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Abstract

Mathematical models are a valuable tool to answer biological questions or evaluate com-
peting hypotheses which are not within reach of experiments. Since commonly not all
system parameters are known, models need to be calibrated based on experimental data.
However, outlier corrupted data poses a serious threat to model calibration as outliers
may lead to distorted parameters, which result in wrong model predictions. Detecting and
removing those outliers is a challenging task with regard to the complexity and amount
of biological data. A reasonable alternative approach constitutes robust parameter es-
timation. For parameter estimation it is commonly assumed that the deviation of the
measurement from the predicted observable is normally distributed. This assumption is,
however, strongly affected by large erroneous measurements. Heavier-tailed distributions,
that have heavier tails than the normal distribution, are less susceptible to outliers and
consequently, using a heavier-tailed distribution as distribution assumption for the de-
viation of the measurements from the predicted observables yields a robust approach to
parameter estimation.

In the presented methods for estimating the parameters of ordinary differential equation
(ODE) models, we propose the Laplace, Cauchy and Student’s t distribution as heavier-
tailed alternatives to the normal distribution assumption. The robustness of our novel
methods was assessed for population average data, which was modified according to de-
fined outlier scenarios. At first artificially generated data of a conversion reaction was
studied and the results showed that the new methods are able to decrease the error of
parameter estimates for outlier corrupted data. To support this finding an application
study to artificially perturbed experimental data of the Jak/Stat signaling pathway was
performed. Using heavier-tailed distribution assumptions constitutes indeed a robust ap-
proach to parameter estimation for outlier corrupted data that leads to reliable parameter
estimates. Since model accuracy is a prerequisite for reliable predictions of the behavior
of a biological process, the proposed methods will enhance the investigation of biological
systems.






Zusammenfassung

Im Kontext von dynamischen Modellen fiir biologische Systeme werden in der vorliegen-
den Arbeit Methoden vorgestellt, die eine robuste Parameterschétzung fiir ausreiflerbe-
haftete Datenséitze ermdoglichen. Dynamische Modelle erlauben es, biologische Fragen zu
beantworten oder konkurrierende Hypothesen zu evaluieren, die nicht durch biologische
Experimente auszuwerten sind. Im Allgemeinen sind jedoch nicht alle Systemparameter
bekannt, die fiir die Modellierung nétig sind. Deswegen miissen unbekannte Modellpa-
rameter aus experimentellen Daten geschétzt werden. Ausreilerbehaftete Daten stellen
allerdings ein grofles Problem fiir die Modellkalibrierung dar, da sie zu verfdlschten Para-
metern fithren, die wiederum falsche Modellvorhersagen nach sich ziehen. Diese Ausreifler
zu finden und aus dem Datensatz zu entfernen ist hinsichtlich der Komplexitat und Grofie
biologischer Datensétze eine herausfordernde Aufgabe. Eine sinnvolle Alternative stellt die
robuste Parameterschiatzung dar. Fiir die Parameterschétzung wird iiblicherweise ange-
nommen, dass die Abweichungen der Messungen von den vorhergesagten Beobachtungen
normalverteilt sind. Diese Annahme wird jedoch stark von fehlerhaften Messungen be-
einflusst. Endlastige Verteilungen, die mehr Masse in ihren Randbereichen haben, sind
weniger anfillig fiir Ausreiffer und folglich fiihrt die Verwendung dieser Verteilungen als
Verteilungsannahmen zu einem robusteren Ansatz fiir die Parameterschétzung.

In den vorgestellten Parameterschiatzmethoden fiir Differentialgleichungsmodelle wurden
die Laplace-, Cauchy- und Studentsche t Verteilung als Alternativen zu der Normalver-
teilung eingefithrt. Um die Robustheit unserer Methoden zu testen, untersuchten wir
Datensétze denen kiinstlich Ausreiflier hinzugefiigt wurden, wie sie auch unter iiblichen
Laborbedingungen auftreten konnten. Die Eigenschaften der neuen Methoden wurden an
kiinstlich generierten Daten eines Umwandlungsprozesses illustriert und bewertet. Die Re-
sultate zeigen, dass die Methoden fiir ausreiflerbehaftete Datensétze den Fehler der Para-
meterschitzer reduzieren. Dieses Ergebnis wird unterstiitzt durch eine Anwendungsstudie
zu realen Daten des Jak/Stat Signalweges. Die Verwendung von endlastigen Verteilungen
stellt folglich einen robusten Ansatz zur Parameterschiatzung im Falle von ausreiflerbe-
hafteten Datensétzen dar. Da Modellgenauigkeit eine Vorrausetzung fiir zuverléssige Vor-
hersagen ist, tragen die neuen Methoden dazu bei die Untersuchung biologischer Systeme
zu verbessern.
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Chapter 1

Introduction

Quantitative dynamic models have become a beneficial tool to gain an integrated un-
derstanding of biological processes (Ideker et al. 2001; Kitano 2002). The key benefit of
these dynamic models is the integration of multiple experimental data sets and the pre-
diction of system properties that are not within reach of biological experiments (Aderem
2005; You et al. 2004). As the parameters of the model are generally unknown and
need to be inferred from experimental data, the crucial step of quantitative dynamic
modeling is the calibration of the model based on experimental data. Hence, the ba-
sis of modeling is a combination of experimental and computational methods (Wierling
et al. |2007), which means that a model can be only as meaningful as the data it is
based on. Experimental data used for parameter estimation is collected using a broad
spectrum of quantitative measurement techniques. The measurement precision in quan-
tification has increased (Chen et al. 2013)), but there are still numerous ways in which
errors are introduced during the process of data collection and data processing (Ghosh
et al. 2012)). Biological systems are highly sensitive to their environment, thus, unusual
conditions in laboratories or inconsistent laboratory procedures have an distorting effect
on the quality of measured data. In addition, technical limitations and human errors such
as pipetting errors or incorrect data processing can result in large measurement errors
(Pearson et al. 2004 Motulsky et al. 2004)).

In the field of quantitative dynamic modeling it is commonly assumed for model cali-
bration that the noise is normally or log-normally distributed. FErroneous data poses,
however, a serious problem to model calibration, since false measurements are likely to
distort parameter estimates (Tarantola 2005). Those individual data points, which are
corrupted by errors, are in general denoted as outliers. Outliers are generated from a
different mechanism as the remainder of the data points and may, therefore, be mislead-
ing (Hawkins [1980; Motulsky et al. [2004). As a result of inaccurate model calibration
due to outliers the validity of the given model becomes limited, thus, its predictive power
regarding biological questions decreases.
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1.1 Treatment of outliers

Since the use of outlier corrupted data distorts results in various fields, as for example
in regression analysis, many methods for the detection of outliers have been developed
(Aggarwal 2015; Ben-Gal [2005; Hodge et al. 2004; Niu et al. 2011). Outlier detection
algorithms either assign a score about the degree of abnormality or a binary label to a
data point. This labeling is usually based on a fit to a distribution or a distance measure,
e.g. k-nearest neighbor distance (Ramaswamy et al. [2000). Eventually, it remains but a
subjective decision on whether or not a data point is sufficiently abnormal to be removed
(Aggarwal [2015)), which introduces a person dependent bias. In practice this distinction
is even less straightforward if measurement noise is present, which complicates the iden-
tification of outliers. The increasing size and complexity of biological data makes the
removal of outliers a challenging task, especially if the visualization is difficult due to high
dimensionality (Tarantola |[2005)). The removal of data points which are indeed no outliers
as well as the retention of outliers in the data, will yield less reliable results in the further
analysis (Motulsky et al. [2004)). Furthermore, in the case of multiple outliers the dis-
tinction between outliers and non-outliers becomes even more ambiguous (Huber 2011)).
Thus, a robust parameter estimation method is needed that leads to reliable parameter
estimates in the presence of outliers.

Robust approaches that do not alter outlier corrupted data are for example already used
in regression (Lange et al.|1989) and computer vision (Stewart |1999). These approaches
exploit estimators that are less affected by outliers, e.g. M-estimators (Huber 2011)). To
the best of our knowledge a robust parameter estimation approach in the field of quanti-
tative dynamic models has not yet been introduced. By fitting the model to the majority
of the data robust methods can even also be used to detect outliers. Outliers appear
as large values in the residuals of the fit and consequently they can be identified by a
distance measure, e.g. Z-value test (Aggarwal 2015). Those outliers are often hidden if
a non-robust fit of the model to outlier corrupted data is used (Rousseeuw et al. 2005).
In the present work, the unresolved issue of robust parameter estimation for ODE mod-
els for biological systems is addressed. We present an approach that exploits different
distribution assumptions in the model to improve coping with outliers.
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1.2 Contribution of the thesis

The work is composed of the following parts: at first, the fundamentals of ODE models
and parameter estimation are outlined in Chapter 2] Subsequently, three biologically
motivated outlier scenarios are introduced in Chapter [3| representing realistic ways in
which outliers are introduced into data sets. Next, different statistical models for the
residual distribution are presented in Chapter [d] These include, additionally to the stan-
dard approach, the normal distribution, three distributions with heavier tails than the
normal distribution, namely the Laplace, Cauchy and Student’s t distribution. These
three distributions will be denoted in the following as heavier-tailed distributions. In
order to illustrate and evaluate the properties of the resulting estimation in the absence
and presence of outliers, artificial data for a conversion reaction with known parameters
is generated according to the defined outlier scenarios in Chapter [5] Limitations, which
arise if too many data points can be fitted exactly by the model, are discussed at the
end of the application example. Following this, the methods are applied to artificially
perturbed biological data of the Jak/Stat signaling pathway (Chapter [6]). Finally, the
results of the present thesis are summarized and strengths as well as weaknesses of the
different distribution assumptions are discussed, providing directions for future work.






Chapter 2

Data-driven modeling of dynamic
biological systems

The following chapter introduces the fundamentals of data-driven quantitative dynamic
models and presents the type of data the models are based on. Starting from the transla-
tion of a biological process in ODEs, the typical work flow is described. Next, unknown
parameters of the model need to be estimated from the data. This problem is approached
by maximum likelihood estimation using multi-start local optimization. In addition, as-
sessment criteria for the model performance are explained, including convergence, model
accuracy and model selection. Finally, the uncertainty attached to the parameter esti-
mates needs to be investigated.

2.1 Experimental data

In general, different types of biological data comprise single cell snapshot data, single
cell time-lapse data and population average data. Whereas the first two types provide
information about the cell-to-cell variability of a heterogeneous population, the latter
describes an average cell in a homogeneous population (Hasenauer et al. 2011)). In this
work population average data

D:{(tk,gik>}7 izl,...,ny,kzl,...,nt

is studied, which contains the mean values y;; of n, measured molecular species at a
certain number of time points n;. By taking the mean over the whole population of
cells, a representation for a typical behavior of a cell is given. Biological experiments
that average over the population require the measurement of a high number of cells;
possible techniques include e.g. western blotting (Renart et al. [1979) or micro arrays
(Pirrung et al. [2014)).
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2.2 Quantitative modeling of dynamic biological
systems

In a mathematical model M of a dynamic biological system the time evolution of the
biological process is most commonly described by reaction rate equations (RREs),

T = f(z,8), z(0) = xo(§) ,

with time-dependent states x(t) € R}, vector field f, parameter-dependent initial state
z0(€) € R and parameters ¢ € R, comprising, for instance, reaction rates, bind-
ing affinities, and initial concentrations (Klipp et al. 2008). The states z(t) correspond
to the concentration of n, molecular species, e.g. hormones, proteins or mRNA. The
concentration of X molecules for a given reaction volume 2 is given by = = X/Q
(McNaught et al. [1997). Generally, not all of the parameters can be technically mea-
sured or were measured during the data collection. Thus, this description leads to a
system of ODEs with unknown parameters. This deterministic setting is only valid un-
der the assumption that stochastic effects can be neglected, i.e., molecules are present
in high numbers and compartments are well-mixed (Gabor et al. 2015; Gillespie 1992).
Biological measurement techniques allow the experimental assessment of an observable
y = h(z,£), which is a function of the states or parameters. In general, measurements
Ui do not exactly display the predicted observable y(t, £), but are subject to uncertainty
due to technical noise, technical limitations or human errors in the data collection and
processing (Tarantola 2005). The residual vector 7;(t, ) is defined as the deviation of the
measurand g; from the observable y(t, &) for a parameter vector &:

Ti(t7’£):gi_yi(t7€>7 izl?"'7ny'

For the distribution of the residuals a distribution p is assumed that describes the spread
of the measurands around the observables

Ui ~ p(Uilys, i) , (2.1)

with parameters ¢; accounting e.g., for the scale of the distribution; (¢ = (¢1,...,¢n,))-
The measurement noise is most commonly assumed to be normally distributed with noise
level o, i.e., p(¥ilyi, pi) = N(yi,0?). In the case of outlier corrupted data single observa-
tions are, however, drawn from an alternative distribution, which is difficult to assess due
to small sample sizes. Since outliers result in large residual values, a normal distribution
might not be an adequate representation. Possible assumptions for the distribution p
are presented in Chapter [4] including next to the normal distribution three heavier-tailed
distributions.
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2.3 Parameter estimation

The inverse problem, to estimate model parameters based on experimental data, can be
approached by maximum likelihood (ML) estimation (Raue et al.[2009; Weber et al.[2011)).
The goal is to find parameters 6 = (£, ¢) which maximize the conditional probability of
observing the data D given the model M, assuming a distribution p. Therefore, a cost
function, the likelihood,

ng Ny

Lp(0) =P(D|0) = HHP(@ik’%(%;f)?@i) ; (2.2)

k=11i=1

is introduced that penalizes discrepancies of the model from the measured data, assuming
independence. The data is recorded for n, observables at time points ¢, k = 1,...,n;. In-
stead of maximizing the likelihood, equally the negative log-likelihood J(0) = -log(Lp(0))
can be minimized as objective function. Furthermore, the parameters of biological sys-
tems are usually non-negative by definition. Thus, in order to handle parameters of
different magnitude, it is advised to log-transform the parameters for numerical computa-
tions (Maiwald et al. 2008)). In the parameter estimation process the parameters ¢ of the
distribution assumption p are estimated simultaneously with the parameters describing
the model dynamics . These formulations provide significant numerical advantages and
lead to the optimization problem

M- = arg min J(6). (2.3)

where OME denotes the maximum likelihood estimate (MLE). The problem can be solved
efficiently by derivative-based multi-start local optimization (Raue et al. |2013). This
optimization approach is based on the assumption that if the best optimum is found
several times, starting from start points that are spread over the whole parameter space,
this optimum corresponds to the global optimum. To guarantee a comprehensive coverage
of the parameter space O, the start points for the local optimization are generated between
the lower and upper parameter bounds by using a Latin hyper cube sampling scheme.
Therefore, the parameter range in each dimension is equally divided in N intervals, where
N is the number of start points. A uniformly distributed random number is drawn within
each interval in each dimension, i.e., it is guaranteed that each interval is represented
once (McKay et al.|1979). The required derivatives for the optimization of the objective
function are most efficiently computed by employing the sensitivity equations, which are
more reliable than a finite difference approximation (Sengupta et al. 2014]).
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2.4 Assessment criteria for model performance

The optimization problem (2.3]) is in general non-convex and often has several locally
optimal points (Banga 2008). For multi-start local optimization it is important to ensure
the convergence to a global optimum and the generation of reproducible results. In
this work the convergence was assessed statistically by a likelihood ratio test using the
significance level a = 0.05. A start s is said to be converged, if

- 2<log(£p(98)) - log(ﬁp(éML))> < A, (2.4)

where A, is the 100(1 — «)th percentile of the x? distribution with one degree of freedom
and 05 the parameter vector resulting from the optimization (Hross et al. 2016). If a
certain number of starts, spread over the parameter space, have converged to the same
best optimum it is assumed to have found the global optimum.

The key feature of a model is its accuracy, since only accurate parameter estimates allow
meaningful model analysis and predictions. The model accuracy can be assessed by
evaluating the mean squared error (MSE), given by

MSE[EME, €] = B[(€" — £™)?] (2.5a)
= VAR[M"] + Bias[¢M", £ (2.5b)

The MSE measures the goodness of the estimate EML by taking the mean of the squared
difference of the estimate and the true parameter value. It combines the variance and
the bias and thus it takes into account the random error, the variance of the estimates,
as well as the systematic error, the difference of the true value and the expected value of
the estimates (Hand et al. 2001). Consequently, it handles the well known variance-bias-
tradeoff (Gabor et al. 2015). Note that the MSE is only reasonable for the parameters
describing the model dynamics &, not for the parameters of the distribution assumptions
©, since these are not comparable.

In the modeling process often several possible models M, arise that may describe an ex-
perimental data set D. These models can differ in the RREs or distribution assumption p.
A commonly used criterion for model selection is the Bayesian Information Criterion (BIC)
(Schwarz [1978) R

BIC; = —2 log(Lp(6}™)) + log(np) - ne,; , (2.6)

for which GE\AL is the MLE for model M, np the number of data points and ng; the
number of parameters of model M;. Note that ny; comprises the number of parameters
of the RREs and the parameters of the distribution assumption p; used in model M;. The
BIC is proportional to the log-likelihood and therefore rewards agreement between the
model and the data but penalizes model complexity. It follows from Equation that
the model with smallest BIC value is most appropriate for the given data. In general,
a difference in BIC to the minimum BIC value greater than 10 signifies a very strong
evidence in favor of the model which yields the smaller BIC value. Since this difference
evaluates how much more the data supports the second model over the first, this gives a
reasonable criterion for model rejection (Raftery 1995).
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2.5 Uncertainty analysis of parameter estimates

As already mentioned in the introduction, limitations in the data collection process affect
the parameter estimation. Thus, parameter estimation has to be followed by an analysis
of the uncertainty attached to the parameter estimates. Incomplete knowledge about
the data or the model dynamics may lead to non-identifiable parameters. Identifiability
comprises structural (Bellman et al.|1970) and practical identifiability (Raue et al. 2009).
Whereas structural identifiability does not depend on the experimental data but solely
on the model structure, practical identifiability takes into account the quality of the
underlying data. To assess these parameter indeterminancies, profile likelihoods,

PL(6n) = gnfg}( Lp(0), (2.7)

can be used (Murphy et al. [2000; Raue et al. 2009). For each parameter 6, a one-
dimensional profile is calculated by fixing this parameter and maximizing over the re-
maining parameters 0, ,9 # h. A practically non-identifiable parameter for a data set is
characterized by a flat profile, resulting in an infinite confidence interval (CI). Profile like-
lihood based confidence intervals, which contain the true parameter value with probability
1 — a, are obtained by (Schelker et al. 2012)

CL(04]D) = {64] — 21og (PL(6,)) + 2log (L(BMF)) < A}, (2.8)

with the 100(1 — «)th percentile A,, computed by the inverse cumulative distribution of
the x? distribution with one degree of freedom. A criterion to evaluate the confidence
in the parameter estimates is the coverage rate. The coverage rate provides informa-
tion about how often the true value is in fact located within the confidence interval, see
(Raue et al. 2009). In general, the coverage ratio (CR) is considered, which is given by
the coverage rate divided by the number of simulations (Schelker et al. 2012). This ratio
should be close to the desired level of confidence CR~ 1 — «a. If CR < 1 — « the uncer-
tainty in the parameter estimates is underrated. Contrary, if CR > 1 — «, the confidence
intervals are more cautious than required (Raue et al. 2009). Thus, the coverage ratio
provides a means to validate the appropriateness of confidence intervals.






Chapter 3

Outlier scenarios

Since quantitative models are calibrated to biological measurements, prospective predic-
tions depend intrinsically on the quality of the data. Data quality is concerned with
accuracy, incompleteness and reliability (Wang et al. [1996). Deficient quality is for exam-
ple characterized by missing values and erroneous measurements. This thesis deals with
data of poor quality, namely data which includes outliers. It is, however, difficult to get
a notion of outliers initially. Hawkins (1980) gave an intuitive definition of an outlier:

7 An outlier is an observation which deviates so much from the other observa-
tions as to arouse suspicions that it was generated by a different mechanism.”

Thus, outliers are individual data points that deviate considerably from the remaining
data points and in general, they are not generated by the same underlying mechanism as
the remainder of the data set. In many applications outliers contain useful information,
e.g. credit card fraud or medical diagnosis (Aggarwal 2015)). In those cases an outlier is
introduced into data sets by a disease or a fraud event, which constitutes an important
discovery. Unfortunately, there are also many undesired causes of outliers. Biologically
motivated mechanisms that produce unwanted outliers in data sets are, to name but a
few, technical failures, inconsistent laboratory conditions, as well as inaccuracies in the
data collection and data processing (Motulsky et al. 2004). Some concrete examples of
problems that may arise in practice: Gassmann et al. (2009) have for instance outlined
the difficulties arising in the quantification of Western Blots, comprising e.g. the inho-
mogeneous illumination of scanners. A labeling error in microarray data sets, which were
made available to the participants of the CAMDA 2002 (Critical Assessment of Microar-
ray Data Analysis), was revealed by Stivers et al. (2004). Inconsistent labels would have
caused wrong biological conclusions, if this error had remained undetected (Pearson et al.
2004)).

In the following we distinguish three scenarios; one reference scenario without outliers

and two scenarios that represent outlier generating mechanisms. These outlier scenarios
allow us to examine the robustness and accuracy of the methods in presence of outliers.

11



Outlier scenarios
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Figure 3.1: Scenarios with and without outliers. Data without outliers, corresponding to

the scenario no outliers. Scenario one data point at zero. Randomly one data point
is set to zero. For the third scenario two data points are randomly selected and
interchanged, resulting in the scenario two data points interchanged. Data points
that are no outliers are represented as grey circles, while outliers are highlighted
in purple. The purple arrows represent the outlier generating mechanism.

1. No outliers. The first scenario, displayed in Figure [3.1, represents the noise real-

ization of the output without any alteration. The data set does not include any
outliers, any deviation from the observable is due to noise.

. One data point at zero. Figure [3.1] shows also the second scenario, which describes

the failure of a technical measurement device during the process of data collection.
The device fails to record at a certain time point t; resulting in a zero instead of a
measured value y;;. To artificially generate a data set of this type a time point
is chosen randomly out of ¢4, ..., %,, and the corresponding measured value is set to
Zero

i=1,...

(tlm gzk‘) — (tk’a O) 5 y Ny

. Two data points interchanged. Another common mistake in data processing might

be the interchange of data points. This typical entry or labeling error is covered
in the scenario two data points interchanged of Figure [3.11 This modification is

generated by randomly choosing two time points t; and t; out of t¢q,...,¢,, and
interchanging their values y;; and ¥;, i.e.,

(tk, Uir) = (tr, Yar)

(t1, Ua) = (t1, Yin)
where k # [ and 7 = 1,...,n,. Note that the degree of alteration of this scenario

depends on the chosen time points. If, for example, time points next to each other
are chosen, the modification might not lead to significant deviations from the main
behavior of the data points.

In the case of several observables (n, > 1) the modification is applied to all n, observ-

ables.

12



Chapter 4

Distribution assumptions for the
residuals

” Everyone believes in the [normall law of errors, the experimenters because
they think it is a mathematical theorem, the mathematicians because they think
it is an experimental fact.” (Cramér 1945)

This aphorism given by Cramér, which is attributed to the mathematician Poincaré, is
still valid as it is commonly assumed that the residuals, the deviations of the measured and
predicted observables due to noise, are normally distributed. Kreutz et al. (2007)) show
that noise in immunoblotting data is adequately modeled as multiplicative log-normally
distributed. This corresponds to a log-transformation of the data and using an additive
normal distribution. Hence, usually the normal distribution is used for the distribution p,
defined in Equation . In the case of outlier corrupted data, however, a distribution
which only describes the technical noise might not be adequate. Outliers result in large
values in the residual vector which cannot be captured by the normal distribution. In the
following, we therefore introduce three distributions with heavier tails than the normal
distribution in addition to the normal distribution; the Laplace, the Cauchy and the
Student’s t distribution.

4.1 Normal distribution

Most commonly measurement noise is assumed to be normally distributed in parameter
estimation for quantitative dynamic models (Raue et al. 2013). The probability density
for the normal distribution N (u, 0?) reads

p(z;p,0) = \/21—m exp ( - %) :

for which g is the mean of the distribution and o the standard deviation. The stan-
dard normal distribution N'(0,1) is shown in Figure [1.1]A-C in blue. Assuming that the
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Figure 4.1: Visualization of the heavier-tailed distributions. (A) Comparison of the
Laplace distribution with the standard normal distribution N(0, 1) for diverse val-
ues of b. (B) The Cauchy distribution with differen ~ values compared to the
standard normal distribution. (C) Comparison of the non-standardized Student’s
t distribution with the standard normal distribution for various degrees of freedom
v and scale parameters o. Note that the Cauchy distribution with v = 1 coincides
with the Student’s t distribution with v = 1. All three distributions have heavier
tails than the normal distribution.

measurements § are normally distributed around the observables y, § ~ N (y,0?), the
likelihood function, according to Equation (2.2), reads

£0(6) - HH EEEwE

i

with parameter ¢; = 0;. The objective function is then given by the negative logarithm
of the likelihood,

ng Ny

J(0) :%ZZ {10g(27rai2(9)) + (%9(;’69))1 .

k=1 i=1

This approach coincides with minimizing the weighted sum of squared residuals. Outliers
have, by definition, a large distance to the observable. Squaring this distance, as in
the normal distribution assumption, gives greater weight to outliers. Thus, large errors
have a relatively large contribution to the objective function compared to smaller errors
(Willmott et al. |2005). The least-squares method is consequently not robust. In the
field of regression Cornbleet et al. (1979) have for example reported that least-squared
regression coefficients are incorrect if outliers are present. Minimizing the squared errors is
a standard approach since it facilitates computation by avoiding the absolute value of the
residuals compared to the least absolute deviations. The analytic gradient and Hessian
matrix, which are used to improve the optimization, are provided in the Appendix[A.T]
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4.2 Laplace distribution

Taking into account the sum of absolute residuals (Edgeworth [1887)) rather than the sum
of squared residuals results in the Laplace distribution. The probability distribution of
the Laplace distribution is given by

p(z;p,b) = L exp <ﬂ>

with location parameter y and scale parameter b > 0. The distribution has mean and
median p and variance 2b%. Tarantola (2005]) suggests to use the Laplace distribution as
soon as a single outlier is included in a data set as the assumption of a normal distribution
in this case leads to unacceptable results of the inverse problem. The Laplace distribution
has longer tails than the normal distribution, see Figure 4.1JA, and is therefore better
suited to represent uncertainties in the data due to outliers. The likelihood function is

efined as
d d . T 1 —|Yir. — yi(tr, 0)]
p(0) HH[W@) eXp( b;(0) )]

with parameter ¢; = b;. The negative log-likelihood used for the optimization is

ng Ny

10 =33 [tostanoy) + vl

k=1 i=1

Minimizing this objective function corresponds to minimizing the sum of absolute devi-
ations. The method of least absolute deviations (L; method) is robust in contrast to
least squared deviations (Ly method) (Portnoy et al. [1997). Willmott et al. (2005)) have
demonstrated that the total squared error will become increasingly larger than the total
absolute error, if the total error is contained in a small number of individual large errors.
The authors suggest to use the absolute error, rather than the sum of squared errors, as
the absolute error constitutes an less ambiguous measure. This is also supported by Hu-
ber (2011)), who shows that already two erroneous observations out of 10® are enough to
prefer the absolute deviations over the squared deviations in the case of unmodified data
sets (without outlier detection and removal). In the context of biological data Purdom
et al. (2005)) showed that an asymmetric Laplace distribution fits errors in gene expres-
sion data better than a normal distribution. In robust regression using the least absolute
regression estimator is referred to as Li-regression (Rousseeuw et al. [2005). The gradient
and Hessian matrix are to be found in Appendix [A.2]

4.3 Cauchy distribution

The Cauchy distribution, also called Lorentz distribution, is an example of a pathological
distribution, i.e., it has no finite moments (Haas et al. 1970)). The probability density of

15



Distribution assumptions for the residuals

the Cauchy distribution is defined as

EYT) e —|
P\Zs,Y) = -7 — =95 . 5>
IEEE
with location parameter p and scale parameter v > 0. The influence of the scale parameter
on the shape of the distribution is visualized in Figure |4.1B. The distribution is tending
towards a dirac delta function for infinitesimal small scale parameter v. Since the Cauchy
distribution has neither defined mean nor variance, the distribution is characterized by
the median, given by u. Assuming the Cauchy distribution with median y;(tx) for the
distribution p, the likelihood function can be expressed as

T w(6)
IHH [ yzk: —Y; tk70))2 + %(9)2:| )

with parameter ¢; = ;. The objective function used for the optimization is

n

56) == 323 [ - ow(m) + log(u(0) — o ( (3 — (1, 0))" + 0)?)]

k=1 i=1

The gradient and Hessian matrix are provided in Appendix [A.3]|

4.4 Non-standardized Student’s t distribution

William S. Gosset derived the Student’s t distribution and published his findings under
the pseudonym Student (Student [1908). In statistics, the Student’s t distribution is
applied when estimating the mean for unknown standard deviation and small sample
sizes (Fisher |1925]). The Student’s t distribution results from a scale mixture of a normal
distribution with an inverse-gamma distributed mixing variable (Andrews et al. [1974).
The derived distribution is still symmetric, but the tail behavior is altered. The probability
density for the non-standardized Student’s t distribution is defined by

with location parameter y, scale parameter o > 0, and degrees of freedom v > 0 (Jackman
2009). Its mean and variance are defined by

E[X]= pu for v > 1
£ f 2
VAR[X] = { 2 oy
00 forl<v<2.

The standardized version is given for 4 = 0 and o = 1. In the following, the term Stu-
dent’s t distribution refers to the non-standardized version. As v — oo the Student’s t
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distribution tends to the normal distribution (Figure [4.1C) and for v = 1 the Student’s t
distribution coincides with the Cauchy distribution. Note that o is not a standard devia-
tion but determines the scaling of the distribution. The likelihood with non-standardized
Student’s t distribution assumption is written as

ne ny vi(0)+1 )

0 =T | it
v; (0)+1

| (1 ol _ayw(;@))) ]

with parameter vector ¢; = (0y,v;)T. This means that the distribution has one parameter
more than the normal distribution assumption that needs to be estimated. However, this
additional parameter enables the Student’s t distribution to approximate the normal dis-
tribution for large v values in the case of outlier-free data, whereas for outlier corrupted
data the degrees of freedom can take small values to put more weight in the tails. Con-
sequently, the degree of robustness is strongly related to the degree of freedom (Fonseca
et al. 2008). The objective function is computed as

2.2 (0)m o;(0
. (1+ a2

In regression analysis the Student’s t distribution was already introduced for robust statis-
tical modeling (Ferndndez et al.[1999; Lange et al. [1989; Liu et al. [1995; Peel et al. [2000)),
allowing the exploitation of its ability to downweigh outliers. Ferndndez et al. (1999)
discuss difficulties arising in global optimization for maximum likelihood estimation using
the Student’s t distribution, if the degrees of freedom v are defined in R*. In this case, a
global maximum does not exist if the model is able to fit too many data points exactly,
since the likelihood function can reach arbitrarily large values for small scale parameters
o — 0. However, this overfitting problem can be prevented by setting an appropriate
lower bound for v, for which the authors provide a criterion based on the percentage of
exactly fitted data points. Thus, in the parameter estimation procedure the additional
question arises where to set the lower bound for the degrees of freedom v. This issue is
further discussed in Section [5.8) The gradient and analytic Hessian of the log-likelihood
can be found in Appendix [A.4]

Note that we do not explicitly consider the log-normal distribution as this just corresponds
to log-transformation of the output and using the normal distribution assumption.
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Chapter 5

Illustrative model of a conversion
reaction

As first application of the different distribution assumptions we studied a simple conver-
sion reaction to illustrate the effect of different distribution assumptions (Chapter [4]) on
the parameter estimation in the case of outlier corrupted data. For this purpose artifi-
cial data was generated according to the three outlier scenarios described in Chapter [3]
This artificial data generation allowed a statistical analysis of the accuracy of the novel
methods since the true parameters are known. Conversion processes have a great biolog-
ical relevance as they appear frequently in biochemical reaction networks, e.g. reversible
phosphorylations.

5.1 Model description of a conversion process

A conversion process is a reversible reaction; biochemical species A converts to species B
with reaction rate k; and B reconverts to A with rate ko:

k1
A=DB.
ko

The RREs describing the time evolution of the conversion process are given by

dxa(t

C’i“t( ) _ Kz a(t) + kozp(t), 24(0) =24, ,
dxrg(t

C];;( ) = —ngEB(t)+I€1IA(t), IB(O) :IBO,

where x4 and xp denote the concentration of species A and B, respectively. The states
of the ODE system comprise the concentrations, x(t) = (z4(t), z(t))T with initial state
x(ty) = (va,,2,)7, and the parameters are given by & = (ki, k2)?. Assuming that
the average concentration of B can be measured experimentally, the observable reads
y(tr) = zp(ty).
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5.2 Data generation

The artificial data generation was composed in three steps: The process was first simulated
for ten time points ¢ € {0, 5, 10, 15, 20, 25, 30,40, 50, 60} minutes with true kinetic param-
eters log;o(¢) = (—1.5,—1.5)T and initial concentrations z(to) = (1,0)”. In accordance
with the general applied assumption that measurement noise follows a normal distribution
(Raue et al.2013)), normally distributed noise with constant noise level o = 0.02 was added
to the simulated observable y(;) to obtain “realistic” measurements i ~ N (y(ty),0?).
As last step, the data set was modified according to one of the three outlier scenarios
depicted in Figure . The above described procedure was repeated 103 times for each
outlier scenario. This allows a statistical assessment of the difference in parameter estima-
tion of the models involving the different distribution assumptions regarding robustness,
performance and accuracy using the previously described assessment criteria, see Chap-
ter 2L

5.3 Parameter estimation

Pretending that we had unknown parameters #, but known initial concentrations z(ty),
we performed maximum likelihood estimation of the model parameters for each generated
data set. The objective function was minimized by multi-start derivative-based optimiza-
tion in MATLAB (version R2015b) using the Parameter EStimation TOolbox PESTO
(Hross et al. [2016) for each distribution assumption. The RREs and sensitivities for the
derivatives were simulated using the toolbox CERENA (Kazeroonian et al. [2016). The
parameter space Z for the dynamical parameters £ was chosen as log;,(Z) = [—3.5,1)?
and the parameter space of the distribution assumptions as log,,(®™ 1) = [-5,0] for
the normal (N), Cauchy (C) and Laplace (L) distribution and log,,(®")) = [~5, 0] x [0, 5]
for the Student’s t distribution (T). The parameter range for the degrees of freedom of
the Student’s t distribution was chosen in such a way that for the lower bound of v the
Student’s t distribution corresponds to the Cauchy distribution, whereas for the upper
bound it approaches the normal distribution. The choice of the lower bound of v is ex-
plained in greater detail at the end of this application example, see Section 5.8 Within
these bounds 100 start points were generated using Latin hypercube sampling. As lo-
cal solver, starting from these start points, the MATLAB routine fmincon.m was used,
utilizing a trust-region-reflective algorithm (Coleman et al. |1996; Nocedal et al. 2006])
with provided gradient and approximation of the Hessian matrix, see Appendix [A] For
the Laplace distribution the optimization was performed using the interior-point algo-
rithm rather than the trust-region-reflective algorithm due to better performance when
the Hessian matrix is not user-supplied. Calculating the Hessian matrix for the Laplace
distribution requires the calculation of the second order sensitivities, see Appendix [A.2]
which is avoided here. To ensure convergence to a global optimum, a convergence check
pursuant to Equation (2.4 was included that doubled the number of start points in the
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Figure 5.1: Example trajectories for the conversion process. The different distribution
assumptions, normal (blue), Laplace (yellow), Cauchy (red) and Student’s t (green)
are used for model calibration based on artificial data of the conversion reaction
with true model trajectory (grey), which was modified according to defined outlier
scenarios. (A) No outliers scenario. Fits to an unaltered noise realization (grey
circles). (B) Outlier scenario with one data point at zero. One outlier (purple
circle) is introduced at time point ¢ = 20 min. (C) Outlier scenario with two data
points interchanged. The data points at time points ¢ = 15 min and ¢ = 50 min
are interchanged. (D) A second example for the outlier scenario one data point at
zero. The data point at time point ¢ = 60 min is set to zero. (E) Another example
for two data points interchanged. This time the data points at time points t = 5
min and ¢ = 60 min are interchanged.

case of non-convergence. Non-convergence was assumed, if less than ten starts had con-
verged to the best optimum. This multi-start optimization procedure was performed for
the 10% data sets of each outlier scenario to obtain the MLEs of the parameters.

5.4 Qualitative analysis of the results

A first impression of the robustness of the new approach can be gained by simulating
the model trajectories using the obtained MLEs of the model parameters and compare
the reconstructed trajectories with the true trajectory. Figure |5.1{ shows some example
model trajectories for MLEs obtained by applying different distribution assumptions in
the parameter estimation for the three outlier scenarios. In panel A the generated data
with normally distributed noise but without outliers was considered for model calibration.
The models with the different distribution assumptions are similarly able to describe the
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data sets, as all model trajectories are in good agreement with the data. It should be
noted that the reconstructed trajectories using the Student’s t distribution and normal
distribution coincide and overlap with the true trajectory.

Since there are several possibilities for the outlier scenarios one data point at zero and two
data points interchanged, as the outliers are chosen randomly, see Chapter [3, we demon-
strate the effect of the distribution assumption with two examples for each scenario. In
these examples, depicted in panels B-E, the fits assuming normally distributed residuals
(blue) are clearly misled by the outliers. In all examples the fits deviate considerably from
the true trajectory used for generating the data. Panel B and C have smaller deviations
as the outliers are less extreme than in panels D and E. This shows that the normal
distribution assumption is susceptible to outliers by putting too much weight on outlying
observations. On the contrary, if the heavier-tailed distributions are applied, the ML
estimation is less affected by the outliers. The fits using the heavier-tailed distributions
are qualitatively the same for the scenarios including outliers as for the scenario without
outliers. Remarkably, the model trajectories received for the Laplace, Cauchy and Stu-
dent’s t distribution coincide almost completely for the scenarios one data point at zero
and two data points interchanged and are close to the true trajectory. Accordingly, the
assumption of a heavier-tailed distribution leads to reliable fits for all cases displayed.

To gain an overview how these example fits are representative for the overall behavior, a
plot displaying the fits to the first 100 data sets is shown in Figure In the no outliers
scenario all distribution assumptions deliver similar results. In presence of outliers the
distributions with heavier tails than the normal distribution are less deceived by the
introduced outliers. The Laplace, Cauchy and Student’s t distribution lead in almost all
cases to similar trajectories close to the trajectories of the no outliers case. Only in one of
the cases for the scenario two data points interchanged all the heavier-tailed distributions
show a larger deviation from the true trajectory. In the case of one data point at zero the
trajectories gained with the normal distribution assumption are downward skewed and
for two data points interchanged some trajectories do not even show a similar curvature
as the true trajectory.

These first qualitative results of the obtained model trajectories revealed that the normal
distribution is unsuitable in the presence of outliers and does not lead to reliable fits to
the non-outlier data points, as it is misled by the outliers. Heavier-tailed distributions
were shown to be advantageous in the case of outlier corrupted data as they are less
affected by extreme outlying observations. They enable a robust parameter estimation
which leads to appropriate fits to the non-outlier data points. For data without outliers
all distributions are suitable and deliver similarly good results.
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Figure 5.2: Estimation results for the first 100 data sets for each outlier scenario.
Comparison of the model trajectories for MLLEs obtained by model calibration using
a normal distribution assumption (blue) to fits employing a Laplace distribution
(yellow) (A), Cauchy distribution (red) (B) and Student’s t distribution (green)
(©).

5.5 Statistical analysis of the results

The artificial data generation enables a comprehensive assessment of the difference in
parameter estimation with the different distribution assumptions using the previously
described assessment criteria, see Chapter

Estimation accuracy

One important feature of a model is its accuracy as inaccuracies propagate to prospec-
tive predictions. Therefore it needs to be determined how close the estimated parameter
values are to the true parameters used for the data generation. This can be conducted
by computing the MSE, see Equation . The logarithm of the MSE is visualized in
Figure with errorbars indicating the 95% percentile bootstrap confidence intervals,
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Figure 5.3: Statistical analysis for the conversion process. Statistical analysis of the
parameter estimation results using the normal (blue), Laplace (yellow), Cauchy
(red) and Student’s t distribution (green). (A) Logarithmic plot of the MSE for
log,o(k1) and log;(k2) with errorbars obtained by bootstrapping. (B) Model se-
lection based on BIC. (C) Differences in BIC values between the models. (D)
Percentage of converged starts. (E) CPU time per multi-start in seconds.

see (Efron ; Rizzo . A small value indicates good accordance of the estimate
with the true parameter value. In the case of no outliers the assumption of a normal
distribution represents the true model as the data was generated assuming normally dis-
tributed noise. Accordingly, the MSE is smallest for the normal distribution assumption,
followed by the Student’s t distribution, which approximates the normal distribution for
high degree of freedom values. However, the MSE is equivalently small for the other
distribution assumptions in the no outliers scenario, but highest for the Cauchy distribu-
tion. In the case of outlier corrupted data, the MSE assumes high values for the normal
distribution assumption in the case of one data point at zero and two data points inter-
changed. This implies, that the parameter estimation employing the normal distribution
is not able to infer the true parameter values in presence of outliers and is therefore not
accurate. The Laplace distribution achieves low values for the first two outlier scenarios,
but in the case of two data points interchanged the MSE rises. However, the value for
the Laplace distribution is still much lower than the value obtained with the normal dis-
tribution. The MSE values for the models using the Cauchy and Student’s t distribution
stay at a small value for all scenarios and are consequently the most accurate in presence
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of outliers. In summary, the analysis of the estimation accuracy showed that choosing a
heavier-tailed distribution assumption reduces the MSE for outlier corrupted data signifi-
cantly and thus, leads to more reliable estimates than the normal distribution assumption.
The robust methods are able to infer reasonable parameter values from the data, even in
presence of outliers, unlike the normal distribution. The normal distribution assumption
yields wrong parameter estimates for outlier corrupted data, which subsequently reduces
the predictive power of the model.

Model selection

Using different distribution assumptions for the residuals leads to different models that
describe a given data set. Hence, the question arises, which model should be selected for
a given data set. In this work, model selection was performed via hypothesis testing using
the BIC according to Equation (2.6)). The model with the lowest BIC is selected to be
the most appropriate one for the data set. In Figure model selection is visualized for
the three outlier scenarios for all 10 data sets. In the case of no outliers the model with
normal distribution assumption is chosen in 61.8 % of the cases. This should be the case
since the noise is generated following a normal distribution. The Laplace distribution is,
however, also chosen almost half as many times. In scenario one data point at zero the
Cauchy distribution is selected almost exclusively (98.3%). In the case of the Student’s t
distribution this can be explained by the higher number of parameters (nng) = 4) in the
Student’s t distribution, which yields a higher penalty term compared to normal, Laplace
and Cauchy (néN’L’C) = 3). For the normal and Laplace distribution it was already
shown that the MSE takes higher values for the scenarios including outliers than for the
Student’s t and Cauchy distribution, which results in smaller log-likelihood values. In the
case of two data points interchanged, the Cauchy distribution is still selected most of the
times, but sometimes model selection also favors the Laplace distribution as well as the
normal distribution. This might be due to the fact that not all cases of two data points
interchanged yield sufficiently large outliers, e.g. if data points next to each other are
interchanged.

In Figure the difference in BIC values is considered. For each data set the minimal
BIC is computed and then subtracted from the BIC values found for the different distribu-
tion assumptions. This serves to reveal the actual difference in BIC of the models, which
remains hidden in the previous analysis of model selection. In the case of no outliers
this difference is smaller for all distribution assumptions than the common rejection value
of 10, see Section [2.4] This shows that in this case all models explain the data almost
equally well and none can be rejected. In the two scenarios containing outliers, modeling
with Cauchy and Student’s t distribution leads to similar BIC values. The Student’s t
distribution has a higher number of parameters and consequently, as seen in Figure [5.3/C,
model selection prefers the Cauchy over the Student’s t distribution. In scenario one data
point at zero the difference of the BIC values for the normal distribution and the mini-
mal BIC value is in average greater than 10 (21.1). Thus, the model assuming a normal
distribution is not appropriate in the scenario one data point at zero and can be rejected.
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But also the Laplace distribution has to be rejected in some cases, as the mean value
is above the threshold. For two data points interchanged all BIC differences are smaller
than 10. None of the models can be rejected according to this criterion, but the normal
distribution achieves the highest value. In conclusion, model selection revealed the pres-
ence of outliers. In absence of outliers mostly the normal distribution is chosen, but in
both scenarios containing outliers, model selection favors the heavier-tailed distributions
over the normal distribution.

Performance comparison

As explained in Section [2.4] the convergence is an important criterion for multi-start local
optimization to yield a global optimum as well as reproducible results. The convergence
of the methods for the multi-start local optimization approach was compared by counting
the number of converged starts among the number of all start points, see Equation .
In Figure[5.3D, the average percentage of converged starts is illustrated. The convergence
of the models is for this simple model comparable and relatively high, only in the two
data points interchanged scenario the convergence is little decreased for the Student’s t
distribution. However, in all scenarios and for all distribution assumptions enough starts
converged to the optimum.

The average computation time for the different distribution assumptions per multi-start is
the lowest for the Cauchy distribution with about 0.1 seconds in the case of no outliers, see
Figure[5.3E. The Student’s t distribution requires more than double the time, which might
be due to the higher number of parameters, while the normal distribution is located within
these two distributions. The value for the Laplace distribution is not directly comparable
with the other values as a different local solver, the interior-point algorithm, was applied.
As mentioned before, the interior-point was used as the computation of the Hessian matrix
requires the second order sensitivities. All in all, the computation times as well as the
convergence are in a reasonable range for all approaches.

5.6 Uncertainty analysis

As explained in the background section, the work flow of quantitative dynamic modeling
does not end with the parameter estimates. A comprehensive report of MLEs requires an
uncertainty analysis.

In order to assess the reliability of parameter estimates we used profile likelihoods, see
Equation (2.7), which were computed with the toolbox PESTO (Hross et al. 2016). In
Figure [b.4A, the normalized profile likelihoods of parameter k; obtained for the four
distribution assumptions are compared for the cases displayed in Figure [5.IA,D and E.
The true parameter value is indicated by a vertical grey line. In the scenario no outliers
all profiles overlap and are close to the true parameter value of ky. The profiles for
the Cauchy and Student’s t distribution assumption remain similarly tight for the two
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Figure 5.4: Uncertainty analysis for the conversion process. (A) Normalized profile
likelihoods for the normal (blue), Laplace (yellow), Cauchy (red) and Student’s t
distribution (green). The vertical grey line displays the true value for k; = 10715,
The profiles are computed for the cases displayed in Figure ,D and E. (B)
The corresponding profile likelihood based Cls for different levels of confidence,
80%,90%,95% and 99%, are indicated by bars from dark to light colors. (C)
The coverage ratio is plotted against the confidence level. The dashed black line
indicates identity. Lines above the identity line signify too conservative CIs (bigger
CIs than necessary) and lines below the identity line indicate too confident Cls
(CIs are too small). For the computation of the coverage ratio all 103 cases of each
outlier scenario were considered.

scenarios with outliers. The profile for the Laplace distribution shows a bimodality in
the case of two data points interchanged, but the MLE is still close to the true value. In
contrast, the profiles of the normal distribution assumption broadens in both scenarios
with outliers and the MLEs move away from the true parameter value. The profiles for
ko are similar and are shown in Appendix Figure [B.TA.

A parameter estimate should be reported along with its CI. We computed the CIs based on
profile likelihoods according to Equation . The ClIs obtained for the kinetic parameter
kq for all outlier scenarios are displayed in Figure also corresponding to the cases
shown in Figure [5.1]A,D and E. The CIs for parameter ky are to be found in Appendix
Figure[B.1B. The differently colored bars represent the 80%, 90%, 95% and 99% confidence
intervals from dark to light colors. In the case of no outliers the confidence intervals of
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Table 5.1: CIs with confidence level (CL) that contain the true value log;y(k1) = —1.5, corre-
sponding to the cases displayed in Figure , D and E.

. one data point two data points
no outliers .
at zero interchanged

CL CI CL CI CL CI

normal 80% [-1.5911,-1.4966] 80% [-1.6217,-0.8848] - -
Laplace ~ 90% [-1.6059,-1.4966] 80% [-1.5715,-1.4574] 80% [-1.5297,-1.2549]
Cauchy  95% [-1.6159,-1.4874] 99% [-1.5749,-1.4870] 80% [-1.5150,-1.4298]
Student’s t  80% [-1.5911,-1.4966] 99% [-1.5749,-1.4870] 80% [-1.5150,-1.4298|

the four distribution assumptions span approximately the same parameter range. For the
normal, Laplace and Student’s t distribution the MLEs (vertical lines) are located at the
same position close to the true value 1071, Only for the Cauchy distribution the MLE
is located at a lower value (107!-%%°7) within the 80% CI. If one data point is set to zero
the CIs for the normal distribution become large, spanning more than the shown x-axes.
There is a large uncertainty attached to the MLE, which assumes a value 40% larger
(10713549 than the true value. The CIs for the Cauchy and Student’s t distribution
coincide and are tighter than for the data without outliers. They are closely located
to the true value, but they do not account for the uncertainty the outlier introduced.
Contrary, the Laplace distribution leads to larger CIs compared to the no outliers case,
accounting for the additional uncertainty due to the outlier. Also, the MLE is located
reasonably and close to the true value. For two data points interchanged the Cls of the
normal distribution are not captured on the x-axes anymore. These Cls obviously no
longer carry any useful information and do not even contain the true value. The MLEs
found by Laplace, Cauchy and Student’s t distribution are still located close to the true
value. Again, the Laplace Cls are broader and take into account the uncertainty in outlier
corrupted data, whereas the Cls of Cauchy and Student’s t distribution are narrow, but
with reasonable parameter values. The smallest CIs which contain the true value of k;
are to be found in Table|5.1} Remarkably, the CIs of the Student’s t distribution coincide
in scenario no outliers with the CIs of the normal distribution and in the scenarios which
include outliers they coincide with the Cls of the Cauchy distribution. This behavior is
based on the degrees of freedom, as the Student’s t distribution is able to adapt to both
distributions. The appropriateness of the size of the Cls is analyzed in the following using
the coverage ratio.

An important assessment criterion for the uncertainty of parameter estimates is the cov-
erage ratio, see Section [2.4, The CR was computed based on profile based confidence
intervals for various confidence levels (0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99), see Equa-
tion . We considered a multivariate CR, i.e., all parameters are investigated to-
gether, not separately. In Figure[5.4C, the CR is plotted against the confidence level as in
Schelker et al. 2012 The CR is almost always lower than the confidence level indicating
that the uncertainty in the estimates is underrated across all scenarios and distribution
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Figure 5.5: ROC curves. Detection of outliers with the different distribution assumptions
considering the example displayed in Figure [5.1]E.

assumptions. The true value is less often located within the interval as stated by the
confidence level. This means that the size of the confidence intervals is underestimated;
the CIs are overconfident. This can be explained by incomplete knowledge about the
concrete outlier distribution in the case of outlier corrupted data. In presence of out-
liers the Laplace distribution provides the best coverage, indicating that the CIs have an
appropriate size and are the most reliable throughout all outlier scenarios.

The uncertainty analysis showed that the confidence in the estimates is in general overesti-
mated, even in the case of no outliers. Especially the Cauchy and Student’s t distribution
assumptions yield too small confidence intervals in presence of outliers. However, the
MLEs are always close to the true parameter value. The Laplace distribution leads to
more reasonable confidence intervals with an accurate MLE. Using the normal distribu-
tion assumption results in intervals that provide no useful information with wrong MLEs
for outlier corrupted data.

5.7 Outlier detection

Robust parameter estimation can also be used as tool to identify outliers. Conveniently
the percentiles of the residual distribution are used, which can be computed by using
the inverse cumulative distribution function. As rule of thumb, the three-sigma rule or
two-stgma rule is commonly applied for the normal distribution, which are special cases
of a Z-value test (Aggarwal 2015). These rules state how many standard deviations the
data is allowed to deviate from the mean, i.e., two and three standard deviations, which
corresponds to the interval that contains 95% or 99.7% of the values, respectively. Data
points outside of these intervals are classified as outliers. A standard method to compare
different classifiers are receiver operating characteristic curves (ROC) (Metz [1978)). In
Figure the ROC is shown for the example of two data points interchanged depicted

29



Illustrative model of a conversion reaction

Table 5.2: True positive rates for varying confidence levels « considering the example displayed

in Figure .

o
0.003/2 0.05/2 0.1 0.2 0.3
normal 0 0 1/2 1/2 1
Laplace 0 1 1 1 1
Cauchy 0 1/2 1 1 1
Student’s t 0 1/2 1 1 1

in Figure [5.1[E using o = (0,0.003/2,0.05/2,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1)T. The
corresponding percentiles are computed for the different distributions employing the in-
verse cumulative distribution function. To obtain the ROC the true positive rate, also
called sensitivity is plotted against the false positive rate (1-specificity). The true positive
rate states how many outliers have been correctly identified, whereas the false positive
rate measures how many non-outliers are falsely classified as outliers. The computation of
the area under the curve (AUC) gives for the Laplace, Cauchy and Student’s t distribution
in each case AUC = 1, whereas we obtain for the normal distribution AUC = 0.97. In
Table the true positive rates are listed to better show the actual difference between
the methods better. For all the displayed o values the false positive rate is zero, i.e.,
none of the no-outliers is detected falsely as outlier, thus it is not visible in the ROC plot.
If the three-sigma rule, the 99.7% percentile (v = 0.003/2), is applied, none of the four
distributions detects the outliers. The outliers are apparently not extreme enough. Using,
however, the two-sigma rule (95%), the Laplace distribution assumption allows to identify
both outliers (true positive rate equals 1). The Cauchy and Student’s t distribution lead
to the detection of the first outlier (true positive rate equals 0.5), whereas the normal
distribution assumption does not allow the detection of either of the two outliers. The
table indicates that a less conservative criterion could be more appropriate, as for example
the 90% percentile. In this case Laplace, Cauchy and Student’s t distribution identify the
two outliers, while the normal distribution detects only one of the two outliers.

To conclude, the Laplace distribution seems to be best suited for the detection of outliers
with robust parameter estimation. In the case of Cauchy and Student’s t distribution
it should be considered to choose a less conservative criterion as the two- or three-sigma
rule, since the false-positive rate is still zero for less conservative criteria.
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5.8 Limitations of Cauchy and Student’s t
distribution

As already mentioned in Section [4.4] Ferndndez et al. (1999) have revealed difficulties
in global optimization assuming a Student’s t distribution, if the model is able to fit
too many data points “exactly” (up to numerical accuracy) and v € R*. The theorem
formulated by Fernandez et al. for regression models can be translated to quantita-
tive dynamic models. Defining the number of observations that can be fitted exactly,
ie., Uix = yi(ty,0) to be s(fp) for a parameter vector y, the authors showed that if
v < s(by)/(ny — s(6p)) = do the likelihood function can take arbitrarily large values as
o — 0. Choosing v > s(6)/(n: — s(6y)) = dy yields Lp(6y) = 0 as o tends to zero. For
small degrees of freedom (v < 2) the Student’s t distribution has no finite variance, see
Section [4.4] Scale parameters close to zero are not useful for modeling as the correspond-
ing distribution does not reflect the variation in the data. The distribution concentrates
all its mass on single data points, neglecting other residuals, i.e., the model overfits single
data points. Thus, it is required to restrict the parameter space of the degrees of freedom
to be greater than dy to avoid overfitting (Jones et al. (2003) and Taylor et al. (2004)).
In our analysis we restricted the degrees of freedom to be greater or equal one, which is
a more conservative choice than required. Up to 4 of the 10 data points can be fitted
“exactly” without overfitting the data.

Since the Cauchy distribution corresponds to the Student’s t distribution with one degree
of freedom, the same problem arises for the Cauchy distribution, which has no defined
variance. Employing the formulas from above with fixed v = 1 yields that maximum
likelihood estimation is only reasonable for the Cauchy distribution if dy < 1. Conse-
quently, the Cauchy distribution should not be applied if half or more of the data points
can be fitted exactly by the model, i.e., s(6y) > ny; — s(6p). If this is the case, however,
there is already the problem of overfitting the data, meaning that the model describes the
noise instead of the dynamics. This results in less predictive power although the model fit
to the data might look appropriate (Villaverde et al. |2014)). In practice it is not easy to
determine when an observation is fitted “exactly” and approximations have to be made.

This problem was analyzed for the conversion example. In our analysis so far we used ten
measurements for the parameter estimation. To analyze the above described problem,
the number of measurements was varied to achieve different numbers of “exactly” (up to
a threshold of € = 107%) fitted data points. If n; = 4, for example, most of the times half
of the data points, s(fy) = 2, can be fitted “exactly”. We consider the following data
sets for the case of no outliers: D° for time points ¢t € {0, 5, 10, 15, 20, 25, 30, 40, 50, 60},
D? for time points ¢ € {0,20, 30,50} and D? for time points ¢ € {15,30,60}. All data
sets comprise 100 noise realizations. Parameter estimation was again performed and the
lower parameter bound for the scale parameter was set to 107! for all distributions.
Histograms showing the residuals for the different distribution assumptions are displayed
in Figure 5.6/A. The histograms are normalized so that the area of the bars sums up to
one. The curve represents the corresponding distribution using the mean value of the
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Figure 5.6: Limitations of Cauchy and Student’s t distribution. Illustration of the
problem arising if too many data points can be fitted exactly by the model on
data sets with different number of data points. (A) Normalized histogram of
the residuals of all 100 data sets when the parameter estimation is performed
assuming a normal (blue), Laplace (yellow), Cauchy (red) or Student’s t (green)
distribution in the case of ten, four and three data points. The curve represents the
corresponding probability density of the normal (—), Laplace (—), Cauchy (—)
or Student’s t (—) distribution using the estimated mean value of the distribution
specific parameters over all 100 data sets. (B) Visualization of the corresponding
scale parameters, (V) for the normal (e), b for the Laplace (¢), v for the Cauchy
(¢) and o(™) for the Student’s t distribution (e).

estimated distribution parameters (¢™¥), b, v, ¢(™)), which are displayed in panel B. In the
case of ten data points all distributions capture the whole variation in the residuals. If
only three data points are used for the parameter estimation, most of the time two of
the data points can be fitted exactly, which gives dy = 2. Here the described problem
becomes apparent: By decreasing the scale parameter to small values close to the lower
bound, the Cauchy and Student’s t distribution concentrate their mass on the data points
the model can fit “exactly”. The remaining data points are not appropriately represented
anymore. The likelihood function takes high values due to the distribution’s peak behavior
approximating a delta distribution. The amplitude of the Cauchy distribution is defined
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Figure 5.7: Quantile-Quantile plot of the residuals. Comparison of the empirical and the-
oretical quantiles for the normal distribution (blue), Laplace distribution (yellow),
Cauchy distribution (red) and Student’s t distribution (green).

as 1/(mvy), which yields large values for small scale parameter values, resulting in large
likelihood values for those single data points that are fitted “exactly”. Thus, according to
the criterion of Ferndndez et al. (1999), v needs to be larger than two to resolve the issue
for the Student’s t distribution, and the Cauchy distribution cannot be applied. The case
of four data points constitutes the transition case as dy = 1 in most cases. The values for
the distribution parameters in the other outlier scenarios (for n, = 10) are to be found in
the Appendix Figure [B.2/A.

In Figure the empirical quantiles of the residuals are compared with the theoretical
quantiles in a Q-Q plot (quantile-quantile-plot), considering the quantiles (i — 0.5)/n for
all 7 = 1,...,n, where n is the sample size. If the distributions correspond to each other
the values are located at the diagonal line of the Q-Q plot. The theoretical quantiles
were computed by means of the inverse cumulative distribution function of the respective
distribution using the estimated mean value of the distribution parameters. For ten data
points, the empirical and theoretical quantiles coincide well for all distributions, except for
the heavier-tailed distributions in the tails. This is expected for the no outliers case and
indicates that the sample has shorter tails than the theoretical distribution. In the cases
of three and four data points the Q-Q plots for the Cauchy and Student’s t distribution
show that the distribution does not reflect the spread in the residuals. In the case of
ns = 3 problems for the normal and Laplace distribution are visible as well. The sample
size is apparently too small for reasonable parameter estimation.
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Thus, attention must be paid when applying the Cauchy and Student’s t distribution if
the model is too flexible and overfitting is to be expected. In these cases the distributions
overfit single data points by neglecting the remainder of the data points. For the Student’s
t distribution this issue can be resolved by setting an appropriate bound for the degrees
of freedom. The Cauchy distribution, however, can only be applied if the model does not
allow the exact fit of half or more of the data points.
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Chapter 6

The Jak/Stat signaling pathway

As real-world application, the Jak/Stat signaling pathway, is investigated. To assess the
robustness of the methods in the case of real data, the experimental data of the Jak/Stat
pathway was also modified in accordance with the outlier scenarios. The pathway plays
a key role in the differentiation, proliferation and migration of cells in the erythropoietic
system (Rawlings et al. 2004)).

6.1 Biological overview of the signaling pathway

Three principal components are involved in the signaling cascade, the hormone Erythro-
poietin (Epo), the Janus family of kinases (JAK)-signal transducer and the activator of
transcription 5 (STAT5). Intracellular activation is triggered by binding of the upstream
activation factor Epo to its receptor (EpoR). This extracellular stimuli leads to phospho-
rylation of the EpoR cytoplasmic domain by the tyrosine Janus kinase 2 (JAK2). The
latent transcription factor STAT is phosphorylated upon recruitment to the activated
receptor (pEpoR). The cytoplasmic phosphorylated STAT (pSTAT) dimerizes and the
dimer (pSTAT pSTAT) enters the nucleus to initiate the transcription of target genes.
Afterwards the STAT molecules are recycled to the cytoplasm (Bachmann et al. 2011
Rawlings et al. [2004; Swameye et al. [2003)). A schematic representation of the Jak/Stat
signaling pathway can be found in Figure with arrows indicating biochemical reac-
tions.

6.2 Experimental data

Swameye et al. (2003)) have recorded average concentrations by quantitative immunoblot-
ting of pEpoR, pSTAT (phosphorylated STAT as monomer and dimer) and tSTAT (un-
phosphorylated and phosphorylated STAT) in the cytoplasm, cf. orange boxes in Fig-
ure . The data was recorded for time points ¢ € {0,2,4,6,8,10,12, 14,16, 18, 20, 25,
30,40,50,60} minutes, see Figure . The data does not include any outliers, hence,
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we artificially introduced outliers in accordance with the outlier scenarios, presented in
Chapter 3 for all three observables in order to examine the robustness of the methods.
It is assumed that, for example in the case of one data point at zero, the measurement
device fails to record all three observables at the same time. In Figure the resulting
data is displayed, if the device fails to record at time point ¢ = 8 min. As the observables
were recorded at 16 time points, this procedure leads 16 possible one data point at zero
scenarios and choosing two out of 16 gives 120 two data points interchanged scenarios, for
an example see Figure [6.2D.

6.3 Model description

Based on these time-resolved measurements, Swameye et al. have introduced a mathe-
matical model that describes the Epo induced Jak/Stat signaling cascade. This model
was studied extensively in literature with regard to identifiability (Raue et al. 2009), sen-
sitivity analysis (Kazeroonian et al. 2016) and comprehensive input estimation (Schelker
et al. 2012). An extension of the core model was studied in Bachmann et al. (2011) con-
sidering also negative feedback regulators. The ODE system of the core model is based
on the description in Kazeroonian et al. (2016),

STAT = L(Qnuc -nSTAT5 - pg — Qe - STAT - py - u(1))

cyt
0 p— _—— . . 2 —_— .. .
pSTAT = STAT, (2 po - pSTAT® — STAT - -p; - u(1))
PSTAT pSTAT = (py - pPSTAT? — STAT, - ps - pSTAT _pSTAT)
STAT,

nSTAT1 = — Qp4  (Qeyt - STAT — Qg - STAT + 2 Qe - nSTAT1

nuc

+ Quue - DSTAT2 + Quye - nSTAT3 + Qpye - nSTATA
+ Qe - NSTATS + Qpyq - PSTAT 4 2 Qeyq - pPSTAT pSTAT)
nSTAT2 = py - (nSTAT1 — nSTAT?2)
nSTAT3 = p, - (nSTAT2 — nSTAT3)
nSTAT4 = p, - (nSTAT3 — nSTAT4)
nSTATS5 = py - (nSTAT4 — nSTATS5)

with kinetic parameters py, po, p3 and py and initial concentration STAT,. The delay reac-
tion of STAT binding to the DNA in the nucleus is modeled as linear chain approximation
with intermediate steps nSTAT1, ... , nSTATS5. The volume of the two compartments, cy-
toplasm and nucleus, are constants .y = 1.4 pl and Qe = 0.45 pl (Raue et al. 2009).
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Figure 6.1: Distribution specific parameters. Mean values of the distribution specific
parameters for the three outlier scenarios. For the Student’s t distribution two
cases are distinguished, v > 1 and v > 2.

The observables are given by

scalepsrar
STAT,

scaleisTaT
STAT,

y1 = offset sar + (pSTAT + 2pSTAT pSTAT)

Yo = offsetigTaT + (STAT + pSTAT + 2pSTAT pSTAT)

for which y; is the total concentration of phosphorylated STAT in the cytoplasm (pSTAT),
yo the total concentration of STAT in the cytoplasm (tSTAT) and y3 the concentration
of phosphorylated Epo receptors (pEpoR), see orange boxes in Figure . The pEpoR
concentration is modeled as time-dependent cubic spline function u with five parameters
Sp1,-..,8ps. Scale parameters were introduced by Swameye et al. (2003) because only
relative protein amounts could be measured by the experimental setup. The initial con-
centration STAT, was set to one, as by Schelker et al. (2012), in order to tackle structural
identifiability problems shown in (Raue et al. 2009). This leads to the parameter vector

T
& = (p1, D2, P3, P4, SP1, SD2, SP3, SP4, SPs, offsetigrar, offset,grar, scaleigrar, scale,grar)

For the optimization we considered the log-transformed parameters log,,(6) = log,, (&, ¢)-

6.4 Parameter estimation

In the further analysis the Cauchy distribution is excluded. As in the end of the conver-
sion reaction example presented, the Cauchy distribution is not appropriate if too many
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Figure 6.2: Jak/Stat model and trajectories. (A) Schematic representation of the
Jak/Stat signaling pathway. The observables are shown in orange boxes and ar-
rows represent biochemical reactions. (B) Parameter estimation results for the
different distribution assumptions in the no outliers scenario. (C) Results for the
scenario one data point at zero. The outlier (purple circle) is introduced at time
point t = 8 min. (D) two data points interchanged at time points ¢t = 8 and ¢ = 40
min. For this application example the Cauchy distribution was excluded and the
Student’s t distribution was restricted to v > 2.

data points can be fitted exactly by the model. The analysis revealed that the model
is able to fit more than half of the data points for one observable (pSTAT) exactly, i.e.,
dy > 1. This leads to unreasonable large likelihood values which are achieved by overfit-
ting. As the objective function is computed as sum over all observables this leads to an
arbitrarily large objective function. The scale parameters for all distributions are shown in
Figure[6.IA. The scale parameter for the Cauchy distribution takes for all scenarios small
values approaching the lower bound. The same holds true for the Student’s t distribution
with v > 1. The degrees of freedom of the Student’s t distribution were, therefore, re-
stricted to be larger than two. This restriction leads to appropriate scale parameter values
(see Figure[6.1]A). Only in four cases the lower bound of two was too small since one more
data point could be fitted exactly, thus, in these cases the lower bound was increased to
2.2 in accordance with the criterion of Fernandez et al. . The corresponding degrees
of freedom values are displayed in Figure [6.1]B.

Note that we used the same v for all three observables rather than a separate v for each
observable. This choice is based on model selection performed for the no outliers scenario
using the BIC . The model with three v parameters (with lower bounds (1.3,0.8,0.8)T)
leads to a BIC value of —87.95, whereas the model with one degree of freedom (v > 2)
gives a BIC of —91.91. Hence, the model with one v is more appropriate as it describes
the data equally well by employing less parameters.
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For the modified data sets multi-start local optimization was performed similarly as in
the illustrative example. The parameter space for the multi-start approach was chosen
for the dynamic parameters as = = [107°,10%] x [1072,10°] x [107°,10%] x [1073,10°%] x
[1075,10%]* x [107°,10%] x [107°,103]*. The distribution specific parameters were chosen
separately for each observable except for the degrees of freedom of the Student’s t distri-

bution. The scale parameters, O'Z-(N ,b; were searched within the interval [107°,103] and

the parameters for the Student’s t distribution, O'Z(T), v within [1071°10%] x (2,10%]. The
lower bound for the scale parameter was decreased so that the overfitting problem could
be easily detected. 100 multi-starts were generated with Latin hypercube sampling within
the specified parameter bounds. If less than five starts had converged according to the
likelihood ratio test (Equation (2.4))) the number of start points was increased by 100.
As local solver the interior-point algorithm was used for the normal and Laplace distri-
bution and the trust-region-reflective algorithm for the Student’s t distribution. Only in
three cases convergence problems for the Student’s t distribution arose which could be
resolved by using the interior-point algorithm. Parameter estimation was performed for
the no outliers case, the 16 one data point at zero scenarios and the 120 two data points

interchanged scenarios.

6.5 Qualitative analysis of the results

In Figure[6.2B-D the resulting fits for the three scenarios are displayed. For the no outliers
scenario the three distribution assumptions deliver similar model trajectories close to the
data points (panel B). In panel C the model is calibrated to data with an introduced mea-
surement failure at time point ¢ = 8 minutes. Using the normal distribution assumption
in the parameter estimation leads to a different fit than to the data without outliers. The
parameter estimation obviously tries to accommodate the outlier. Laplace and Student’s
t distribution assumption lead to trajectories that equal the trajectory for the no outliers
case, even in presence of the outlier. The same holds true for the scenario two data points
interchanged in panel D. The fit found by assuming a normal distribution is visibly drawn
towards the outliers. For this case, the assumption of a Student’s t distribution delivers
a model trajectory closer to the trajectory in panel B as the assumption of a Laplace
distribution. But this depends on the degree of abnormality of the outliers; the further
away the outlier, the more the Laplace distribution is misled. Two more examples for
the scenario two data points interchanged are presented in Figure [6.3] In the first case,
displayed in panel A, the Student’s t distribution is still able to find a trajectory similar
to the trajectory for the data without any outliers. The Laplace distribution assumption
shows, on the contrary, only a slightly better fit as the normal distribution assumption in
terms of similarity to the model trajectory obtained for no outliers. The outliers in panel
B are less extreme than in panel A and the Laplace distribution yields only a slightly
more distorted fit than the Student’s t distribution.

In summary, the qualitative analysis of the real data for the Jak/Stat pathway supports
our finding for the artificial data of a conversion process. In presence of outliers, the
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Figure 6.3: Jak/Stat example fits. Two more examples for the scenario two data points in-
terchanged. (A) Values at time points ¢ = 8 and ¢t = 50 minutes were interchanged
(purple circles). (B) Outliers at time points ¢ = 10 and ¢ = 40 minutes.

Laplace and Student’s t distribution yield more reliable fits to the main behavior of the
data than the normal distribution as they are closer to the fits obtained for the no outliers
scenario.

6.6 Comparison of estimation accuracy

Since this is a real-world example we do not know the true parameter values. The model
accuracy can still be analyzed by the MSE, using as “true” parameter values the values we
obtained for the no outliers scenario for each distribution assumption (Figure [6.2B). The
MSE was computed for each parameter separately. Figure shows the logarithm of
the MSE for the scenario one data point at zero. The errorbars display the 95% bootstrap
percentile confidence intervals. For all parameters the MSE of the model using the normal
distribution assumption is higher than for the Student’s t and Laplace distribution. This
supports our findings from the artificial data of a conversion reaction. Using a heavier-
tailed distribution leads to more reliable estimates for outlier corrupted data, as they are
closer to the estimates found for the corresponding data without outliers. In the case
of two data points interchanged the difference is not so clear. This might be due to the
fact, that in some of the cases the interchange of two data points does not lead to gross
outliers. But still the Laplace and Student’s t distribution obtain for most parameters
smaller MSE values. In panel C the MSE for the parameter vector is shown. In total, the
Laplace and Student’s t distribution lead to a lower MSE for outlier corrupted data than
the normal distribution.

As in the statistical analysis for the conversion reaction the heavier-tailed distributions
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Figure 6.4: Estimation accuracy for the Jak/Stat example. Logarithm of the mean
squared error for all 13 parameters describing the model dynamics for the sce-
nario one data point at zero (A) and for two data points interchanged (B). As
true parameters the MLEs for the case without outliers was used. Note that the
parameters of the distributions ¢ cannot be compared.

yield a smaller MSE of the parameter estimates than the normal distribution for outlier
corrupted data. The Cauchy distribution could not be used as the model can fit more than
half of the data points exactly. Consequently, the degrees of freedom for the Student’s t
distribution had to be restricted to be larger than two.
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Chapter 7

Summary

We proposed three heavier-tailed distributions, the Laplace, Cauchy and Student’s t dis-
tribution for estimating parameters of ODE models from outlier corrupted data. These
methods are well established in robust regression and it was shown that they are also ben-
eficial in the context of dynamical models. To demonstrate and examine the properties
of the new methods outlier corrupted was generated according to three outlier scenarios,
describing biologically motivated mechanisms that produce outliers.

At first a simulation study for a conversion process was performed and the investigation of
the obtained model trajectories gave already a good impression that heavier-tailed distri-
butions are advantageous in presence of outliers. The assumption of normally distributed
residuals did not lead to reasonable results for outlier corrupted data. While heavier-tailed
distributions enabled the reconstruction of the true trajectory, the normal distribution did
not allow a reliable inference of the parameters from outlier corrupted data. The statisti-
cal results supported that finding. The mean squared error for outlier corrupted data was
significantly smaller for the heavier-tailed distributions than for the normal distribution.
It is therefore required to include a precedent outlier detection and removal when using
the assumption of normally distributed residuals. For data without outliers all methods
yielded similar results and the true trajectory was successfully reconstructed. Model se-
lection revealed the presence of outliers, as the heavier-tailed distributions are favored
in these cases. It was further shown that the use of robust methods does not decrease
the performance, regarding convergence and computation time. The uncertainty analysis
indicated that the obtained confidence intervals are too small to appropriately capture the
uncertainty of the estimates throughout all methods, due to incomplete knowledge about
the concrete outlier distribution. Furthermore, it was shown that the novel approach can
also be used to identify outliers by exploiting the percentiles of the distributions. The
overfitting problem for the Cauchy and the Student’s t distribution was examined, which
arises if too many data points can be fitted exactly by the model. For the Student’s t
distribution this problem can be resolved by increasing the lower bound for the degrees
of freedom, but the Cauchy distribution can only be applied if less than half of the data
points can be fitted exactly. Consequently, the Cauchy distribution had to be excluded
in the analysis of the Jak/Stat signaling pathway and the lower bound for the degrees of
freedom of the Student’s t distribution was increased.
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Summary

The study for the real data of the Jak/Stat signaling pathway affirmed the previous results.
For the real data the heavier-tailed distribution assumptions were also less affected by the
artificially introduced outliers than the normal distribution. Heavier-tailed distributions
enabled a consistently accurate parameter estimation for data with and without outliers.
The normal distribution assumption led to distorted trajectories in presence of outliers,
which deviated considerably from the trajectory in absence of outliers. The mean squared
error for the outlier corrupted data sets was considerably higher for the normal distribution
than for the heavier-tailed distributions, Laplace and Student’s t.

In conclusion, the use of heavier-tailed distributions constitutes indeed a robust approach
to parameter estimation for ODEs. It is a reasonable alternative to outlier detection and
removal that does not require an alteration of the data set. Thus, the method is a means
to improve parameter estimation for outlier corrupted data that allows the inference of
reliable parameter estimates in presence of outliers.
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Chapter 8

Discussion and outlook

In the case of outlier corrupted data the assumption of a normal distribution was shown
not to be reasonable. Using objective functions which consider the squared residuals gives
greater weight to outliers. Consequently, larger deviations contribute considerably more
to the objective function than smaller deviations. As seen in the application examples
this results in bad fits to the main behavior of the data set in presence of outliers.

Exploiting the ability of heavier-tailed distributions to give less weight to outliers, leads
to a robust approach to parameter estimation for outlier corrupted data. Three different
heavier-tailed distributions were proposed that reduce the error in parameter estimation
in presence of outliers significantly. The heavier-tailed distributions capture, however,
not the true outlier distribution, which leads to confidence intervals that do not reflect
the true coverage. Hence, the uncertainty in the parameter estimates is underestimated,
resulting in too small confidence intervals. Attention should also be paid if the model is
too flexible, as the Student’s t and Cauchy distribution can be only used limited. However,
if this problem arises the model itself should be reconsidered. Furthermore, the Laplace
distribution is not differentiable at the location parameter, which might yield problems in
the optimization. Although we have not experienced any difficulties in our analysis, this
establishes the need for further studies.

As all of the presented distribution assumptions have their strengths and weaknesses, the
choice remains problem-dependent. One approach is to apply all different distribution
assumptions and compare the results, although this is only possible if the computational
time for one parameter estimation is not too high. The analysis showed that heavier-tailed
distributions are advantageous in the case of outlier corrupted data, but determining the
best suited distribution remains not only case-dependent, but still open to further inves-
tigation. Other heavier-tailed distributions could be examined as part of future work.
A further class reasonable next to heavier-tailed distributions are skewed distributions
as errors are in general not symmetric, e.g. the skew t distribution (Jones et al. 2003).
Furthermore, Reed (2006]) introduced the normal-Laplace distribution, which results by
convolution of a normal distribution with an asymmetric Laplace distribution. The sym-
metric version employs three parameters, whereas the asymmetric version requires four
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Discussion and outlook

parameters. The distribution is differentiable and has longer tails, thus, it takes a reason-
able intermediate position between the normal and Laplace distribution. However, the
probability density function assumes a complicated form with more parameters, which
might complicate the parameter estimation process. Kotz et al. (2012)) provide a good
starting point for the application of symmetric and asymmetric Laplace distributions.

In this work, an approach to robust parameter estimation for quantitative dynamic mod-
els was presented. Since biological systems are highly sensitive to their environments,
measurement errors are common in biological data. Applying the standard approach,
these errors have an distorting effect on the model calibration. The results of this work
showed that in the novel method erroneous measurements propagate less to the param-
eter estimates. Therefore, the new proposed approach enhances model calibration and
therefore improves the investigation of biological systems.
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Appendix A

Derivatives of the likelihood function

In order to improve the derivative-based optimization approach the analytic gradient and
an approximation of the Hessian matrix were provided to the local solver. In the following
formulas the general notation for the distribution specific parameters is chosen, depending
also on the time points t, i.e., ¢;; as an explicit time-dependence is possible, although
not considered for this work.

A.1 Normal distribution

The gradient of the log-likelihood for the normal distribution assumption for [ =1,...,ng
is given by
Ologlp(f) 1~ (Jix — yz(tk, 0))*\ 0074(0)
= (- ) T
_9 Yir — Yi(tr, 0) 8yz(?5k, 0)
and the Hessian matrix for [,m = 1,...,ng by
dlogLp (0 _ i i 1 2(37ik — yi(ty, 0))\ 0074(0) 007, (0)
00,00, — O'Z L (6) 00, 00,
" 1 1_ (Gir — yi(te, 0))*\ 0°071,(0)
o7 (0) o7, (0) 90,00,,
n Q(ﬂz‘k — yi(t, 0)) [ 0074(0) Dy;(ty., 0) n 9571,(0) dy;(t., 0)
aﬁ L(0) 00, 00, 00, 00,

o2, (0) 96, 30,

Uik — Yi(te, 0) 0*yi(tx, 0)
2.0) 0006, |

—2
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Derivatives of the likelihood function

In the optimization an approximation was used. For this purposes the last term including
the second order sensitivities was neglected, assuming that the difference between mea-
surements and predicted observable 7z — v;(tx, ) is small. This can be still considered
valid for outlier corrupted data, as generally only a small number of outliers is included
in a data set.

A.2 Laplace distribution

Using alternatively the Laplace distribution as assumption for the residual distribution
the gradient of the log-likelihood function reads for [ = 1,...,ny

6log£p A 1 |yz'k_yi(tk,9)| Ob; 1.(0)
w22 e )

Sgn(yikz — yi(tlm 6)) 0yi(tx,0)
bi,k(e) 00, '

In the following we assume that g;; — y;(tg, 0) # 0. This is not contradictory to the pre-
vious assumption stated for the approximation of the Hessian in the normal distribution
assumption case. The difference is small but will usually not be exactly zero. The Hessian
of the log-likelihood function using the Laplace distribution is given by,

8210gﬁp R 1 |yik_yi<tk70)| 0%b; 1 (0)
el oy |- "o ) S

k=1 i=1
bf’k(e) bik(e) 00, 90,
sgn(Yix — yilty, 0)) (0 (0) Oyi(ts, 0) n 9b; s (6) Oyi(t, 0)
bi L (6) 00, 00, 90, 00,
N sgn(Jir — Yiltr, 0)) 9yi(tr, 0)
b x(0) 060,00, |’
where [,m = 1,...,ny. Note that the term including the second order sensitivities cannot

be neglected in this case. This makes the computation of the Hessian very slow and it is
advised to use an algorithm that does not rely on a user-supplied Hessian.
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Derivatives of the likelihood function

A.3 Cauchy distribution

The gradient for the log-likelihood function assuming a Cauchy distribution is given for
l:1,...,n9 by

dlogLp(0) ML [( Yk (0) )é?%,;C
2 ; ; Vi (yzk —yi(tw, 0))* +7,(0) ) 06,
19 (yik —vi(ty, 0)) 5%(%9)1
(Gire — vi(te, 0))* +7ix(0)> 00,
In consequence the Hessian with [,m = 1,...,ny is calculated as
0? logﬁp i i [( B Yik(0) ) ik (0)
00,6, i Vi (0 (yzk —yi(te, 0))? + vik(0)? ) 00,00,
n |: 4’%,k(0)2 _ 1
(ke — vi(tr, 0))2 + 16(0)2)°  7in(0)?
N 2 } 0.1 (0) 07 (0)
(Yir — yi(tr, 0))* +7ix(0)2] 06 0,
g k(@) Gk — yi(t, 0))

2

(i — viltr, 0))% + ’YZQk(e))
. (a%‘,k(‘g) yi(tx, 0) " 07ix(0) ayi(tk79)>

00, 00,, 00,, 00,
2
+ = 2 2
(Ui — Yi(tr, 0))? 4+ 7k (0)
. ( 2(g — yiltn, 0))* 1) Ayi(tr, 0) Oyi(ty, 0)
(Gir — yi(te, 0))% + vi.x(6)? 00, 00,

+2

(Fir — yi(ty, 0)) Dyt 9)]
(Uit — vi(te, 0))% + vix(0)? 06,00,

For the approximation of the Hessian it is again possible to neglect the term including
the second order sensitivities.
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Derivatives of the likelihood function

A.4 Student’s t distribution

Assuming a Student’s t distribution leads to the following gradient for the log-likelihood
forl=1,...,ng

alog;;(e) _ [1 |:¢(Vi,k(9) + 1> B w(%‘,k(e)) " log (1 N (%/kaz(??)ﬁ(,t:é;)é) )

0)+1 (Gix — yi(te, 0))? 1 ov; 1 (0)

k(
Vi’k(e) szk(ﬁ)aik(e) 1+ ” ,3(0) (ﬂzka—lyl:((;z;é@)P 00,

B 1 vir(0) + 1 (i — yi(te, 0))*] Doin(6)
oip(d) 14 L @i’“*yi((g’)“f))Q vik(0)a?,(0) 00,
i, ik ’

vip(0) +1 L (G — vi(te, 0)) Oyi(ts, 9)]

1 (a—yi(t,9))? ] 2
1 + Vi,k(g) ‘ ko’ZJk(gl)CQ V7,yk-(0) O-Z,k‘(e) ael

where 1) is the digamma function, which is the logarithmic derivative of the gamma
function. The Hessian matrix is consequently for [,m =1, ..., ny,

0? *logLp(0) U Vi + 1 Vi 1(0) (i, — yi(tg, 0))?
0000, ZZ[ (5) - ¢< ) - (1 o)
ik (Yix — it 9))2 ] v (0)
vip(0) v k(@)a k(@) 1+ kl( 5 (yzka ykl( : 06,00,
_ { 1 vir(0) +1 (Tir — yi(ti, 9))2} ?air(0)

oi(0) 1+ ()@ (<;§9>> Vigo(0)a2,(0) | 06,00,

( vi (0 +1 1 (yik_yi(tkye))82yz‘(tk70)>*
1
2

i <z (O 2
g Vi) Tk 00

5[5 () L (L

7 i(te,0
. 1 (¥ kofk ((01;2 ) 1 B 1
Vi,k(e) + (Fir—yi(tr,9))? Vi’k(@) + (Gir—yi(tr,0))? yi,k(e)

ik (0)° ik (0)
@ik — yi(te, 0))* ] Oviw(0) Ovi(0)
V@k(Q)aik(@) 891 89m
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Derivatives of the likelihood function

+ [ 1 + Vi,k(e) +1 (gzk - yi(tk, 9))2
o7u(0)  vik(0) + ﬁ@ik;yi((t;i@))? o (0)
ik
(Fik—yi(tx,0))?
{2 U?,k(a) . 3 8017k(9> @017;6(0)
vir(0) + —(gik_gi((t;)’e))Q oik(0) 06, 90,
’ 9k
(Gir—vi(tr,9))?
Vi’k(e) +1 1 (2 Uz'z,k(e) _ 1)
vip(0) + —(?ik;gjf;)v@))? o2 (0) \” v (0) + (yik;g;((t;),e»?
Oyi(ty, 0) Oyi(t, 0)
00, 00,,

(Gir—yi (t5,0))?
vir(0) + 1 ( % ) 1)
G = 4i(te,0)) (Oyilti, 0) 003k (6)  Oyiltr, 0) Doin(6)

Gir—vi(tr,0) _
cr?’k(e) 1 (yzk — Y (tka 0))2

+ —
(vin(0) + (yk;g;%)z agk(e)

) 8%7]6(0) 80’17k<0) 4 ayzvk(é) 80‘,7k<(9)
89; 88m 89m agl

(Bie—yi(tr,0)? 3
o?,.(0) 1 (Yir. — vi(tr, 0))

+ -
((0) + SZhE0) - oi(6)

) aVZ'7k(8) 8yi(tk, 9) 4 aV%k(Q) 8yi<tk, 8)
00, 00,, 00,, 00, ’

where 1 is the trigamma function, the derivative of the digamma function. It is again
possible to neglect the term including the second order sensitivities (marked by *) because
the difference of measurement and predicted observable is in general small.
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Appendix B

Supplementary material for the
conversion reaction
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Figure B.1: Uncertainty analysis based on profile likelihoods for k;. (A) Profiles
for ky. (B) Corresponding confidence intervals with different confidence levels
(80%,90%,95% and 99%) indicated by the bars colored from light to dark. The
vertical line indicates the MLE.

In the statistical analysis of the results the second parameter ky was neglected as the
PLs and Cls are rather similar to the ones obtained for parameter k;. In the case of
no outliers the profiles of normal, Laplace and Student’s t distribution overlap and are
close to the true value, while the profile of the Cauchy distribution deviates from the
others and is located further away from the true parameter value, see Figure [B.IA. In
scenario one data point at zero the profiles of Cauchy and Student’s t distribution are very
narrow and close to the true parameter value. The Laplace distribution shows a broader
profile, yet the MLE is at the same position as for Cauchy and Student’s t distribution.
Whereas the profile of the normal distribution covers an extensive parameter range with
a too large MLE. In the case of two data points interchanged the profile of the Laplace
distribution has a similar bimodality as seen for the parameter k;. Also for ky the profile
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Supplementary material for the conversion reaction
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Figure B.2: Distribution specific parameters for the outlier scenarios. Mean values of
the distribution specific parameters in the case of n; = 10. (A) Scale parameters
for the outlier scenarios one data point at zero and two data points interchanged.
(B) Degrees of freedom of the Student’s t distribution for the three outlier scenar-
ios.

of the normal distribution covers not a reasonable parameter range far off the true value.
The corresponding profile based confidence intervals are displayed in Figure [B.IB.

The scale parameters assumed for all distributions reasonable values, see Figure [B.2A.
The described problem if too many data points are fitted “exactly” does not occur for ten
data points. In Figure the estimated mean values of the degrees of freedom for the
Student’s t distribution are shown + the standard deviation. In the case of no outliers
the degrees of freedom assume larger values and consequently the Student’s t distribution
approximates the normal distribution. This is desired for the case without outliers as
the normal distribution constitutes the “true” model. In presence of outliers v becomes
small, the distribution puts more weight in the tails, which is necessary to capture the
outliers.

54



Appendix C

Supplementary material for the

Jak /Stat signaling pathway
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Figure C.1: MSE for spline parameters. Logarithm of the mean squared error for the spline
parameters. The scenarios one data point at zero and two data points interchanged
are compared to the scenario no outliers.

Since the spline parameters are of no biological interest, the MSE for those parameters was
not shown in the main text. Figure displays the logarithm of the MSE for the spline
parameters with errorbars indicating the 95% percentile bootstrap interval. In scenario
one data point at zero the normal distribution leads to a higher MSE for all parameters.
In the case of two data points interchanged this is not true for all parameters. As not all
cases of this scenario lead to clear outliers, the normal distribution is able to adequately
describe some of the cases which leads to a smaller overall error.
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