machine (faster with parallelisation). Finally, our approach with modelling

latent catalysts also reveals the model that fits the data best’. This is achieved in

a very efficient way by reducing the possible model candidates to 288, which is a

reduction by 99.897%.

3.3 CD95 signalling model for apoptosis

In this section, we apply our method to real-world data collected from the clus-

ter of differentiation 95 (CD95) signalling pathway [20]. This pathway is rele-

vant for regulation of cell death decisions and is mediated via proteins FADD and

procaspase-8 as well as its cleavage products p43/p41 and p18 (see Fig. 4). The

pathway can be summarized in the following steps: after extracellular binding of

the CD95 ligand to its receptor, FADD is recruited to CD95. This creates the death

inducing signalling complex (DISC), and procaspase-8, c-FLIP long (c-FLIPL)

and c-FLIP short (c-FLIPS) can bind to it. This results in the formation of differ-

ent types of dimers: procaspase-8 homodimers (p8hod), procaspase-8 heterodimer

(p8hed) and c-FLIPL heterodimers. Next, the procaspase-8 part of the dimers is

split and is in its active form of p43 homodimer (p43hod) and p43 heterodimer
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(p43hed). Finally, p43hod is processed to form the cleavage product p18. Next,

procaspase-8 homo- and hetero- dimers undergo autocatalytic processing resulting

in the formation of the p43 homodimer (p43hom) and p43 heterodimer (p43hod),

respectively. The latter along with the cleavage product of procaspase-8, p43 com-

prises the cleavage product of c-FLIP, p43-FLIP. All of the steps described above

have been reported in literature [20, 21, 22, 23]. The last three reactions denoted by

the green box in Fig. 4 are known to be possibly catalysed [12]. Therefore, the fo-

cus of our work lies in the analysis of a small core motif containing 5 species and 3

reactions. The experimental data used in this manuscript provides measurements of

the total p43, total p18 and total procaspase-8 concentration for two time-resolved

experiments over a total of 6 time points each. The two experiments differ from

each other in the amount of ligand used. We modelled both experiments separately

thus obtaining two sets of results for the present data.

Our approach resulted in a very strong reduction of model candidates. Without

our approach, a total of 216 models need to be computed and compared for each of

the two experiments. With our approach, we are able to narrow down the number

of model candidates to 3 and 12 for experiment 1 and 2, respectively. These models

are presented in Table 5 and illustrated in Fig. 5. Here, we ranked the models by

their corresponding negative loglikelihood. For both experiments, we have models

that perform better than others in this measure (candidate 1 for experiment 1 and

candidates 1–3 for experiment 2). However, we are not able to quantify whether the

best-performing models in terms of loglikelihood are significantly better in explain-

ing the data. The more interesting observation we make is the large difference of

the number of model candidates which were identified with our method in both ex-

periments. Intriguingly, when more ligand is present in the system (experiment 2),

non-catalysed splitting of procaspase-8 heterodimer and non-catalysed processing

of p43 homodimer are emerging as reactions contributing to the increase of model
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Figure 4: Data and schematic representation of CD 95 pathway. Dots show three
replicates of two experiments at each time point of procaspase-8 (orange), p43
(blue) and p18 (red). Corresponding lines show the mean spline approximations.
In the pathway, rectangles denote proteins, the extracellular receptor is denoted by
a circle. Coloured rectangles indicate the different experimental measurements:
total amount procaspase-8 (orange), total amount p43 (blue) and total amount p18
(red). The green box indicates the core motif, which is analysed by our method.

21



Table 5: Results of application of the latent catalyst approach to CD95 pathway.
The three possibly catalysed reactions are shown on top of the table and the pos-
sible catalysts associated with the respective reactions are shown in the rows. All
suggested model candidates are shown for experiment 1 (low amount of ligand)
and experiment 2 (high amount of ligand). Models are ranked by their negative
loglikelihood.

experiment 1
p8hed→ p43hed p8hod→ p43hod p43hod→ p18 -(loglikelihood)

candidate 1 p8hed 1 p8hed 66.95
candidate 2 p8hed p43hed p8hed 71.05
candidate 3 p8hed p43hod p8hed 71.09

experiment 2
p8hed→ p43hed p8hod→ p43hod p43hod→ p18 -(loglikelihood)

candidate 1 p8hed p43hod p8hed 66.53
candidate 2 p8hed 1 1 68.23
candidate 3 p8hed p43hod 1 69.45
candidate 4 p8hed 1 p8hed 76.00
candidate 5 1 p43hed 1 78.06
candidate 6 p8hed p43hed 1 78.42
candidate 7 1 p43hod 1 78.58
candidate 8 1 p43hed p8hed 78.92
candidate 9 p8hed p43hed p8hed 83.42

candidate 10 1 1 1 84.67
candidate 11 1 1 p8hed 97.86
candidate 12 1 p43hod p8hed 98.13

candidates. This is intuitively understandable because the more ligand is present

at the beginning of the experiment, the more procaspase-8 and p43 will be pro-

duced and thus a catalysis appears less necessary in the system. The results further

suggest four possible catalysts: procaspase-8 heterodimer as a possible catalyst of

the splitting of procaspase-8 heterodimer (autocatalysis), procaspase-8 homodimer

and p43 heterodimer as catalysts for the splitting of procaspase-8 homodimer and

finally procaspase-8 heterodimer as catalyst for the processing of p43 homodimer.

These results are in good agreement with previous analysis of the data [12], where

three of the four proposed catalysts are suggested by the authors. The additional

catalysed reaction (procaspase-8 heterodimer catalysing processing of p43 homod-

imer) was excluded prior to application of the proposed model reduction scheme.

Additionally, we also see model candidates where the reactions are not catalysed

especially for the experiment with high amount of ligand. We can therefore con-
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Figure 5: Results of the application of our approach to the CD95 apoptosis path-
way. Each combination of five boxes denotes one candidate model for the core
network motif highlighted with a green box in Fig. 4. This visualisation is in con-
cordance with results presented in Table 5 and candidate models per experiment
are sorted by likelihood from top left to bottom right. A: three model candidates
for experiment 1. B: twelve model candidates for experiment 2.
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clude that by adding more ligand at the beginning of the experiment catalytic reac-

tions play only a minor role in the CD95 pathway. The presence of a low amount

of ligand, however, enforces catalysis in the studied system. Thus, our approach

indicates that low amount of stimuli can drive the cell into apoptosis. Upon over-

coming the apoptotic threshold and upon high stimulation, the additional catalytic

reactions are not required any more. These results hold true only if the assumptions

(e. g. known stoichiometry of the system) made in the formulation of our method

in Section 2 are valid. Furthermore, our results only provide a hint of the role

that the amount of ligand might play in catalysis regulation in the CD95 pathway.

Other biological impact factors which were not in the scope of our approach may

additionally play an important role or even be more dominant for the explanation

of the differences in the two experiments.

4 Discussion

Modelling of biological systems in computational systems biology is generally

connected to high complexity. Especially if every reaction is considered to be

of non-linear nature, as is true for catalytic reactions, the model candidate space

significantly increases. Available approaches such as best subset model selection

or stepwise selection schemes become infeasible for large biological systems due to

the high amount of computational time involved. Additionally, as it is well known

from regression-type models [24], an increase of the number of model candidates

leads to an increase in the hazard of overfitting. This can be explained with the fact

that if one considers possibly billions of model candidates the risk of choosing a

model that follows the data too closely and at the same cannot generalize to other

data is increasing and one then ends up fitting not only the data dynamics of interest

but also the noise contained in the measurements.
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We propose a novel and efficient method to incorporate catalysis into the mod-

elling of biological systems. With our approach, we efficiently reduce the number

of model candidates to a manageable number with a low risk of missing the most

appropriate model for given data. We do this by extending the studied system

by latent catalyst components. Next, we estimate those components by first ap-

proximating the available time courses with smoothing splines and subsequently

exploiting the structure of the ODEs of the modelled system. Finally, we compare

those estimates to all other components of the studied system and each comparison

is associated with a score. This score can then be used to identify relevant com-

ponents which may act as catalysts for a given reaction. Another byproduct of our

approach is the automatic identification of model parameters during the estimation

steps.

We studied the proposed method on several simulation settings and noted a

substantial decrease of model candidates and at the same time we were able to

recover the true models in almost all performed simulations. The application of

our method to the CD95 apoptosis pathway confirmed previous results in literature

and additionally identified different catalysts for some reactions. We could also

conclude that the presence of ligand at the beginning in this system is a factor

which seems to drive the importance of catalysis at later stages.

As we already stated in the introductory section of this manuscript, with our

approach we look only at established reactions in well-studied biological systems

and, if we identify the need of introducing catalysis, we alter only this specific re-

action. Therefore, our approach is not comparable to other methods concerning the

network topology [4, 14]. Furthermore, we assume both SSS and vvv to be known from

literature. This assumption does not generally hold and therefore a combination of

these network topology identification methods with our catalysis approach holds

future research potential.
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We classify our approach as a model selection method as we select only models

which are based on reactions with high similarity scores for further investigation.

Closely connected to model selection is the field of model reduction in biochemical

networks [25, 26, 27, 28]. Here, the goal is to construct a minimal complex model

which is still able to represent the data sufficiently. Contrarily, with our approach

we do not aim at reducing the complexity of the model by e. g. dramatically altering

its dimensionality or its topology but rather aim at a valid preselection of possible

models which we investigate in more detail.

Although we tested our method in numerous simulations and also got inter-

pretable and logical results out of the application example, other aspects of the

approach pose challenging questions for future research. To begin with, we did not

look into missing data or dependent measurement errors. Furthermore, sensitivity

analysis and parameter identification analysis were not performed due to the esti-

mation of parameters being only a byproduct of the whole method. Likewise, we

restricted all analyses and applications to a linear catalysis in the form of x(t) ·h(t).

This can, however, be extended in future work to more general, non-linear set-

tings in the form of f (xi(t),hg(t)) with a possibly non-linear function f . Next,

we require a known network structure to apply our method on. We can imagine

combining our approach with a network or motif identification and thus make it

completely automatic.

We assume that all possible catalysts are already part of the network. This

assumption can be relaxed and we could allow for external catalysts, which were

previously not part of the modelled species. We studied this network extension in

another manuscript [13] and aim at combining both methods in the future.

Overall, we are confident that our method is a valuable tool in practice which

can be used to gain additional knowledge out of time-resolved measured data and

allows for different conclusions regarding catalysis. Based on such findings, we
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expect additional hypotheses for future research to be generated and thus lead to a

better understanding of biochemical models.
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