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Abstract

Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to
differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and
pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by
modern metabolomics techniques are chemically unidentified. The identification of these ‘‘unknown metabolites’’ is still a
demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence,
previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level
approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict
the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are
unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report
previously undescribed genotype–metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18,
GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations,
metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical
identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We
demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on
liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to
metabolomics data from different experimental platforms.
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Introduction

Recently, genome-wide association studies (GWAS) on meta-

bolic quantitative traits have proven valuable tools to uncover the

genetically determined metabolic individuality in the general

population [1–5]. Interestingly, a great portion of the genetic loci

that were found to significantly associate with levels of specific

metabolites are within or in close proximity to metabolic enzymes

or transporters with known disease or pharmaceutical relevance.

Moreover, compared to GWAS with clinical endpoints the effect

sizes of the genotypes are exceptionally high.

The number and type of the metabolic features that went into

these GWAS was mainly defined by the metabolomics techniques

used: Gieger et al. [1] and Illig et al. [2] used a targeted mass

spectrometry (MS)-based approach giving access to the concen-

trations of 363 and 163 metabolites, respectively. Suhre et al. [3]

and Nicholson et al. [4] applied untargeted nuclear magnetic

resonance (NMR) based metabolomics techniques, yielding 59

metabolites that had been identified in the spectra prior to the

GWAS and 579 manually selected peaks from the spectra,

respectively. In Suhre et al. [5], 276 metabolites from an

untargeted MS-based approach were analyzed.
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While these previous GWAS focused on metabolic features with

known identity, untargeted metabolomics approaches additionally

provide quantifications of so-called ‘‘unknown metabolites’’. An

unknown metabolite is a small molecule that can reproducibly

be detected and quantified in a metabolomics experiment, but

whose chemical identity has not been elucidated yet. In an

experiment using liquid chromatography (LC) coupled to MS,

such an unknown would be defined by a specific retention time,

one or multiple masses (e.g. from adducts), and a characteristic

fragmentation pattern of the primary ion(s). An unknown observed

by NMR spectroscopy would correspond to a pattern in the

chemical shifts. Unknowns may constitute previously undocu-

mented small molecules, such as rare xenobiotics or secondary

products of metabolism, or they may represent molecules from

established pathways which could not be assigned using current

libraries of MS fragmentation patterns [6,7] or NMR reference

spectra [8].

The impact of unknown metabolites for biomedical research has

been shown in recent metabolomics-based discovery studies of

novel biomarkers for diseases and various disease-causing condi-

tions. This includes studies investigating altered metabolite levels

in blood for insulin resistance [9], type 2 diabetes [10], and heart

disorders [11]. A considerable number of high-ranking hits

reported in these biomarker studies represent unknown metabo-

lites. As long as their chemical identities are not clarified the

usability of unknown metabolites as functional biomarkers for

further investigations and clinical applications is rather limited.

In mass-spectrometry-based metabolomics approaches, the

assignment of chemical identity usually involves the interpretation

and comparison of experiment-specific parameters, such as

accurate masses, isotope distributions, fragmentation patterns,

and chromatography retention times [12–14]. Various computer-

based methods have been developed to automate this process. For

example, Rasche and colleagues [15] elucidated structural

information of unknown metabolites in a mass-spectrometry setup

using a graph-theoretical approach. Their approach attempts to

reconstruct the underlying fragmentation tree based on mass-

spectra at varying collision energies. Other authors excluded false

candidates for a given unknown by comparing observed and

predicted chromatography retention times [16,17], or by the

automatic determination of sum formulas from isotope distribu-

tions [18]. Furthermore, Gipson et al. [19] and Weber et al. [20]

integrated public metabolic pathway information with correlating

peak pairs in order to facilitate metabolite identification. However,

these methods might not be applicable for high-throughput

metabolomics datasets that have been produced in a fee-for-

service manner, since the mass spectra as such might not be readily

available.

Approaching the problem from a conceptually different

perspective, we here present a novel functional metabolomics

method to predict the identities of unknown metabolites using a

systems biological framework. By combining high-throughput

genotyping data, metabolomics data, and literature-derived

metabolic pathway information, we generate testable hypotheses

on the metabolite identities based solely on the obtained

metabolite quantifications (Figure 1). No further experiment-

specific data such as retention times, isotope patterns and

fragmentation patterns are required for this analysis.

The concept of our approach is based on the following

observations from our previous work on genome-wide association

studies and Gaussian graphical modeling (GGM) with metabo-

lomics: We showed that GWAS with metabolic traits can reveal

functional relationships between genetic loci encoding metabolic

enzymes and metabolite concentration levels in the blood [1–3,5].

A genetic variant can alter, for instance, the expression levels of

mRNAs or affect the properties of the respective enzymes through

changes of the protein sequence (e.g. enzyme activity, substrate

specificity). Moreover, we found that GGMs, which are based on

partial correlation coefficients, can identify biochemically related

metabolites from high-throughput metabolomics data alone

[21,22]. These observations suggest that if an unknown compound

displays a similar statistical association with a genetic locus in a

GWAS or a known metabolite in a GGM, then this may provide

specific information of where it is located in the metabolic

network. Based on this information we can then derive testable

hypotheses on the biochemical identity of the unknown metabo-

lite. This annotation idea parallels classical concepts from

functional genomics, where, for instance, co-expression between

RNA transcripts is used to predict the function of poorly

characterized genes [23,24].

The manuscript is organized as follows: We first conduct a full

genome-wide association study on 655,658 genotyped SNPs with

concentrations of 225 unknown metabolites using fasting blood

serum samples from a large German population cohort (n = 1768)

[25]. We thereby extend our previous work on known metabolites

[5] to a GWAS with hitherto unpublished unknown metabolic

traits. We then compute a Gaussian graphical model including

both known and unknown metabolites. In a third step, we

integrate the results of the GWAS and GGM computations and

combine them with metabolic pathway information from public

databases to derive predictions for a total of 106 unknown

metabolites. In order to validate the approach, we investigate six

distinct cases, in which we derive specific identity predictions for a

total of nine unknown metabolites, which we then confirm

experimentally. Finally, we discuss the relevance of newly

discovered genetic loci and unknown identity predictions in the

context of existing disease biomarker discovery and pharmacoge-

nomics studies.

All GWAS and GGM results, unknown metabolite classifica-

tions and pathway annotations are available as spreadsheets and in

Author Summary

Genome-wide association studies on metabolomics data
have demonstrated that genetic variation in metabolic
enzymes and transporters leads to concentration changes
in the respective metabolite levels. The conventional goal
of these studies is the detection of novel interactions
between the genome and the metabolic system, providing
valuable insights for both basic research as well as clinical
applications. In this study, we borrow the metabolomics
GWAS concept for a novel, entirely different purpose.
Metabolite measurements frequently produce signals
where a certain substance can be reliably detected in
the sample, but it has not yet been elucidated which
specific metabolite this signal actually represents. The
concept is comparable to a fingerprint: each one is
uniquely identifiable, but as long as it is not registered in
a database one cannot tell to whom this fingerprint
belongs. Obviously, this issue tremendously reduces the
usability of a metabolomics analyses. The genetic associ-
ations of such an ‘‘unknown,’’ however, give us concrete
evidence of the metabolic pathway this substance is most
probably involved in. Moreover, we complement the
approach with a specific measure of correlation between
metabolites, providing further evidence of the metabolic
processes of the unknown. For a number of cases, this
even allows for a concrete identity prediction, which we
then experimentally validate in the lab.

Metabolite Identification by Data Integration
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.graphml format in Dataset S1 or from our study website at

http://cmb.helmholtz-muenchen.de/unknowns.

Results

Genetic association links unknown metabolites to
functionally related genes

In the first step of our analysis, we conducted a GWAS with the

concentrations of known and unknown metabolites, testing a total

of 655,658 genotyped SNPs from the KORA cohort for

association. Thus, in addition to the unknown metabolite data,

we included the association data for known metabolites from our

previous study [5] into the present analysis. Unknown metabolites

are uniquely labeled in the format ‘‘X-12345’’, which are identical

throughout all published studies that use the Metabolon platform.

In total, we observe 34 distinct loci that display metabolite

associations at a genome-wide significance level (Figure 2 and

Dataset S1). Out of these 34 loci, 15 associate with at least one

unknown compound. For 12 loci, an unknown compound

constitutes the strongest association of all tested compounds. From

the 213 unknown metabolites analyzed (see Methods for the

determination of this metabolite subset), 28 show at least one

genome-wide significant hit. These 28 associations at the 15 loci

are presented in Table 1 along with all previously described

Figure 1. Data integration workflow for the systematic classification of unknown metabolites. We combine high-throughput
metabolomics and genotyping data in Gaussian graphical models (GGMs) [21] and in genome-wide association studies (GWAS) [5] in order to
produce testable predictions of the unknown metabolites’ identities. These hypotheses are then subject to experimental verification by mass-
spectrometry. Six such cases have been fully worked through and are presented in Table 3.
doi:10.1371/journal.pgen.1003005.g001

Metabolite Identification by Data Integration
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GWAS hits to metabolic traits or other endpoints. Associating

traits were determined from the GWAS catalog [26] for SNPs in

LD (r2$0.5) with the respective lead SNP. Seven of the 15 loci

(SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1,

rs12413935) have not been described in GWAS with metabolic

traits before and thus represent new genetic loci of metabolic

individuality. Interestingly, genetic variants in strong LD with

CYP2C18 have been reported to associate with warfarin

maintenance dose [27].

In our previous GWAS with metabolic traits, we observed that

metabolites associating with genetic variants in or near enzymes

are likely to be functionally linked to these proteins. A SNP with

detectable effects on the metabolome will, for instance, alter

expression levels of mRNAs, or affect the properties of the

respective enzymes (e.g. enzyme activity, substrate specificity)

through modifications of the protein sequence. As an example of

the latter case, the SNP rs4343 in the angiotensin converting

enzyme (ACE) encoding gene was found to be associated with the

activity of the enzyme [28] (See Table 1). To estimate the

contribution of the first case, we compared our significant SNPs

with expression quantitative trait loci (eQTLs) from published

GWAS with expression levels. To this end, we queried the

Genotype-Tissue Expression (GTEx) browser, an online eQTL

database of the NIH GTEx roadmap project, which stores eQTL

results for multiple human tissues (liver, lymphoblastoid, brain)

[29]. For seven SNPs in three distinct loci (PYROXD2, CYP3A5,

SPPL3), we found significant cis-eQTLs (p-value,2.761029, see

Methods) in GTEx. All identified eQTLs with p-values below

1025 are listed in Dataset S1.

Based on the observation that SNPs in or in the vicinity of

enzymes are mostly associating with functionally related metab-

olites in case of the knowns, we used the GWAS data to derive

hypotheses on the potential identity of the respective unknowns.

For instance, the SNP rs296391 in close proximity to the

SULT2A1 gene (sulfotransferase family, cytosolic, 2A, dehydroepiandros-

terone DHEA-preferring) strongly associates with the concentrations of

the unknown metabolites X-11440 and X-11244 (p = 1.7610243

and p = 2.1610226, respectively). The enzyme encoded by

SULT2A1, a bile salt sulfotransferase, converts steroids and bile

acids into water-soluble sulfate conjugates for excretion [30].

Thus, we may speculate that X-11440 and X-11244 are

biochemically related to steroids, bile acids, or water-soluble

sulfate conjugates. Additional insights can be gained from genetic

associations that involve both known and unknown metabolites.

For instance, X-12510, X-11787, X-12093 and N-acetylornithine

strongly associate with genetic variation at the NAT8 locus. NAT8

encodes the protein N-acetyltransferase 8. In this case, we may

speculate that the unknowns represent similar substrates or

products of the N-acetylation processes linked to this enzyme.

Finally, we can link the results obtained here with results from

other GWAS on metabolic traits. For example, the unknown

metabolite X-13431 associates with a genetic variant in the

ACADL (acyl-CoA dehydrogenase, long-chain) gene. This locus does not

associate with any other metabolite in the present study, but was

previously reported to associate with the medium-chain length

carnitines C9 and C10:1 [1,2]. Proteins from the ACAD family

catalyze rate-limiting reactions in the b-oxidation pathway which

generally associate with carnitines. This observation suggests that

X-13431 may be a member of this medium-chain length carnitine

family. These examples demonstrate that concrete information on

the biochemical identity of unknown metabolites can be derived

from our experimental dataset by using the GWAS approach.

Gaussian graphical modeling provides a biochemical
context for unknown metabolites

In the second step of our analysis we focused solely on intrinsic

relations between the measured metabolites and, in particular, on

associations between known and unknown compounds. To this

end, we applied Gaussian graphical models (GGMs), which we

have previously shown to be able to reconstruct pathways

involving directly related metabolites from cross-sectional blood

serum metabolomics data [21,22]. GGMs are based on partial

correlation coefficients, that is, correlations between pairs of

metabolites corrected for the effects of all remaining metabolites.

Each known metabolite is annotated with a ‘‘super-pathway’’

corresponding to its general metabolic class, and a ‘‘sub-pathway’’

Figure 2. Manhattan plot of genetic association. The strength of association for known (bottom) and unknown (top) metabolites is indicated as
the negative logarithm of the p-value for the linear model (see Methods). Only metabolite-SNP associations with p-values below 1026 are plotted
(grey circles). Triangles represent metabolite-SNP associations with p-values below 10240. Horizontal lines indicate the threshold for genome-wide
significance (âa = 1.6610210 corresponding to a= 0.05 after Bonferroni correction); red vertical dashes indicate loci at which this threshold is attained.
doi:10.1371/journal.pgen.1003005.g002

Metabolite Identification by Data Integration
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representing more specific metabolic pathways (see Dataset S1). In

order to obtain a dataset that is independent of our genetic

analysis, and to avoid circular arguments, co-variations in

metabolite concentrations that are due to association with genetic

variants (SNPs) were specifically removed from the data (see GGM

methods for further details). A partial correlation was included in

the model if it was significantly different from zero with a= 0.05

after Bonferroni correction, yielding a corrected significance level

of âa = 7.961027 and an absolute partial correlation cutoff of

f= 0.178. The resulting GGM consists of a total of 399 out of

62,835 theoretically possible edges (0.64% connectivity, Figure 3A).

In line with our previous observations [21], metabolites tend to be

strongly connected within their respective metabolic class, while

links between different classes are rare (see Text S1). Inspecting the

GGM in detail, we observe that the unknowns are tightly

integrated within the network and connected to known com-

pounds of various metabolic classes. This is reflected both in the

overall network (Figure 3A, Text S1) and in the top list of high-

scoring GGM edges (Table 2), where 18 of the 30 strongest partial

correlations comprise at least one unknown metabolite. The

highest partial correlation in the dataset actually involves a known-

unknown metabolite pair, namely 3-indoxylsulfate and the

unknown metabolite X-12405 (f= 0.840). For pairs of known

metabolites, we consistently observe associations of biochemically

related metabolites from various metabolic pathways, such as the

metabolites inosine and guanosine (f= 0.798), which are involved

in nucleotide metabolism, or androsterone sulfate and epiandros-

terone sulfate (f= 0.755), which represent related steroid hormone

metabolites. Other pathways with related metabolite pairs include

amino acid metabolism, lipid metabolism, bile acid metabolism,

and xanthine metabolism. Following our line of reasoning,

correlating pairs of a known and an unknown metabolite then

directly point to specific pathways of cellular metabolism on which

the unknown metabolite may lie. The investigation of the sub-

network structure around the unknown compounds provides

additional biochemical context for that compound.

We selected four high-scoring sub-networks in the GGM to

show that this concept is indeed applicable to real data. The first

two of these sub-networks consist of a series of intermediate

compounds from purine metabolism, including guanosine, inosine,

xanthine derivatives and urate (Figure 3B and 3C). In these cases,

one can actually follow the addition and removal of chemical

groups by following the edges in the GGM network: Most edges in

these sub-networks correspond to the change of either a single

methyl group at the purine double-ring structure or to the removal

of a ribose residue in the reaction from nucleosides to xanthine

variants. While the compounds in both sub-networks appear

structurally similar, the distinction into two groups by the GGM is

indeed biochemically sound. The metabolites in Figure 3B

correspond to endogenous substances in the nucleoside pathway,

whereas the molecules in Figure 3C relate to signals from

xenobiotic metabolism of drugs and caffeine. Here, the unknown

metabolites X-11422 and X-10810, as well as X-14473 and X-

14374 are prominently placed in the networks, making them direct

targets for closer inspection with respect to endogenous xanthines

and xenobiotics, respectively.

The third sub-network comprises three androsterone sulfate

variants, which belong to the class of steroid hormones (Figure 3D).

We observe direct GGM links between the unknowns X-11450,

X-11244 and X-11443 with both dehydroepiandrosterone sulfate

(DHEAS) and epiandrosterone sulfate, suggesting androsterone

derivatives as likely candidates for these three metabolites. The

fourth sub-network involves different stereoisomers of bilirubin,

which is the degradation product of the oxygen transporter
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hemoglobin [31] (Figure S1). In this sub-network, we observe high

partial correlations between the bilirubin variants and a series of

unknown metabolites (X-11441, X-11530, X-11442, X-11793, X-

11809, X-14056, and X-14057). The seven unknown compounds

in this GGM sub-network are thus likely to be involved in

hemoglobin degradation processes. Taken together, the examples

confirm that further information on the biochemical identity of

unknown metabolites can be extracted from GGM networks.

Combining GGMs and GWAS allows deriving specific
pathway annotations for unknown metabolites

The next step in our analysis was the integration of the GGM

and GWAS approaches with general pathway information from

external databases, in order to generate concrete predictions for

the unknowns’ metabolic pathway memberships. As a feasibility

test, we first asked whether the local neighborhood of a metabolite

in the GGM can be used to correctly predict its metabolic class.

Using a majority-voting based classifier and subsequent permuta-

tion testing, we detected significant classification abilities (mean

sensitivity 0.674, mean specificity 0.84, macro-averaged F1 score

0.72) far beyond random (p,1028,). Detailed results can be found

in Text S2. Note that we performed this approach only to

demonstrate the systematic possibility to derive functional

information from the GGM. The actual classification of the

unknowns in the following will not be based on majority voting,

but rather on the collection of all available functional information

from GGM neighbors and GWAS hits.

We combined functional annotations for both GGM neighbors

and GWAS hits for each unknown in order to derive specific

pathway classifications. For unknowns that did not have a known

metabolite neighbor in the GGM, we also investigated the 2- and

3-neighborhoods. Since these hits certainly represent weaker

evidence than a direct GGM neighbor, we distinguish between

‘GGM hit’ and ‘direct GGM hit’ in the following. Functional

annotations were obtained from three sources: (1) The sub-pathway

assignment provided for each known metabolite in the GGM

neighborhood, (2) the GO functional terms for the associated gene

of all genome-wide significant GWAS hits, and (3) the KEGG

pathways on which the associated genes lie. To the best of our

knowledge, there is presently no consistent mapping between

annotations from the different data sources available for both

metabolites and genes, so we here had to perform the only non-

automatic step in the analysis: By manual interpretation of

different functional classes (Figure 4A), we derive a single

consensus pathway annotation for a total of 106 of the unknown

metabolites (Figure 4B). For 98 unknowns, we obtained annota-

tions from the GGM network, with 74 of these hits representing

direct GGM hits. From the 28 genetic hits introduced above, 27

were in a genetic region with gene annotation. Overlaying the

direct edge GGM set and the GWAS set, we obtained 16

unknowns with both biochemical and genetic evidence (Figure 4C).

A list of all functional evidence along with the respective

predictions can be found in Table S1.

Experimental validation of nine predictions in six distinct
scenarios

In the following, we selected several unknowns that were

forwarded to detailed analysis and experimental validation. Five

cases were obtained from the set of 16 high-confidence predictions

in the previous section, since the combined evidence from GWAS

and GGMs provides rich functional annotations that allow to

derive possible compound candidates. Moreover, in order to

demonstrate the power of GGMs in the absence of genetic

associations, we selected one further case (HETE) where publically

available pathway information was systematically exploited.

Experimental validations were performed by running pure

Figure 3. Gaussian graphical modeling. GGMs embed unknown metabolites into their biochemical context. A: Complete network presentation
of partial correlations that are significantly different from zero at a= 0.05 after Bonferroni correction. The unknown metabolites are spread over the
entire network and are involved in various metabolic pathways. B–D: Selected high-scoring sub-networks. We observe that GGM edges directly
correspond to chemical reactions which alter specific chemical groups (e.g. carbonyl groups and methyl groups). Solid lines denote positive partial
correlation. Dashed lines indicate negative partial correlations. Line widths represent partial correlation strengths.
doi:10.1371/journal.pgen.1003005.g003
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candidate compounds on the LC-MS/MS platform. For cases

where no pure compound was available, we determined exact

molecule masses and revisited the retention times and fragmen-

tation spectra.

We investigated six metabolic scenarios in-depth and attempted

experimental confirmation of the respective predictions (Table 3).

In the following, we discuss three example cases, termed

DIPEPTIDE, STEROID, and HETE (Figure 5). Three further

examples, named CARNITINE, BILIRUBIN, and ASCOR-

BATE, are presented as Text S3. In the discussion of these

scenarios we now use all available evidence, the metabolite

correlations, genetic associations, biochemical data, and in

addition the molecular masses reported with the known and

unknown compounds (which do not represent exact masses at this

point). Note that the presented scenarios represent the only cases

where a detailed investigation has been attempted. Moreover, the

candidate compounds mentioned in the following paragraphs and

the supplementary material are the only compounds that have

been experimentally tested (there are no negative results not

reported in this text).

Scenario 1. Our first scenario, DIPEPTIDE, presents the

prediction and successful validation of three unknown metabolites

involved in short-peptide metabolism (Figure 5, left). In the GGM,

we observe X-14205, X-14208 and X-14478 in close proximity to

various dipeptides, to glutathione derivatives, and to two longer

fibrinogen-related peptides. The primary pieces of genetic

evidence for this case are the GGT1 locus, which shows a strong

association to S-gluthathionyl-L-cysteine, and the ACE locus,

which connects to aspartyl-phenylalanine, X-14205, and X-14208.

GGT1 encodes for the protein c-glutamyl transpeptidase, which

transfers glutamyl-residues from glutathione in order to generate

short-chain peptides [32]. This fits well into the network picture,

since GGT1 is connected to the glutathione derivative, which in

turn shares a GGM edge with c-glutamyl-glutamine. ACE, on the

other hand, encodes the angiotensin I converting enzyme, a

peptidase that cleaves dipeptide fragments from angiotensin

Table 2. Interpretation of top-ranking partial correlation coefficients (PCC.0.5).

Metabolite 1 Metabolite 2 f Interpretation

X-11847 X-11849 0.901 biochemical link between two unknowns

3-indoxyl sulfate X-12405 0.840 tryptophan metabolism

X-11452 X-12231 0.832 biochemical link between two unknowns

X-12094 X-12095 0.822 biochemical link between two unknowns

guanosine inosine 0.798 nucleosides

X-11441 X-11442 0.760 biochemical link between two unknowns

androsterone sulfate epiandrosterone sulfate 0.755 steroid sulfates

X-11537 X-11540 0.753 biochemical link between two unknowns

X-02269 X-11469 0.734 biochemical link between two unknowns

X-11204 X-11327 0.706 biochemical link between two unknowns

decanoylcarnitine octanoylcarnitine 0.689 b-oxidation footprints

linoleamide (18:2n6) oleamide 0.654 C18:1/C18:2 acylamides

3-methyl-2-oxovalerate 4-methyl-2-oxopentanoate 0.646 branched-chain amino acid degradation

catecholsulfate X-12217 0.601 catechol metabolism

X-14189 X-14304 0.593 biochemical link between two unknowns

1,5-anhydroglucitol (1,5-AG) X-12696 0.580 sugar metabolism

dehydroisoandrosterone sulfate (DHEA-S) X-18601 0.575 steroid hormones

1-arachidonoylglycerophosphoethanolamine X-12644 0.570 phospholipids (PE)

X-14208 X-14478 0.558 biochemical link between two unknowns

caffeine paraxanthine 0.554 caffeine metabolism

X-11423 X-12749 0.549 biochemical link between two unknowns

1-linoleoylglycerophosphocholine 2-palmitoylglycerophosphocholine 0.544 phospholipids (PC)

piperine X-01911 0.526 amino acid-derived alkaloids

2-hydroxypalmitate 2-hydroxystearate 0.523 hydroxy fatty acids

X-14056 X-14057 0.519 biochemical link between two unknowns

3-methyl-2-oxovalerate isoleucine 0.514 isoleucine degradation

X-11244 X-11443 0.510 biochemical link between two unknowns

urea X-09706 0.506 urea metabolism

isoleucine leucine 0.506 branched-chain amino acids

1-arachidonoylglycerophosphoethanolamine 1-linoleoylglycerophosphoethanolamine 0.502 phospholipids (PE)

Connections between two known metabolites indicate a direct metabolic relationship, e.g. between purines (guanosine/inosine) or steroid hormones (androsterone
sulfate/epiandrosterone sulfate). A link between a known and an unknown compound therefore provides evidence for a shared metabolic pathway. For instance, the
link between 3-indoxylsulfate and X-12405 suggests a role of this unknown in tryptophan metabolism. Abbreviations: PC = phosphatidylcholine,
PE = phosphatidylethanolamine, f= partial correlation coefficient. Italic text represents hypothetical known-unknown connections.
doi:10.1371/journal.pgen.1003005.t002
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Figure 4. Semi-automatic prediction of unknown metabolite identities. A: Examples of how to determine pathway classifications based on
the functional annotations of GGM and GWAS hits. We present two metabolites, X-11421 and X-11244, whose GGM and GWAS associations clearly
point into carnitine and steroid metabolism, respectively. B: Overview of unknowns functionally annotated by both GGMs and the GWAS approach.
‘GGM’ refers to an unknown metabolite which is three or less steps away from a known metabolite in the GGM, whereas ‘direct GGM’ represents
direct neighbors in the network. C: Pathway predictions for the 16 unknowns with both direct GGM and GWAs annotations. Unknowns marked with a
star were subjected to in-depth analysis followed by experimental validation in the following.
doi:10.1371/journal.pgen.1003005.g004

Figure 5. Detailed investigation of three scenarios (DIPEPTIDE, STEROID, and HETE). In order to generate concrete hypotheses on the
unknowns’ identities, we assembled all available information for each scenario. This includes biochemical edges from the GGM, genetic associations
from the GWAS, pathway annotations as well as mass information. For details of the predicted identities, see Table 3 and main text. Similar figures for
three further scenarios (CARNITINE, BILIRUBIN, and ASCORBATE) are available in Text S3.
doi:10.1371/journal.pgen.1003005.g005
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precursors and other functional oligopeptides. Since the biochem-

ical and genetic evidence pointed us to short peptides, and

dipeptides in particular, we enumerated all possible 400 ( = 20620)

combinatorial variants of dipeptides and checked the mass against

the masses of the three unknowns under investigation. As an

example, we shortened the list of candidates for X-14208 from

2,732 (ChemSpider search) to only 8 molecules, respectively.

For experimental validation, we first checked the plausibility of

the candidates with respect to the fragmentation spectra and

determined the exact masses. The accurate mass determined for

X-14208 is 252.1117260.001 Da, supporting the chemical

formula C12H16N2O4. While the formula still matches more than

1,200 molecular structures, the prediction of this unknown as a

dipeptide leaves only two candidate molecules, namely phenyla-

lanylserine (Phe-Ser) and serylphenylalanine (Ser-Phe). Both

variants were obtained from a commercial source and run on

the LC-MS/MS platform. The retention index [33] and the

fragmentation spectrum received for Phe-Ser matched the index

and spectrum of X-14208, whereas Ser-Phe produced a clearly

different spectrum (Figure 6). Thus, the identity of X-14208 was

experimentally confirmed as the dipeptide phenylalanylserine.

Importantly, using our integrated approach, we were able to

identify X-14208 by only testing two candidate molecules. The

other two unknowns, X-14205 and X-14478, were identified

through similar experiments as a-glutamyltyrosine (a-Glu-Tyr)

and phenylalanylphenylalanine (Phe-Phe), respectively.

Scenario 2. In the second scenario, STEROID, we investi-

gated an unknown metabolite (X-11244) for which both GGM

and GWAS data strongly indicate an identity related to steroid-

hormone compounds: X-11244 is tightly linked via GGM edges to

dehydroepiandrosterone sulfate and two other unknowns, which in

turn connect to epiandrosterone sulfate and androsterone sulfate

(Figure 5, middle). Furthermore, X-11244 displays a highly

significant genetic association (p = 2.1610226) with rs296391,

which lies in strong LD in the SULT2A1 gene locus. SULT2A1

encodes for a member of the sulfotransferase family 2A, dehydroepian-

drosterone-preferring, further strengthening the metabolic context.

Based on the GGM and GWAS results, we hypothesized that X-

11244 is a steroid sulfate related to androstane.

Experimentally, the primary loss of a fragment with a nominal

mass of 98 and the presence of an ion at 97 m/z observable in the

fragmentation spectrum of X-11244 indicate the presence of at

Table 3. Six specific scenarios and their experimental validations.

Scenario name Unknowns Evidence used Prediction Validated as

DIPEPTIDE X-14208 GGM, genetics Phe-Ser or Ser-Phe Phe-Ser

X-14205 Glu-Tyr or Try-Glu a-Glu-Tyr

X-14778 Phe-Phe Phe-Phe

STEROID X-11244 GGM, genetics sulfated androsterone androstene disulfate

HETE X-12441 GGM, pathway hydroxy-arachidonate (HETE) 12-HETE

CARNITINE X-11421 GGM, genetics, pathway carnitine species, with 6 to
10 carbon atoms

cis-4-decenoyl-carnitine

X-13431 nonanoyl carnitine*

BILIRUBIN X-11793 GGM, genetics oxidized bilirubin variant oxidized bilirubin variant*

ASCORBATE X-11593 GGM, genetics, pathway O-methylascorbate O-methylascorbate*

We investigated six scenarios that included a total of nine unknown metabolites. The first three scenarios, DIPEPTIDE, STEROID, and HETE are discussed in the main text
of this paper; the remaining three scenarios, CARNITINE, BILIRUBIN and ASCORBATE, are discussed in Text S3. Predictions marked by * are confirmed by exact mass,
fragmentation pattern and chromatographic retention time; however, validation using a pure standard compound as a reference is pending since these compounds are
presently commercially unavailable in pure form.
doi:10.1371/journal.pgen.1003005.t003

Figure 6. Experimental confirmation of X-14208 as phenylalanylserine. Two possible dipeptide variants were predicted and consequently
tested. The fragmentation spectrum of the 253.1 m/z ion (positive mode) of the pure Phe-Ser matches that of the unknown compound, whereas the
spectrum for pure Ser-Phe differs visibly. Moreover, the retention index (RI) of Phe-Ser is similar to the RI of X-14208, whereas that of Ser-Phe is
significantly different.
doi:10.1371/journal.pgen.1003005.g006
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least one sulfate group in this unknown (Text S3). The exact mass

determined for X-11244 supports the chemical formula

C19H30O8S2. Querying ChemSpider for this chemical formula

yields only four results, one of which corresponds to an androstene

disulfate variant (ChemSpider ID 21403154). Analysis of several

disulfated androstenes demonstrated similar retention times and

fragmentation spectra. Among the tested variants, 4-androsten-

3b,17b-disulfate showed the best match. Given that other isomers

are also possible, which cannot necessarily be chromatographically

resolved, we annotated X-11244 more generically as ‘androstene

disulfate’.

Scenario 3. In the third scenario, HETE, we made explicit use

of known biochemical interaction derived from three publically

available pathway databases. We searched for cases, where an

unknown shows GGM connections to known compounds for which

a direct pathway interaction with a metabolite having the same mass

as the unknown exists. Such cases are rare, but if present provide a

strong argument for an unknown’s identity. We selected the HETE

scenario as an example for experimental validation in such a

situation. The unknown metabolite X-12441 does not show any

genome-wide significant SNP hits and only a single GGM neighbor:

cis-5,8,11,14-eicosatetraenoic acid (arachidonate, Figure 5, right).

Arachidonate constitutes pathway connections to several other

lipid-related metabolites, including a variety of hydroxy-arachido-

nate variants (HETEs). These variants have the chemical formula

C20H32O3 with a molecular weight of 320.2351 Da, matching the

mass of the unknown. We thus hypothesized that X-12441

represents a specific HETE species.

Experimentally, the determination of the exact mass of the

unknown further supported our hypothesis, as the accurate mass

determined for X-12441 matches the chemical composition of

HETE to a precision of 60.002 Da. A number of HETE

isoforms were experimentally tested, including the 5, 8, 9, 11, 12

and 15 isoforms. All isoforms produced unique fragmentation

spectra that permitted the precise identification of the unknown

X-12441 as the 12-HETE isoform (see Text S3 for fragmentation

spectra).

Scenarios 4–6. Three further scenarios, involving acylcarni-

tines in connection to mitochondrial b-oxidation enzymes

(CARNITINE), bilirubin metabolism (BILIRUBIN), and a

connection between ascorbate metabolism and catechol-O-meth-

yltransferase (ASCORBATE), are described in Text S3. Briefly, in

the CARNITINE scenario, X-11421 and X-13431 were experi-

mentally confirmed as acylcarnitines containing 10 and 9 carbon

atoms, respectively (namely cis-4-decenoyl-carnitine and nonanoyl

carnitine). For the BILIRUBIN scenario, the unknown metabolite

X-11793 was identified as an oxidized bilirubin variant. Lastly, in

the ASCORBATE scenario, X-11593 was predicted and exper-

imentally confirmed as O-methylascorbate. Taken together, we

here predicted and experimentally validated the biochemical

identity of nine unknown metabolites in six different biochemical

scenarios.

Discussion

We developed and validated a novel integrative approach for

the biochemical characterization of ‘‘unknown metabolites’’ from

high-throughput metabolomics and genotyping datasets. Our

method allows for the functional annotation of previously

unidentified metabolites and, as a consequence, enhances the

interpretability of metabolomics data in genome-wide association

studies and biomarker discovery. For the first time, we systemat-

ically evaluated genetic associations of unknown metabolites,

thereby discovering seven new loci of metabolic individuality. By

classifying a series of unknown metabolites, we gained new insights

into the functional interplay between genetic variation and the

metabolome both for previously reported and new loci. Further-

more, several of the unknown compounds that we identified as

well as their newly associated loci were independently reported in

disease-related studies. In the following, we discuss three genetic

loci and their associated phenotypes.

COMT and hepatic detoxification
The first example is a recent biomarker study, where Milburn et

al. [34] reported an association of X-11593 with hepatic

detoxification. In our GWAS, we find a strong association of X-

11593 with the COMT locus, which encodes the catechol-O-

methyltransferase enzyme. COMT is responsible for the inactivation

of catecholamines such as L-dopa and various neuroactive drugs

by O-methylation [35]. Following our identification approach, we

experimentally confirmed the identity of X-11593 as O-methy-

lascorbate. Notably, O-methylascorbate is a known product of

ascorbate (vitamin C) O-methylation by COMT [36,37]. Thus,

our observations establish a link between O-methylascorbate

blood levels, common genetic variation in the COMT locus and

COMT-mediated liver detoxification processes.

ACE and hypertension
The second example relates to the ACE gene locus, which is a

known risk locus for cardiovascular disease, hypertension and

kidney failure. The protein encoded by the ACE locus, angiotensin-

converting enzyme, is an exopeptidase which cleaves dipeptides from

vasoactive oligopeptides, and plays a central role in the blood

pressure-controlling renin-angiotensin system [38]. Moreover, the

ACE protein is a target for various pharmaceuticals (ACE

inhibitors), especially in the treatment of hypertension [39]. In

our study, we identified three unknowns as dipeptides (X-14205,

X-14208 and X-14478), two of which also associated with the

ACE locus. These dipeptides could thus represent novel,

interesting biomarkers for the activity of ACE. Moreover, Steffens

et al. [11] reported a connection between heart failure and X-

11805, which is in close proximity to angiontensin-related peptides

in the GGM. This connection might be revisited after a successful

identification of X-11805 in a future study.

UGT1A/ACADM and insulin resistance
The third example is an explorative study to detect

biomarkers for insulin sensitivity. Gall et al. [9] reported several

known metabolites (most prominently a-hydroxybutyrate) as

biomarkers for insulin resistance. They also reported a series of

unknown metabolites among their top hits. In the present study,

we investigated three of these unknowns: X-11793 associates

with UGT1A (UDP glucuronosyltransferase 1) and represents a

bilirubin-related substance. Moreover, we experimentally vali-

dated X-11421 and X-13431, which display a strong association

with ACADM (acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight

chain), as acylcarnitines containing 10 and 9 carbon atoms,

respectively. The identification of these latter two unknown

metabolites as medium-chain length acylcarnitines is coherent

with reports by Adams et al. [40]. The authors found elevated

blood plasma acylcarnitine levels in women with type 2 diabetes.

Functionally, they attributed this finding to incomplete b-

oxidation. Thus, our identification of X-11421 and X-13431

now suggests incomplete b-oxidation as an explanation for the

associations found by Gall et al. and implies that acylcarnitines

containing 10 and 9 carbon atoms are potential biomarkers for

insulin resistance.
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Conclusion
In summary, we integrated high-throughput metabolomics and

genotyping data from a large population cohort for elucidating the

biochemical identities of unknown metabolites. To this end, we

applied metabolomics genome-wide association studies and

Gaussian graphical modeling in order to link these unknown

metabolites with known metabolic classes and biological processes.

For six specific scenarios, we went from systematic hypothesis

generation over detailed investigation and identity prediction to

direct experimental confirmation. Similar validations may now be

undertaken for the remaining predictions that we report in Table

S1. Finally, we demonstrated the benefit of our method by

discussing several of these newly identified metabolites in the

context of existing biomarker discovery studies on liver detoxifi-

cation, hypertension and insulin resistance.

It is to be noted that our method does not specifically require

genotyping data. Even metabolomics measurements alone, ana-

lyzed through the GGMs, may provide sufficient information for the

classification and even precise identity prediction. The unknowns

with GGM evidence but without GWAS hits in Figure 4 as well as

the HETE scenario represent examples for this approach.

One limitation of our approach is the requirement for

associations with functionally described loci or known metabolites.

Certain metabolite groups might thus systematically not be

identifiable. For instance, if the identity of a whole class of

biochemically related molecules is unknown (which might be due

to experimental reasons), then the GGM associations between

those compounds will not aid in identity elucidation. The 118

unknown compounds for which we could not derive any

classification might represent such cases. Thus, our functionally

oriented method should be regarded as a complementary

extension to the existing identity determination methods.

Accordingly, our approach can be extended in several

directions. It can be combined with method-specific, automated

techniques that further exclude sets of metabolites. Previously

mentioned methods relying on mass-spectra [15] or chromato-

graphic properties [17] are suitable candidates here. Moreover,

the method can be directly transferred to other types of

metabolomics datasets not specifically originating from MS

experiments, such as NMR-based metabolomics.

Beyond the application to metabolite identification, our study

demonstrates the general potential of functional metabolomics in

the context of genome-wide association studies. The comprehen-

sive metabolic picture provided by GGMs in combination with

GWAS allows for the detailed analysis of metabolic functions,

chemical classes, enzyme-metabolite relationships and metabolic

pathways.

Materials and Methods

Study cohort and data acquisition
We used data from n = 1768 fasting serum samples used in a

previously published genome-wide association study on a German

population cohort. Details of the sample acquisition and experi-

mental procedures can be found in [5]. Briefly, metabolic profiling

was done using ultrahigh-performance liquid-phase chromatogra-

phy and gas-chromatography separation, coupled with tandem

mass spectrometry. The dataset contains a total of 292 known

compounds and, in addition to the GWAS study in [5], 225

unknown compounds. Metabolite concentrations were log-trans-

formed since a test of normality showed that in most cases the log-

transformed concentrations were closer to a normal distribution

than the untransformed values [5]. Genotyping was carried out

using the Affymetrix GeneChip array 6.0. For our analyses, we only

considered autosomal SNPs passing the following criteria: call rate

.95%, Hardy-Weinberg-Equilibrium p-value p(HWE).1026,

minor allele frequency MAF.1%. In total, 655,658 SNPs were

left after filtering.

Genome-wide associations
In order to avoid spurious false positive associations due to small

sample sizes, only metabolic traits with at least 300 non-missing

values were included and data-points of metabolic traits that lay

more than 3 standard deviations off the mean were excluded by

setting them to ‘missing’ in the analysis (leaving 273 known and

213 unknown metabolites). Genotypes are represented by 0, 1, and

2 for major allele homozygous, heterozygous, and minor allele

homozygous, individuals respectively. We employed a linear

model to test for associations between a SNP and a metabolite

assuming an additive mode of inheritance. Statistical tests were

carried out using the PLINK software (version 1.06) [41] with age

and gender as covariates. Based on a conservative Bonferroni

correction, associations with p-values,1.6610210 meet genome-

wide significance, corresponding to a significance level of a= 0.05.

SNP-to-gene assignments were derived via linkage disequilibrium

(LD) from HAPMAP [42]. A SNP was associated with a gene

whenever there was at least one other SNP lying in the transcribed

region of this gene (that is from 59UTR to 39UTR) that displays an

r2$0.8 with the query SNP. A detailed description of the GWAS

procedure can be found in [5].

Lookups of previously known associations between phenotypes

and genetic variants were performed using the GWAS catalog

[26]. We list a phenotype with one of our GWAS hits, if the

phenotype was reported with at least one SNP that displays an LD

r2$0.5 with the respective ‘‘lead SNP’’. Lookups of eQTLs were

performed for all significant SNPs (474, see Dataset S1) using the

GTEx database [29]. We applied a p-value cutoff of 2.761029,

corresponding to a significance level of 0.05 and correction for

474640,000 tests (the number of SNPs times number of

transcripts, conservative estimate). Detailed results up to a p-value

of 1025 can be found in Dataset S1.

Gaussian graphical modeling
For the GGM calculation, we require a full data matrix without

missing values. From the original data matrix containing n = 1768

samples and 517 metabolites (thereof 292 knowns and 225

unknowns), we first excluded metabolites with more than 20%

missing values (column direction), and then samples with more

than 10% missing values (row direction). The filtered data matrix

still contained n = 1764 samples with 355 metabolites (217 knowns

and 138 unknowns). Remaining missing values were imputed with

the ‘mice’ R package [43]. Note that the numbers of metabolites

used in the GWAS and in the GGM analysis differ due to specific

constraints for the treatment of missing values in the two methods.

Gaussian graphical models are induced by full-order partial

correlation coefficients, i.e. pairwise correlations corrected against

all remaining (n-2) variables. GGMs are based on linear

regressions with multiple predictor variables. When regressing

two random variables X and Y on the remaining variables in the

data set, the partial correlation coefficient between X and Y is

given by the Pearson correlation of the residuals from both

regressions. Since our dataset contains more samples than

variables, full-order partial correlations can be conveniently

calculated by a matrix inversion operation. A significance cutoff

of a= 0.05 with Bonferroni correction was applied. A detailed

description of the GGM calculation procedure can be found in

[21].
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Age, gender and SNP effects were removed by adding the

respective variables and SNPs states to the data matrix. For each

pair of variables under investigation, Gaussian graphical models

remove the effects of all remaining variables on this correlation

(due to the above-mentioned linear regression approach). That is,

adding a variable to the data matrix will automatically result in the

removal of confounding effects of this variable on the correlations

of all other variables. Note that age, gender and SNPs were not

investigated as an actual node in the network but merely used for

the correction procedure. For the later analysis steps, we then only

considered metabolite-metabolite edges in the network. SNP states

were coded as numerical values of 0, 1 and 2 (see previous section),

such that the linear regressions that underlie the GGM correspond

to an additive genetic model (cf. [5]). Gender represents a

‘‘dummy variable’’ [44] in the linear regression model which only

takes values of 1 (male) and 0 (female).

Metabolic pathway model and functional annotations
Metabolic reactions were imported from three independent

human metabolic reconstruction projects: (1) H. sapiens Recon 1

from the BiGG databases [45], (2) the Edinburgh Human

Metabolic Network (EHMN) reconstruction [46] and (3) the

KEGG PATHWAY database [47] as of January 2012. We

attempted to create a highly accurate mapping between the

different metabolite identifiers of the respective databases, in order

to ensure the identity of each compound in our list. Entries

referring to whole groups of metabolites, such as ‘‘phospholipid’’,

‘‘fatty acid residue’’ or ‘‘proton acceptor’’ were excluded from our

study. Furthermore, we did not consider metabolic cofactors such

as ‘‘ATP’’, ‘‘CO2’’, and ‘‘SO4’’ etc. in our analysis, since such

metabolites unspecifically participate in a plethora of metabolic

reactions. For each enzyme catalyzing one or more reactions in

our pathway model, we retrieved functional annotations from two

independent sources: (i) GO-Terms from the Gene Ontology [48]

and (ii) enzyme pathway annotations from the KEGG PATH-

WAY database [47].

All imported metabolic pathways along with metabolite

database identifiers, excluded compounds and pathway annota-

tions can be found in Dataset S1.
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33. Kováts E (1958) Gas-chromatographische Charakterisierung organischer

Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole,

Aldehyde und Ketone. Helvetica Chimica Acta 41: 1915–1932.
34. Milburn M, Guo L, WULFF JE, Lawton KA (2010) DETERMINATION OF

THE LIVER TOXICITY OF AN AGENT.
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