
A versatile tomographic forward- and backprojection
approach on Multi-GPUs

Andreas Fehringera, Tobias Lasserb,c, Irene Zanettea, Peter B. Noëld and Franz Pfeiffera

aChair of Biomedical Physics (E17), Technische Universität München,
James-Franck-Str. 1, Garching, 85748, Germany

bChair for Computer Aided Medical Procedures (I-16), Technische Universität München,
Boltzmannstr. 3, Garching, 85748, Germany

cInstitute for Biomathematics and Biometry, Helmholtz Zentrum München,
Building 58a, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany

dDepartment of Radiology, Technische Universität München,
Ismaninger Straße 22, München, 81675, Germany

ABSTRACT

Iterative tomographic reconstruction gets more and more into the focus of interest for x-ray computed tomography
as parallel high-performance computing finds its way into compact and affordable computing systems in form of
GPU devices. However, when it comes to the point of high-resolution x-ray computed tomography, e. g. measured
at synchrotron facilities, the limited memory and bandwidth of such devices are soon stretched to their limits.
Especially keeping the core part of tomographic reconstruction, the projectors, both versatile and fast for large
datasets is challenging. Therefore, we demonstrate a multi-GPU accelerated forward- and backprojector based
on projection matrices and taking advantage of two concepts to distribute large datasets into smaller units.
The first concept involves splitting up the volume into chunks of slices perpendicular to the axis of rotation.
The result is many perfectly independent tasks which then can be solved by distinct GPU devices. A novel
ultrafast precalculation kernel prevents unnecessary data transfers for cone-beam geometries. Datasets with
a great number of projections can additionally take advantage of the second concept, a split-up into angular
wedges. We demonstrate the portability of our projectors to multiple devices and the associated speedup on
a high-resolution liver sample measured at the synchrotron. With our splitting approaches, we gained factors
of 3.5 – 3.9 on a system with four and 7.5 – 8.0 with eight GPUs. The computing time for our test example
decreased from 23.5 s to 2.94 s in the latter case.

Keywords: tomography, forwardprojector, backprojector, multiple GPUs, versatile, large data

1. DESCRIPTION OF PURPOSE

Tomographic imaging modalities cover a broad spectrum of length scales and competing acquisition approaches.
One example is phase-contrast CT at the synchrotron, a technique that provides high-resolution in combina-
tion with significantly improved soft-tissue contrast compared to absorption-based techniques. Each approach,
however, has special demands concerning geometry, data size and reconstruction algorithm.

The motivation for our investigations was to develop a versatile scheme for processing datasets from very
different geometries and sizes efficiently. After a brief summary of how to use projection matrices for describing
tomographic cone-beam geometries very generally, we explain the course of action of the GPU kernels for back-
and forwardprojection as well as some memory considerations. The focus of our work, however, lies on the two
concepts we use to make the projector capable of handling large datasets and using multiple GPUs. A comparison
of the benchmarks for the forward- and backprojection of a high-resolution phase-contrast synchrotron dataset
on different single- and multi-GPU hardware setups will show the capabilities of our approach.

Medical Imaging 2014: Image Processing, edited by Sebastien Ourselin,
Martin A. Styner, Proc. of SPIE Vol. 9034, 90344F · © 2014 SPIE

CCC code: 1605-7422/14/$18 · doi: 10.1117/12.2043860

Proc. of SPIE Vol. 9034 90344F-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

2. METHOD

2.1 The General concept of the implementation

The basic implementation of forward- and backprojector was originally based on the work of R. Bippus et al.,1

but further developed and adapted to work with projection matrices as suggested by Galigekere et al.2 We
decided to use bilinear hardware interpolation and OpenCL instead of the more common CUDA

TM

framework
because it provides support for more devices. All computations are carried out in single floating point precision.

2.1.1 Projection matrices for tomographic projections

Projection matrices are used to perform central projections of points in a 3 D setup onto a 2 D plane. The
following section shows how to take advantage of them for tomographic reconstruction.

Each single projection of a scan can be described with one corresponding 3× 4 projection matrix P that is a
direct transformation from voxel indices in the image volume to pixel indices on the detector. IfX = (X,Y, Z, 1)T

is a homogeneous voxel coordinate, the corresponding detector pixel coordinate x = (x, y, 1)T is obtained by

xw = P X

where P is the projection matrix for the corresponding projection angle and w is the homogenization factor.

Vice versa, tracing a ray

X(λ) = X0 + λU0

through the image is possible by varying the parameter λ where X0W = P+ x (W is the homogenization factor)
and U0 = X0− S̃ is the stepping vector along the ray. The position of the rotated source S̃ can be obtained by
solving P S̃ = 0. For the implementation of a ray caster, the main direction of propagation of the ray through
the image volume can be determined by dmain = arg max i

∣∣{m3
}
i

∣∣ where m3 is the principle axis vector which
is built up from the first three elements of the third row of the projection matrix P . If the stepping vector U0 is
normalized to 1 along the main direction of propagation and the image voxel indices in this direction are in the
range of

[
0, {I}dmain

)
, then λ ∈

[
−{X0}dmain

, {I}dmain
− {X0}dmain

)
. Further details about projection matrices

can be found in the appendix and in the book of Hartley et. al.3

2.1.2 The backprojector

For both, the back- and the forwardprojector, the input arrays are kept in the partly cached 3 D texture memory
to take advantage of its short access times and hardware interpolation feature. The output arrays are held in
global memory.

Each thread of the backprojector computes the intensity in one voxel. Starting from its corresponding position
given in image voxel coordinatesX, it computes the projection points x on the detector for each projection matrix
P as described in the previous section. In the end, the thread pushes or adds the locally summed up intensities
to global memory.

For the last step, the dimensions of the array holding the image volume are made a multiple of the OpenCL
workgroup size of 8 vx× 8 vx× 8 vx so that no boundary checks are necessary. The fastest dimension is further
forced to become a multiple of 16 (that is 64 Bytes) in order to guarantee coalesced access to global memory for
all threads. The cubic workgroup dimensions are designed to keep the covered area on the detector texture as
compact and symmetric as possible because all points within the spacial neighborhood are automatically cached.
All projection matrices and parameters are held in constant memory because it is fully cached and optimized for
concurrent access of all threads.

Proc. of SPIE Vol. 9034 90344F-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

source p
ro

je
ct

io
n

BP

FP

source

image

image

p
ro

je
ct

io
n

axis of rotation

axis of rotation

Figure 1. An illustration for the concept
of slice chunks.
In a preliminary step, all corners of the output
volume corresponding to one chunk are pro-
jected to the input volume to figure out the
minimum and maximum detector row or im-
age slice required.
The upper schematic illustrates the computa-
tion for the BP. The eight corners of the image
chunk (labeled with black dots) are projected
to the detector to determine the required slices.
For the FP the four corners of the detector
chunk are back projected into the image vol-
ume. The deciding entry points are marked
each with a black dot.

2.1.3 The forwardprojector

The forwardprojector operates on the pixels of the detector under each angle. The dimensions of the array
holding the projections are enlarged in the same way as those of the image volume above. Each thread traces
the ray X(λ) through the source computed from the corresponding detector coordinate x as shown in 2.1.1. The
fastest choice for the workgroup size turned out to be 32 angles× 8 px× 2 px.

To speed up the computation of the stepping vector U0 and the starting point X(λmin) in the begin-
ning, precomputed arrays in constant memory hold the source positions S̃, the main directions dmain and the
pseudo-inverse projection matrices P+ for each angle. The projection matrices P itself are not required in the
forwardprojection kernel. Analog to the backprojector, there is only one explicit access to global memory at the
very end in order to store the sum of the locally collected intensities along the ray.

2.2 Concepts to handle large datasets

Non-clinical datasets, e. g. taken at a synchrotron, can have large detector arrays or numbers of projections
that would cause an overflow of constant or global memory if processed all at once. We spent much effort in
developing and implementing the following two concepts in order to split up large datasets into several chunks
without loosing performance. Both concepts work for the forward- as well as for the backprojector. A clever
division into chunks is also essential to distribute work over multiple GPUs or concurrently transfer data to the
device while computing on other data.

2.2.1 The concept of slice chunks

The first, newly developed concept involves splitting up a whole stack of image slices for a backprojection and
detector rows for a forwardprojection, respectively, into chunks of a predefined height. Therefore, we introduce
an additional GPU kernel running before the projection itself. It projects the positions of the corners defining the
chuck subvolumes to the output coordinate system, i. e. the image space for the backprojector and the projection
space for the forwardprojector, respectively (Figure 1). Each thread cares for the projection of one corner under
one angle. Afterwards, a reduction algorithm makes it possible to use the GPU also for finding the corresponding
minimum and maximum required slice or row of the output volume for each chunk. This way, only the parts of
the volumes have to be transferred to the device that are really necessary for the projection of one chunk saving
transfer time and memory usage. The concept of slice chunks also ensures that the maximum possible measure
of the sample along the axis of rotation is not limited by memory, even not for cone-beam reconstructions.

Proc. of SPIE Vol. 9034 90344F-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

axis of rotation

source

image

p
ro

je
ct

io
n

Figure 2. A schematic of the concept of
angular wedges.
If there are many projections, only a part
of them are processed at once. The maxi-
mum wedge size can automatically be com-
puted from the size of the available texture
and constant memory. In the BP all wedges
are preferably computed on the same GPU de-
vice. This way the image volume only needs
to be transferred once.

2.2.2 The concept of angular wedges

The second concept ensures that all angular parameters fit into the very size-limited constant memory, as
described in 2.1.2 and 2.1.3, and that the projection data does not overflow the GPU memory. The maximum
limit for a constant memory of 64 kByte is 1365 projection matrices for a backprojection (12 floats for each P)
and 1024 for a forwardprojection (15 floats and 1 integer for each set of P+, S̃, and dmain). The maximum limit
for the projection data is given by the maximum allocation size in global memory depending on the GPU device.
If a dataset exceeds one of the two limits, the angular splitting feature performs a whole projection for a subset
of angles first and then continues processing the next subset as shown in Figure 2. It is convenient to perform
the subsequent projections of angular subsets on the same GPU device so the image volume does not have to be
transferred back and forth.

3. RESULTS

Figure 3 shows the benchmarks for the suggested forward- and backprojector for two different hardware setups,
one providing four and the other one eight GPU devices, and each for two different data sizes. Each benchmark
was measured once with all available GPUs and once on a single GPU in order to obtain the speedup and
overhead produced by the suggested data splitting.

Independent from the hardware setup and data size, the speedup was close to the number of GPU devices
meaning that the overhead from our split-up approaches is very small. Some of the little overhead that can be
seen despite, can be explained by the fact that the uneven number of slices was not completely divisible by the
workchunk size of 16 px for the backprojector and 24 px for the forwardprojector.

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

We presented an implementation of a forward- and a backprojector including sophisticated considerations of
how to split up data efficiently. The great advantage of the concept of slice chunks shown is that all chunks
are completely independent from each other and can perfectly be distributed over multiple GPUs. Our profiling
showed that the required preliminary kernel only takes less than a millisecond of additional computing time for
the profitable precomputations.

Both, the splitting into slice chunks and the splitting into angular wedges allow concurrently fetching the
results from a previous work unit and pushing data for the next one while computing.

5. CONCLUSION

We introduced an implementation of a multi-GPU tomographic forward- and backprojector which is designed to
handle each setup geometry that can be represented by projection matrices.

Proc. of SPIE Vol. 9034 90344F-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

With the help of an example from synchrotron X-ray tomography, we also showed that utilizing multiple
GPUs is a great asset for tomographic projectors when distributing the data in a clever way. Therefore, we
introduced the concept of slice chunks which can be calculated without loss of computation time and are able to
subdivide both forward- and backprojection into really distinct work units. For datasets with many projections,
the concept of angular wedges can additionally be applied in order to stay within the memory limits of one
device.

Further improvements that might be investigated is using half floats instead of floats in order to increase the
number of cached texels and minimize the transfers. Furthermore, a comparison of the OpenCL to a CUDA
version of the implementation would be valuable.

With projector designs such as ours it will be possible to develop in the near future far more advanced
iterative reconstruction algorithms especially for large amounts of data.

REFERENCES

1. R. Bippus, T. Koehler, F. Bergner, B. Brendel, E. Hansis, and R. Proksa, “Projector and backprojector for
iterative CT reconstruction with blobs using CUDA,” Proceedings of Fully 3D 3, pp. 68–71, 2011.

2. R. Galigekere, K. Wiesent, and D. Holdsworth, “Cone-beam reprojection using projection-matrices,” Medical
Imaging, IEEE Transactions on 22(10), pp. 1202–1214, 2003.

3. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press,
2011.

4. P. B. Noël, J. Herzen, A. A. Fingerle, M. Willner, M. K. Stockmar, D. Hahn, M. Settles, E. Drecoll, I. Zanette,
T. Weitkamp, E. J. Rummeny, and F. Pfeiffer, “Evaluation of the potential of phase-contrast computed tomog-
raphy for improved visualization of cancerous human liver tissue,” Zeitschrift für Medizinische Physik 23(3),
pp. 204–211, 2013.

Hardware Data size Single / Multi Speedup

GPU

F
P

4× Nvidia R© Titan full 15.07 s 4.28 s 3.5×
reduced 7.50 s 2.00 s 3.7×

4× Nvidia R© Tesla K10 full 62.53 s 7.87 s 7.9×
(2 GPUs each) reduced 23.55 s 2.94 s 8.0×

B
P

4× Nvidia R© Titan full 32.65 s 8.40 s 3.9×
reduced 16.30 s 4.30 s 3.8×

4× Nvidia R© Tesla K10 full 71.36 s 9.47 s 7.5×
(2 GPUs each) reduced 36.05 s 4.82 s 7.5×

Figure 3. A comparison of the computation times between a single GPU and multiple GPUs taking advan-
tage of the suggested slice-wise and angle-wise data splitting.
The measurements were carried out on a system containing four of the very recent NvidiaR© Titan graphics cards as well as
on a system holding four NvidiaR© Tesla K10 devices which have two GPUs each. The time values given include all splitting
precalculations, transfers and kernel executions. The two data sizes are the full image volume size of

(
373 × 13762

)
vx3

and a reduced size of
(
373 × 9762

)
vx3 which is more adapted to the actual size of the liver sample. Each computation

considered 1200 projection angles.
The image on the right is a slice of the reconstructed liver sample. The phase-contrast dataset was kindly provided for
testing by P. B. Noël et al.4

Proc. of SPIE Vol. 9034 90344F-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

APPENDIX A. COMPUTING THE PROJECTION MATRICES FROM THE
MEASURES IN A CT SETUP

image

projection

pproj

Z

X x

y

Oimg

ϕ zlab

xlab

ylab

Y
ds2c

dc2p

ψ

θ

P

OS

Figure 4. A schematic of the three coordinate systems, the geometric parameters and their relations.
The three Euler angles (ϕ, θ, ψ) successively describe the rotation of the detector plane and the opposing source S around
the axes ylab, z′lab, and y′′lab of the world coordinate system where each dash indicates a previous rotation of the axis
itself. P, the principal point, is defined as the intersection of the orthogonal projection ray and the detector plane, i. e.
the foot of a perpendicular of S on the detector. The distance between S and O is called ds2c and dc2p is the subsequent
distance to P.
The coordinate system (xproj,yproj) on the detector plane has the offset pproj from P and its coordinates are expected
to be in units of detector pixels so that they can directly be used as array indices. Same, for the coordinate system
(ximg,yimg,zimg) in the image volume which has the same orientation as the world system, but measures of image voxels
and its origin is displaced by the vector Oimg from O.
The definition of the Euler angles, as well as the order of the axes in each system are only meant to serve as a con-
crete example for the computation of projection matrices and have no influence on the generality of the latter or the
implementation below.

In order to use projection matrices in the context of tomography, each single projection of a scan has to be
described with one corresponding matrix P consisting of the following components. The relevant coordinate
systems and names of important geometry parameters of a tomographic setup are introduced in Figure 4. This
appendix follows the book of Hartley et. al.3

A.1 The intrinsic parameters

are represented by the 3 × 3 Camera Calibration Matrix K. It describes a camera geometry, or the geometry
of a tomographic setup in our case. Mapping the point X = (X,Y, Z, 1)T in homogeneous coordinates to the
corresponding point x = (x, y, 1)T on the detector can be written as

 xw
y w
w

 =

 αx px
αy py

1


︸ ︷︷ ︸

K

[
I3 | 0

]
·


X
Y
Z
1


where Ii is the identity in the i-th dimension and w is a measure for the depth of the point that will not play
any role in the further investigations.

The parameters αx and αy contain firstly the focal length f = ds2c +dc2p, the distance from the source to the
principal point, in arbitrary length units, e. g. SI units. Secondly, further rescaling is caused by the pixel densities
m = (mx,my) of the detector in both directions, given in the same system of units. Altogether, α = (αx, αy)
can be written as α = f ·m.

Proc. of SPIE Vol. 9034 90344F-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

The other parameter in K is the offset pproj = (px, py) of the origin of the detector coordinate system from
the principal point in detector pixel units.

A.2 The extrinsic parameters

are firstly the camera translation vector s describing, in our case, the position of the source in the world coordinate
system before any rotation.

Secondly, there is the camera rotation matrix R. Following the definition of the Euler angles above, it reads

R = Ry′′
lab
·Rz′

lab
·Rylab

=

=

 cψ sψ
1

−sψ cψ

 cθ −sθ
sθ cθ

1

 cϕ sϕ
1

−sϕ cϕ

 =

=

 −sψsϕ + cθcψcϕ −sθcψ sψcϕ + cθcψsϕ
sθcϕ cθ sθsϕ

−cψsϕ − cθsψcϕ sθsψ cψcϕ − cθsψsϕ


where sx = sin x and cx = cos x.

Together with the intrinsic parameters, the whole projection reads

xw = K
[
R | s

]
︸ ︷︷ ︸ ·X.

extrinsic parameters

The projection matrix is then defined as

Plab = K
[
R | s

]
.

A.3 The transformation to image coordinates

could in principle be replaced by an appropriate choice of the preliminary parameters, but we decided to introduce
it as an extra step in order to have a convenient separation of arbitrary units for the geometry parameters and
voxel units for direct access to the indices in the image array. The transformation can be written as

T =


∆img,x oimg,x

∆img,y oimg,y

∆img,z oimg,z

1


where ∆img is the image voxel size and oimg,i = ∆img,i · Oimg,i the position of the center of rotation within the
image volume in voxel units multiplied with the voxel size.

The resulting final projection matrix reads

P = T Plab = T K
[
R | s

]
.

Proc. of SPIE Vol. 9034 90344F-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

