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Abstract

Type 1 Diabetes (T1D) is an autoimmune disease caused by the destruction
of insulin-producing β-cells in the islets of Langerhans by autoantibodies. Its
prevalence in the population is rapidly increasing and the precise triggers and
underlying mechanisms of disease onset are still not fully understood. The
methylation of cytosines in cytosine – guanine dinucleotides is an important
epigenetic mechanism to control gene expression. The aim of this thesis was
to establish a link between DNA methylation patterns in umbilical cord blood
of children with familial risk of type 1 diabetes, environmental factors and in-
formation on future events (seroconversion, T1D onset). Using multivariate
regression analysis, epigenome wide association studies were conducted with
children from the BABYDIET cohort. Findings support the assumption of her-
itable disease-associated methylation patterns and give evidence for environ-
mentally induced epigenetic programming in utero. Further examination of the
found results, enabled novel insight into epigenetic mechanisms and disease
susceptibility.

Zusammenfassung

Typ 1 Diabetes ist eine Autoimmunkrankheit bei der die Insulin produzieren-
den β-Zellen der Bauchspeicheldrüse durch das körpereigene Immunsystem
zerstört werden. Das Auftreten dieser Krankheit in der Bevölkerung häuft
sich zunehmend und die genauen Auslöser und zugrundeliegenden Mecha-
nismen sind noch weitestgehend unbekannt. Die Methylierung von Cytosin-
Guanosin-Dinukleotiden is ein wichtiger epigenetischer Mechanismus der Gen-
regulierung. Das Ziel dieser Thesis war es, einen Zusammenhang zwischen
DNA-Methylierungsmustern in Nabelschnurblut von Kindern mit familiärem
T1D Risiko, Umweltfaktoren und Informationen über den zukünftigen Gesund-
heitsverlauf der Kinder (Seroconversion, T1D Diagnose) zu finden. Durch mul-
tivariate lineare Regression wurden Epigenomweite Assoziationsstudien mit
Kindern der BABYDIET Kohorte durchgeführt. Die Ergebnisse stützen die An-
nahme, dass es vererbbare, krankheits-assoziierte Methylierungsmuster gibt.
Des weitern wurden Hinweise auf epigenetische Programmierung im uterus
gefunden die durch Umweltfaktoren beeinflusst werden. Anschließende Über-
prüfung der gefundenen Ergebnisse ermöglichten neue Einblicke in epigenetis-
che Mechanismen und Krankheitsempfänglichkeit.
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1 Introduction

In the following section the biological background of type 1 diabetes will be ex-
plained and a short introduction to epigenetics with focus on DNA methylation
given as well as an outline of the thesis.

1.1 Type 1 Diabetes

Type 1 diabetes (T1D) is a chronic autoimmune disease caused by the destruc-
tion of insulin-producing β-cells in the islets of Langerhans by autoantibodies
[1]. It is presumed to develop as the result of genetic predisposition, environ-
mental factors and stochastic events [1]. T1D only accounts for 5-10 % of all
cases of diabetes but once diagnosed, patients require strict glucose level mon-
itoring and lifelong insulin treatment [1, 2]. Although often associated with
children and adolescents, T1D can occur at any age [3]. The predominant form
of diabetes, accounting for 90 - 95 % of patients is type 2 diabetes [3]. It is char-
acterized by chronic insulin resistance and declining β-cell function (relative
insulin deficiency or insulin secretory defect) [3, 4]. Opposed to T1D patients,
patients of type 2 diabetes often do not require a life long insulin treatment to
survive[3]. This form of diabetes is associated with obesity and its risk increases
with age [3].
β-cells produce insulin and play an important role in maintaining delicate

physiological glucose levels [1]. Their destruction by autoantibodies in the
course of T1D leads to a loss of blood glucose control and usually absolute
insulin deficiency [3]. This can result in multiple consequences ranging from
ketoacidosis to severe hypoglycaemia or even amputations, blindness and kid-
ney failure [1].

Patients with a genetic predisposition do not necessarily develop T1D in later
life. Additionally it requires exposure to one or more environmental factors that
initiate β-cell autoimmunity [2, 5]. Suggested triggers include viral infections
or early exposure to certain foods such as cow’s milk or gluten [2]. Prior to T1D
onset, patients develop islet tissue-specific autoantibodies (AABs). The 4 AABs
associated with T1D are: glutamic acid decarboxylase (GADA), islet cell anti-
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1 Introduction

bodies (ICA), insulin autoantibodies (IAA) and ZnT8 antibodies (ZnTA) [5, 6].
The process of developing one of these AABs is referred to as “seroconversion”
and studies have shown that the risk of progression to T1D later in life increases,
reaching near certainty, depending on the number of circulating AABs and at
which age seroconversion took place [5]. Children who develop multiple islet
autoantibodies at an age younger than 3 years are especially at risk [7]. Fur-
thermore it is known that a priori family history of T1D in first degree relatives,
particularly if more than one relative is affected, also represents a major risk
factor [5].

Many T1D susceptibility loci are found within the human leukocyte antigen
(HLA) region, along with strong resistance alleles, making the HLA complex
on chromosome 6 very useful in the context of determining high risk patients
[1]. Furthermore, inherited susceptibility also resides predominantly in HLA
genotypes (DR and DQ) [2]. Evidence from animal models and humans have
further indicated that auto-reactive T cells play an important role in disease
initiation and progression [1].

The incidence of T1D is increasing rapidly worldwide and simultaneously
a shift of disease onset to an earlier age (more incidences in children ages <5
years) is observable [8]. The time period in which this development has taken
place is too short in order to explain it with genetic effects [8]. An increase in
frequency of T1D risk loci has also not been observed [8]. Additionally, there is
a large geographical variation in the incidence rates around the world. China
is reported to have one of the lowest T1D occurrences, with about 0.57 cases
per 100 000 population (<18 years of age/year) [2]. The UK is reporting an in-
cidence rate that is around 30 times higher [2]. The countries with the highest
rates (reaching nearly 100-fold) are Finland and Sardinia with about 48–49 per
100 000/year [2]. It is notable that migrating populations, for example south
Asian children in the UK, fairly quickly take on incidence rates of their new
population which can be very different to their native one [2]. These observa-
tions strongly support that the causes of T1D are environmentally linked, mak-
ing the effect of non-genetic factors a crucial key to understanding etiology and
pathogenesis of T1D. [8].

1.2 Epigenetics

The epigenome refers to the entity of mitotically or meiotically heritable
changes across the genome which also effects gene expression in a cell at any
given point in time [9]. It is highly dynamic, influenced by the interplay of
multiple factors such as genetic determinants, lineage-specific cues and envi-
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ronmental factors [10]. The term “epigenetics” means “above the genetics” and
indicates that these changes do not affect the DNA sequence itself [9]. Initially it
referred to chemical modifications to DNA molecules and histone proteins but
presently the term also includes other molecules that can transmit epigenetic
information (such as non-coding RNAs) [9].

The most extensively investigated mechanisms are post-translational modi-
fications of histone proteins and methylation of DNA, the latter of which we
will focus in this thesis. By regulating chromatin structure and DNA accessibil-
ity, these changes influence the control of gene expression and gene silencing
across different developmental stages, tissues and diseases [11].

1.2.1 Cytosine Methylation

DNA methylation (DNAm) is an epigenetic modification, in which cytosines
in cytosine – guanine dinucleotides (CpGs) are methylated by adding a methyl
group to the 5’ position on the cytosine pyrimidine ring (see fig. 1.2 ) [12]. Al-
though the methylation of cytosines in CpGs is presumed to be the predominant
form of DNAm, recent studies suggest that CpH methylation (withH = C|A|T )
may also play an important role. In this thesis DNAm will be referring to CpG
methylation if not stated otherwise. [10].

Regions of the genome with higher G+C and CpG frequency than expected
are called ’CpG Islands’ (CGIs). Although no objective standard exits, generally
regions with a minimum length of 200bp, an observed-to-expected CpG ratio
> 60 % and a GC content of > 50 % are considered as CGIs [13, 14]. Around half
of the mammalian genes are associated with one or more CGIs, which are often
located in the promotor region [15].

DNAm plays an important role in a diverse range of cellular pathways in-
cluding tissue-specific gene expression, cell differentiation and X chromosome
inactivation [11]. For example, most promoter-associated CGIs are unmethy-
lated, but in silenced areas such as the inactivated X chromosome in females,
they generally show methylation [17]. Transcription can thereby be repressed
by two distinct mechanisms; either directly by inhibiting the binding of tran-
scription factors (TFs) or indirectly by recruitment of methyl-CpG-binding pro-
teins and their associated histone-modifying enzymes which can establish a si-
lenced chromatin state (see figure 1.1) [9].

In early embryogenesis the DNA is largely free of methylation. De novo
methylation is initiated by DNA (cytosine-5-)-methyltransferase-3α (DNMT3A)
and -3β (DNMT3B) [17]. In CpG islands this can trigger a silencing cascade
and consequently repress transcription [17]. In order to preserve methyla-
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1 Introduction

Figure 1.1: DNAm and transcriptional repression. A No methylation in promotor se-
quence. Transcriptional factors (TFs) and RNA polymerase II (pol II) can bind, resulting
in transcription of gene. B Direct gene silencing by methylation in the DNA-binding
sequence of some TFs. This results in inhibition of TF binding and consequently re-
pression of transcription. C Indirect gene silencing by methyl-CpG-binding proteins
(MBPs). Here the targeted binding of MeCP2, a dynamic repressor of neuronal genes,
is shown. After binding, MeCP2 recruits histone deacetylase 1 (HDAC) to create a re-
gion of silenced chromatin [16].

tion patterns and maintain silencing during replication, the newly synthesized
DNA must be methylated accordingly. This is accomplished by methyltrans-
ferase DNMT1 which has specificity for hemi-methylated CpG dinucleotides
and can methylate CpGs based on the presence of methylation on the comple-
mentary template strand [11]. In early embryogenesis, epigenetic reprogram-
ming largely erases adult pattern of methylation [17].

It is important that epigenetic marks can be accumulated (crucial role in cell
differentiation) and stably maintained as well as erased in the germ line to allow
gender-specific methylation (see figure 1.2) [18]. However, not all epigenetic
marks seem to be erased between generations (for example some mutagenic
retrotransposons) leading to multi-generational influences of unknown extent
[18, 19]. The underlying mechanisms of epigenetic reprogramming and how
certain marks resist global demethylation are not fully understood [19]. In ad-
dition to these dynamic DNAm patterns in normal development, DNAm varia-
tion can also be a consequence or cause of disease as seen in extensive studies in
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1.2 Epigenetics

Figure 1.2: Cytosine Methylation. Early embryogenesis with methylation free DNA
(top left). De novo methylation leads to methylated DNA sequence and gene silencing
(top right). DNA replication resulting in hemi-methylated DNA (bottom right). Main-
tenance reaction through DNMT1 restores methylation (bottom left). Demethylation
(epigenetic reprogramming) restores initial state (left). The methylation reaction cyto-
sine + DNMT→ MeC (methylated cytosine) is depicted in the center. Figure adapted from
[17].

the context of cancer [20]. This may provide promising and novel opportunities
for identifying loci associated with common diseases.

1.2.2 Environmental Factors and Disease Susceptibility

Evidence from animal studies suggest that prenatal and early postnatal environ-
mental factors can alter epigenetic programming (especially DNAm patterns)
and play a role in susceptibility to disease in later life [21, 22]. Furthermore
Wolff at al. found evidence of maternal inheritability of epigenetic phenotypes
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using an Avy/a mice model, suggesting that epigenetic marks may potentially
also affect the health of future generations [23].

Epigenome wide association studies (EWASs) and advances in genomic tech-
nologies have recently made it possible to conduct large-scale studies of epi-
genetic variation in human diseases [10]. The results of these studies in com-
bination with findings in animal models strongly support the assumption that
’developmental programming’ plays an important role in the development and
outcome of disease in adult life [10]. By encountering a specific environment
during critical windows in fetal development and infancy, adaptive responses
can lead to long-term changes in tissue structure or function [24]. If the envi-
ronment leading to such programming is sub optimal or does not reflect the
one encountered in adulthood, these changes can be unfavorable or even lead
to disease susceptibility [25].

Exposure to nutritional, chemical and physical factors can lead to long-term
effects on gene expression [9]. Genomic regions that are likely to be affected
by environmentally induced epigenetic marks are often CpG enriched, for ex-
ample promoter regions of housekeeping genes or regulatory elements of im-
printed genes [9]. Furthermore, the characterization of expression profiles of
genes prone to such marks will hopefully identify epigenetic biomarkers [9].
This resembles an important step towards early diagnosis of individuals with
a high risk of adult-onset disease and could also assist in prevention and treat-
ment.

1.2.3 Epigenome-wide Association Studies

Epigenome-wide association studies (EWASs) are large-scale studies of disease-
associated variation, designed to help elucidate non-genetic determinants of
human diseases [10]. They represent an epigenomic equivalent to genome-wide
association studies (GWASs) which have uncovered a vast range of single nu-
cleotide polymorphism (SNP) associations for diseases and other traits [26]. In
order to distinguish between inter-individual and disease associated variation,
it is essential that such studies are performed with adequate genome cover-
age and sample size [10]. Due to these requirements, large-scale EWASs have
only recently become practical. As a result of advances in epigenomic profiling
technologies, DNAm (specifically CpG methylation) profiling of large sample
populations is now feasible with high throughput and at an affordable price
[10].
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1.3 Umbilical Cord Blood

Though similar to GWASs, the design of EWASs requires more specific con-
siderations concerning sample selection, as DNAm patterns are known to vary
across different developmental stages and tissues [10].

1.3 Umbilical Cord Blood

Umbilical cord blood is often used in studies investigating the impact of envi-
ronmental factors on fetal development. It contains the newborn’s epigenome
and can therefore help understand and analyze the effect of in utero exposures
on DNAm and long-term health effects [27]. It has been suggested by previous
studies that prenatal exposure to chemical compounds [28], nutritional supple-
ments [29] or maternal smoking [30] can influence methylation patterns in fetal
cord blood and furthermore play a critical role in the development of disease
later in life [31]. While analyzing and interpreting whole cord blood it is impor-
tant to regard tissue specific DNAm and control for different cell types and cell
concentrations [29]. Cord blood is often collected in the context of birth cohort
studies [27].

1.4 Thesis Outline

Epigenetic variation can be causal or a consequence of disease [10]. Further-
more variation can be inherited to some extent and influenced by non-genomic
factors. This makes the task of characterizing causative patterns arising prior to
any signs of disease very difficult. [10].

The aim of this thesis was therefore to investigate the influence of environ-
mental factors on methylation patterns in children with familial risk of T1D.
Utilizing data provided by the German-wide interventional trial BABYDIET,
epigenome-wide association studies were conducted in order to find methyla-
tion sites associated with maternal exposures such as smoking or dietary sup-
plements and child characteristics such as sex, birth weight, seroconversion
and T1D onset. Methylation data from umbilical cord blood was used with
the fundamental assumption that the children have not been exposed to any
environmental factors except those of the maternal uterine environment. By
establishing a link between DNAm patterns in umbilical cord blood, environ-
mental factors and information on future events (seroconversion, T1D onset), I
hope to gain insight into developmental programming in utero and investigate
potential influence of environmental factors on susceptibility to T1D.
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2 Materials and Methods

This chapter gives an overview over the cohort and data used. Furthermore, it
introduces methods that were used for quality control, data analysis and evalu-
ation.

2.1 Dataset

The following section describes and provides background information on the
study cohort and used data.

2.1.1 BABYDIET

BABYDIET is a German-wide study, initially conducted to explore the effects of
dietary gluten delay in infants with a strong genetic predisposition for T1D [32].
Early introduction of gluten was presumed to increase the risk of islet autoim-
munity in childhood [32]. Newborn children that were younger than 2 months
and without prior exposure to gluten or cereals were eligible to participate in
the study [32]. Furthermore, they had to have two or more first-degree relatives
with T1D or one first-degree relative and additionally, one of the known HLA
genotypes that confer a high T1D risk [33]. The children were divided into two
groups; control group (exposure to gluten at 6 months of age) and late-exposure
group (at 12 months) and were monitored by monthly and later yearly check-
ups [33]. The study could not observe a significant decrease in the risk for islet
autoimmunity for the late exposed children and also found no evidence of an
effect on growth [33]. Despite the non-effective dietary intervention, the study
participants were further followed and are since used as a birth cohort study,
observing the development of children with a high familial risk for T1D and
potential pathogenesis of disease.

In this thesis, data from 126 children from the BABYDIET cohort was used.
For each sample, identified with a unique identifier consisting of numbers and
letters, information on birth weight, sex, current state of health or disease (se-
roconversion/progression to T1D) and various maternal factors was provided

9



2 Materials and Methods

Table 2.1: Descriptive characteristics of the BABYDIET cohort (n = 126).

Characteristic n (%) male female
Child specific

Gender - 54 72
Seroconversion 21 (16.7) 10 11
First degree relatives (≥2) 22 (17.5) 6 16
C-section 45 (35.7) 18 27
Birth weight (average in g) 3461.2 3492.453 3438.194

Health State (current)
Healthy 105 (83.3) 44 61
Seroconversion 21 (16.7) 10 11
T1D 13 (10.3) 6 7

Mother specific
Dietary

Salt-water fish 79 (62.7) 35 44
Fish oil 9 (7.1) 0 9
Folic acid 92 (73.0) 39 53
Iron 64 (50.8) 28 36
Other supplements 86 (68.3) 37 49

Smoking
Non - smoker 97 (77.0) 40 57
During conception 22 (17.5) 11 11
During pregnancy 10 (7.9) 4 6

Table 2.2: Samples that were excluded from the dataset (see section 2.2).

ID Sex Fdra Healthb Csecc Bwd Gwe Sm_cf Sm_pg

91C3 f 0 h 0 3550 38 0 0
75J5 m 0 h 0 4570 39 0 NA
73C1 m 0 h 1 4200 38 0 0

adefinition see section 2.1.1 bh=healthy cC-section dbirth weight (g)
egestation week f smoking (conception) gsmoking (pregnancy)
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2.1 Dataset

as listed in table 2.1. Additionally, for all samples information concerning first-
degree relatives with T1D (mother, father, sibling) was available. The dataset
consisted of 72 (57% ) females and 54 (43 %) males, of which 22 % and 11 %
had more than one first-degree relative with T1D, respectively (see figure 2.1B).
After quality control (as described in section 2.2) the sample size was reduced
to n=123 with 71 (58 %) females and 52 (42 %) males (see figure 2.1A) .

Environmental factors were given either as a continuous (e.g. birth weight)
or a categorical variable. Categorical variables such as intake of supplements,
which were reported with the levels “none”, “low dosage”, “medium dosage”
and “high dosage” , were transformed into binary variables with 0 = “no in-
take” and 1 = “intake” to ensure appropriate numbers for category size. For
example folic acid was taken as a supplement in high dosage by 80 women. In
contrast to this only 8 women reported medium intake and low only 2. Smok-
ing was also re-coded as a binary variable for the analysis. The variable referred
to as “fdr” confers information about the familial history of T1D. Children with
more than one first degree relative (fdr) are at a markedly higher risk for islet
autoantibodies [5] and were assigned “1”, children with only one first degree
relative “0”.

Figure 2.1: (A) Sex ratio in BABYDIET cohort before (n=126) and after quality control
(QQ) (n=123). (B) Proportion of children at higher risk of developing islet autoanti-
bodies due to more than two first-degree relatives with T1D. Proportion is shown for
female and male samples, before and after QQ.
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2 Materials and Methods

Methylation Data

Genome-wide DNAm data was generated using the Illumina Infinium Human
Methylation450k BeadChip assay. The methylation level for a specific CpG site i
is represented as a β-value, which is defined by a combination of the methylated
(Mi) and unmethylated (Ui) signal intensities [34]:

β − valuei =
max(Mi, 0)

max(Mi, 0) +max(Ui, 0)
(2.1)

This value ranges between 0 and 1, corresponding to 0 % and 100 % methyla-
tion at this site, respectively. A β-value of 0.5 indicates “hemi-methylation” as
seen in monoallelically expressed genes (see figure 2.2B) [35]. The distribution
of these raw beta values is often skewed and displays heteroscedasticity, mak-
ing them inappropriate for statistical models that assume a normal distribution
[34]. Therefore, the data was further processed using methods described by Si-
mone Wahl [34], including quantile normalization and PCA on control groups,
in order to transform the values and eliminate technical variance. The resulting
values (referred to as β-values in this thesis) are beta residuals, indicating if a
CpG site is hypo- or hypermethylated (negative or positive sign) compared to
the control probes.

Figure 2.2: Probability density plot showing different frequency distributions of β-
values. (A) An abundance of hypomethylated CpGs lead to a spike in very low β-
values. (B) The methylation of only one allele (hemi-methylation) shows as an accumu-
lation of β-values around 0.5. (C) When both alleles are methylated (hypermethylated
CpGs), the distribution of β-values peaks close to 1.
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2.2 Quality Control

Cell Estimates

Whole blood is composed of a variety of different cell types, each with its own
unique DNAm pattern [36, 37]. In order to evaluate if differences in methyla-
tion are potentially disease-related or attributable to some other exposure (such
as smoking), it is important to rule out variation due to different distributions of
cell type proportions [38]. Houseman et al. [37] designed an algorithm that can
estimate the proportions of immune cells in whole blood. This is important be-
cause changes in DNAm often reflect the underlying immune response rather
than changes induced directly by disease. Furthermore the complete assess-
ment of the immune profile requires extensive and expensive measurements
[37]. The method proposed by Houseman et al. does not require these steps. It
uses the the principal immune components of whole blood (consisting of CD8+
and CD4+ T cells, natural killer (NK) cells, B cells, monocytes and granulocytes)
and 500 CpGs that show differential composition regarding those cell types, to
fit regression models for these sites. The thereby estimated coefficients of cel-
lular composition are then used to predict the relative proportion of cell type
components in whole blood [37].

Cell estimates obtained by the procedure described above were included as
covariates in the regression model (see equation 2.5) in order to adjust for pos-
sible confounding. It is important to note that this method was developed for
an adult population and may not be accurate for cord blood analysis.

2.2 Quality Control

Outliers are defined as measures or observations that are suspiciously bigger
or smaller than the majority [39]. These data points can influence statistics by
altering the mean, increasing variability and in the case of linear regression,
distorting the fitted model. Causes can reach from technical failures to sponta-
neous biological events or simply non representative samples.

This sections gives detail on the quality control methods applied in order to
detect and remove such outliers. Before quality control the dataset consisted of
126 samples and 485512 methylation sites (also referred to as probes).

2.2.1 Filtering

In an initial step, samples and probes with poor quality were filtered and ex-
cluded. If methylation data regarding a sample was missing for more than 20 %
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2 Materials and Methods

of the probes, the sample was excluded. Fortunately no sample met this criteria.
Probes were filtered by the same procedure, if data concerning a methylation
site was missing for over 20 % of the samples it was precluded. On this basis
(and after removal of 3 samples, see section 2.2.2 and section 2.2.3) 1326 probes
were excluded. In this step all CpG sites located on the Y chromosome were
already automatically excluded (see sex ratio of children, table 2.1). To further
minimize sex-specific methylation bias [28], all remaining probes on the X chro-
mosome (n=11218) were removed, resulting in a total of 472968 methylation
sites used for further analysis.

2.2.2 Z-Score Cutoff

In order to detect global sample outliers and isolated outliers that do not occur
systematically, a z-score based cutoff was applied.

Sample Outlier Detection

In the first step, the amount of potential outliers per sample for a given cutoff
was determined. A β-value was regarded as an outlier, if its z-score was over
a specific threshold. This is a common method to detect outliers and can be
applied if the data is assumed to follow a normal distribution [39]. The z-score
is defined as follows

z =
x− µ
σ

(2.2)

with x being the raw value, µ the mean of the population and σ the standard
deviation of the population [40]. It indicates how many standard deviations an
observation is away from the mean. Positive or negative values imply above or
below the mean, respectively.

Z-scores regarding a methylation site were calculated for the β-values mea-
sured per sample (maximal n=126). This was done separately for all 472993
sites. Subsequently the amount of probes with a z-score higher than a defined
cutoff was determined for every sample and plotted (as seen in figure 2.3). As
proposed by Cousineau et al. , the effects of a cutoff between 3σ and 4σ were
evaluated in order to find the most suitable for the dataset. The results of this
analysis can be seen in figure 2.3. It is notable that regardless of which cutoff
was used, both result in the same four samples with the highest count of “out-
liers”, while the ranking of the rest changes. Furthermore, a steep decline in
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the overall number of CpG sites over the threshold was observable between the
cutoffs (see figure 2.3, A and B).

Taking into account the results of the principle component analysis (section
2.2.3), the samples “91C3”, “75J5” and “73C1” were excluded from the dataset,
as they appear to be sample outliers.

Individual Cell Filtering

Initial analysis showed that the three excluded samples did not account for all
observed outliers, making an additional, more flexible “local” outlier filtering
indispensable. In this context all measured values (regardless of sample or
methylation site) were set to missing if they exceeded 4 standard deviations
from the mean.

A z-score of 4 was chosen to prevent too harsh quality control and limit the
extent of data exclusion. A total of 65613 data points were set to missing, which
is only a fifth of what would have been excluded if the stricter cutoff was cho-
sen. Furthermore, EWAS performed on the factor “first degree relative” with
a cutoff of 3 showed decreased association with HLA genes in contrast to data
filtered by a cutoff of 4 (results not shown). As these HLA genes are known to
carry heritable T1D-associated information [2], this association can be regarded
as true. Thus a z-score cutoff of 4 was chosen, resulting in a dataset with a total
of 296975 missing values (representing a 28% increase of missing values).

2.2.3 Principal Component Analysis

After removal of the X and Y chromosomal probes, principal component anal-
ysis (PCA) was performed using probes with methylation data present for all
126 samples. 345522 probes met this criteria. PCA is a technique that helps
reduce dimensionality of a dataset, transforming it into a more interpretable
form, while preserving as much of the initial variation and information as pos-
sible [41]. The transformed data set consists of so called “principal components”
(PCs). These uncorrelated variables are ordered so that the first principle com-
ponent accounts for the largest variance in the data, followed by the component
with the second largest and so on [41]. This allows a 2-dimensional representa-
tion of the data as seen in figure 2.4[42].

Examination of the association between the first three PCs and sample spe-
cific factors (sex, birth weight, maternal factors) did not show any distinguish-
able clustering. However, the choice to exclude the sample outliers identified in
section 2.2.2 can be further supported by the PCA plots depicted in figure 2.4.
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Figure 2.3: Bar plot showing the number of CpG sites per sample that have a z-score
over 3 (A) or 4 (B). The 15 samples with the most deviating data points are shown in
descending order. A cutoff of 3σ results in 340300 outliers in total (A), whereas the less
strict threshold of 4σ only declares 65613 data points as such (B). The samples which
were ultimately excluded are shown in the red box.

The distribution of samples in the first and second PC, accounting for 17.6%
and 7.9% of variation, shows a dichotomous distribution. No factor could be
identified separating the samples. However, the sample “91C3” (figure 2.4A)
is clearly in an outlying position, supporting the findings of section 2.2.2. Al-
though “68J5” may also be considered as outlying, no additional information
(PC2-3, z-scores) suggested the exclusion of this sample.

Figure 2.4B depicts the second and third PC and even though this plain re-
flects less variance (7,9% and 4,2%), it is interesting to see that the other two
identified sample outliers (“75J5” and “73C1”) show the highest deviation from
the distribution.

All in all these findings support the descicion to exclude the samples “91C3”,
“75J5” and “73C1” while finding no evidence of other severe outliers.
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Figure 2.4: Principle Component Analysis (PCA) of complete probes (n=345522) for
126 samples. (A) First and second components (PC1 and PC2). (B) Second and third
component (PC2 and PC3). Red lines depict values chosen for cutoff. Samples 91C3
(A), 75J5 and 73C1 (B) were excluded by this criteria.
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2.3 Multivariate Linear Regression

2.3.1 Theoretical Background

Multivariate regression is used to describe the relationship between a response
variable Y with Y = y1, y2, ..., yn and a set of p predictor variables X with X =
x1, x2, ..., xn in terms of a linear function [43]. The general regression model for
i = 1, ..., n is given by

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi (2.3)

where εi denotes the independent random error and the unknown parameters
are the overall mean (β0) and regression coefficients (βk, withk = 1, ..., p) [43].

The objective is to find a linear function with b0, b1, ..., bp such that the fitted
values of yi, given by

ŷi = b0 + b1xi1 + ...+ bpxip (2.4)

are as close to the observed values yi as possible [43]. The difference between
yi and ŷi is called a residual.

2.3.2 Multivariate Linear Regression Model

The multivariate linear regression model used for the conducted EWASs was:

sitei ∼ terma + fdr + gender + cellestimates (2.5)

where sitei is the methylation site i, terma resembles the environmental factor
of interest, fdr is the first degree relative (coded 0/1 ), gender is also coded
binary (0=male, 1=female) and cellestimates gives information regarding the
concentration of CD8T-, CD4T-, NK-, Bcell-, Mono- and Gran-cells.

Regression analysis of an environmental factor with methylation levels at
each site always included sex and fdr as covariates. This was done to minimize
confounding by these variables and to account for their influence on methyla-
tion patterns [5, 38] . Regression on both terms separately, only including cell
estimates (see chapter 3), further supported this decision. Additionally, it was

18



2.3 Multivariate Linear Regression

corrected for cell concentrations in whole blood (as discussed in section 2.1.1)
to account for variability of DNAm patterns in different cell types [36]).

Regression was performed for all methylation sites and the estimate and p-
value of each association was extracted for further analysis. To evaluate the
excess of significant associations, expected p-values were plotted against the
observed with a log quantile-quantile (Q-Q) plot. The diagonal line (as for ex-
ample seen in figure 3.1) corresponds to the null hypothesis and the deviation
of small p-values from that line can give a first impression of potential signifi-
cance [44]. Close adherence to the line for most p-values implies that there is no
evidence of systematic sources of specious association or genomic inflation [44].
This was further assessed by calculating the genomic inflation factor λ from p-
values which is typically used in genome-wide association studies to address
the extent of substructure leading to inflation [45]. Epigenome-wide associa-
tion studies have also used this measure [46]. The inflation factor is defined as
the median of the resulting chi-squared test statistics divided by the expected
median [47].

For further evaluation, highly associated CpG sites were visualized as scatter-
plots (for continuous variables) or boxplots (binary variables). Here, the resid-
ual of methylation is plotted for each sample against the environmental term of
interest. By extracting the model residuals from equation 2.5 without terma for
the respective methylation sitei, the direction of association can be shown. Thus
the residual of methylation indicates if a CpG site is hypo- or hypermethylated
compared to the average.

2.3.3 Interaction Terms

In order to evaluate to which extent the association between one environmen-
tal terma and methylation depends on a second termb , linear regression was
performed with interaction terms. An example question may be: Does the asso-
ciation of DNAm patterns with a child’s birth weight depend on the condition
that their mothers smoked during pregnancy?

For this purpose, besides including the main effects (terma + termb), an ad-
ditional interaction term is introduced into the regression model (denoted as
terma ∗ termb):

sitei ∼ terma + termb + (terma ∗ termb) + fdr + gender + cellestimates (2.6)
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Methylation residuals for plotting were obtained by extracting the model resid-
uals from equation 2.6 without the interaction term (terma ∗ termb).

2.4 Evaluation Methods

This section explains the applied methods for significance evaluation and lists
programs and packages used throughout the thesis.

2.4.1 Multiple Testing Correction

In order to assess the genome-wide significance of associations between methy-
lation level and environmental factors, regression analyses compute a statistical
confidence measure [48]. This p-value resembles the probability that an ob-
served association with the same strength or larger would occur under the null
hypothesis [48]. To determine if an association is statistically significant a con-
fidence threshold α must be chosen. While performing many tests, as done in
EWASs with regression analysis of over 480000 CpG sites, the chance of find-
ing associations with very small p-values increases just by the mere number
of analysis performed [48]. Therefore, adjusting p-values is essential to obtain
meaningful results.

The most commonly used methods are the Bonferroni correction and the
Benjamini-Hochberg false discovery rate, which both result in multiplicity ad-
justed p-values that can be compared to the desired confidence threshold α .

Bonferroni Method

The Bonferroni correction is used to control the “family-wise error rate” which
is the rejection of at least one true null hypothesis (type I error) [44]. This means
it ensures that for a confidence threshold of α = 0.05 and a set of n scores for
association, it is 95 % certain that none of the scores would have been observed
by chance if the null hypothesis (no association) is true [48]. This is done by
designating a p-value statistically significant if it satisfies following equation:

p− value ≤ α

n
(2.7)

with confidence threshold α and n scores/tests. The multiple testing adjusted
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p-values are easily calculated by multiplying the uncorrected p-value with n
[48].

Benjamini-Hochberg False Discovery Rate

The false discovery rate (FDR) correction aims at controlling the expected pro-
portion of falsely rejected null hypotheses (false positives) according to a de-
sired FDR level q [49]. It is less strict than the bonferroni and more powerful at
the cost of increased rates of type I errors [50]. For exploratory studies, which
are not compromised by a certain amount of false positives this method of cor-
rection seams most promising [50].

The FDR is defined by Benjamini and Hochberg (1995) [49] as

FDR = Qe = E[Q] = E[
V

V + S
] (2.8)

with Q as the proportion of false positives (V ) among the false positives and
true positves (S). P-values can be adjusted by the FDR controlling procedure
which firstly sorts the values in ascending order and then divides them by their
respective percentile rank [48]. The resulting multiple testing adjusted p-values
represent the lowest level of FDR for which this observation would be consid-
ered significant (null hypothesis rejected) [50].

In this thesis, FDR calculated with the Benjamini–Hochberg controlling pro-
cedure (as explained above) was used to determine the significance of CpG
sites. The confidence threshold was set to α = 0.05 .
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2.4.2 Programs and R Packages used

Figures in chapter 1 were made with ChemDoodle (v8.0.1) [51]. All analyses
and visualizations were performed with R (v3.2.0) [52] and the below listed R
packages if not stated otherwise.

Linear regression was performed using the lm() function of the stat package.
Annotations regarding methylation sites were retrieved by probe name with
get450k() and getNearest() from FDb.InfiniumMethylation.hg19 (v2.2.0). QQplots
and manhattan plots were generated with the package qqman (v0.1.2).

> sessionInfo():

• R version 3.2.0 (2015-04-16), x86_64-redhat-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, grid, methods,
parallel, stats, stats4, utils

• Other packages: AnnotationDbi 1.32.3, Biobase 2.30.0,
BiocGenerics 0.16.1, BiocInstaller 1.20.1, DBI 0.3.1,
FDb.InfiniumMethylation.hg19 2.2.0, GenomeInfoDb 1.6.3,
GenomicFeatures 1.22.13, GenomicRanges 1.22.4, ggplot2 2.0.0,
gridExtra 2.0.0, IRanges 2.4.7, org.Hs.eg.db 3.2.3, qqman 0.1.2,
reshape2 1.4.1, RSQLite 1.0.0, S4Vectors 0.8.11, scales 0.3.0,
TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2

• Loaded via a namespace (and not attached): BiocParallel 1.4.3,
biomaRt 2.26.1, Biostrings 2.38.4, bitops 1.0-6, colorspace 1.2-6,
futile.logger 1.4.1, futile.options 1.0.0, GenomicAlignments 1.6.3,
gtable 0.1.2, lambda.r 1.1.7, munsell 0.4.3, plyr 1.8.3, Rcpp 0.12.3,
RCurl 1.95-4.7, Rsamtools 1.22.0, rtracklayer 1.30.2, stringr 0.6.2,
SummarizedExperiment 1.0.2, tools 3.2.0, XML 3.98-1.3, XVector 0.10.0,
zlibbioc 1.16.0
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This chapter presents the results of the performed epigenome-wide associa-
tion studies. The -log10p-values of the linear regression for 472968 methyla-
tion sites were plotted as quantile-quantile and manhattan plots. In addition
to this, box plots and scatterplots helped illustrate direction and strength of
differential methylation for key cytosine – guanine dinucleotide (CpG) sites.
Information on the genomic context of CpGs was inferred with the R package
FDb.InfiniumMethylation.hg19 and the UCSC Human Genome Browser [53] on
Human Feb. 2009 (GRCh37/hg19) Assembly.

3.1 Environmental Factors

In order to adjust for gender-specific methylation [28] and take into account
potential differences due to heritable methylation marks [2], both first degree
relative (fdr) and gender were included in the regression model as covariates.
In the following subchapter the findings for gender, fdr, birth weight and ma-
ternal smoking are shown. Analysis of the association between dietary sup-
plements and methylation levels did not result in significant findings and are
not depicted. Following analyses were also not informative: C-section, sero-
conversion, birth weight percentile, maternal type 1 diabetes (T1D) and birth
weight, maternal T1D and seroconversion, first degree relative (fdr) and sero-
conversion. Additionally, evidence of differential methylation in cord blood
associated with T1D onset later in life is presented.

3.1.1 Gender of Child

Gender-specific methylation is an important factor that must be considered as a
potential confounding variable in EWAS. This has been demonstrated in previ-
ous studies [30, 31, 54] and recommended by Michels et al. [38].

In order to assess the differences in DNAm patterns across both genders, lin-
ear regression was performed with the model described in section 2.3 exclud-
ing the covariate fdr. As seen in figure 3.1, the log quantile-quantile (QQ) plot
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Table 3.1: CpG site with significant association between gender and methylation level.
Only one site (cg03769704) is significant (PFDR < 0.05). It is located in the promotor
region of SLFN5, a member of the Schlafen family.

Est.a P-value FDRb Chr.c Gene TSSd

cg03769704 0.038 3.43e-08 0.016 17 SLFN5 SLFN5

aestimate of linear regression bFDR adjusted p-value cchromosome dtranscription start site

Figure 3.1: Quantile-quantile plot (A) and manhattan plot (B) of epigenome-wide as-
sociation between gender of child and methylation of 472968 CpGs. Cord blood was
analyzed for 71 females and 52 males resulting in one statistical significant association
(indicated by red arrow). The blue line is given as orientation, it represents Punadj=0.05.

shows a distinct deviation from the null hypothesis (diagonal line). Calculation
of the genomic inflation factor λ showed no evidence of systematic inflation
(λ < 1) thus we can assume that the p-value distribution can be entirely ac-
counted for by sex-specific methylation. Although only one CpG dinucleotide
fell bellow the significance threshold (table 3.1, PFDR < 0.05), the observed p-
values were overall mostly lower than expected (figure 3.1A). CpG cg03769704
(PFDR ≈ 0.016) is located in the promoter region of SLFN5 (Schlafen family)
and shows a higher methylation level in females than males (figure 3.2). The
variability of methylation seems evenly distributed (as seen in figure 3.2) for
both genders and outliers are only observed for one site (figure 3.2C). Boxplot
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outliers are defined as points with methylation levels lower or higher than 1.5
interquartile range (IQR).

Figure 3.2: Boxplot showing methylation level (residual) by gender for the three high-
est associated CpGs. cg03769704 (PFDR ≈ 0.016) shows an increased methylation in
females whilst cg18397726 and cg18397726 (both PFDR ≈ 0.065) are hypermethylated
in males compared to females. The horizontal thick line denotes the median, the box
itself the upper and lower quantiles of the data. Dots represent samples.

3.1.2 First Degree Relative

Regression analysis on the association between DNAm and number of first de-
gree relatives with T1D (coded 0/1) did not result in statistical significance.
However, the QQ plot shows slight deviation for lower p-values and the man-
hattan plot clearly shows an elevation of high p-values in a region of the chro-
mosome 6 (colored green in figure 3.3B). As seen in table 3.2 the 10 highest asso-
ciations comprised of 50 % of CpGs that are located within the human leukocyte
antigen (HLA) region.

When isolating key sites (PFDR <0.5) on chromosome 6 (n=9), the proportion
of CpG sites located in HLA reaches 100 %, including methylation sites near
HLA-DQB1/B2, HLA-DQA1, HLA-DRB1, HLA-DRB1/6 and the GABA-B Re-
ceptor 1. The directional changes in methylation levels between children with
more than one first degree relative (“1”) and children with only one (“0”) can be
seen in figure 3.4. The five highest associated sites all display decreased methy-
lation in fdr “1” children, though the boxplot also shows that there is great vari-
ability in methylation levels for samples with more than one first degree relative
(figure 3.4A,D-F).
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Table 3.2: Top 10 CpG sites with the highest fdr-association. No methylation site
reaches statistical significance (PFDR < 0.05) but a notable enrichment in sites located
within the major histocompatibility (HLA) complex can be seen.

Est.a P-value FDRb Chr.c Gene TSSd

cg22984282 -0.173 5.22e-07 0.244 6 HLA-DQB1 HLA-DQB1
cg20720056 -0.046 1.83e-06 0.244 10 ERLIN1 ERLIN1
cg08148418 -0.016 2.35e-06 0.244 21 PTTG1IP PTTG1IP
cg23785275 -0.088 2.40e-06 0.244 6 HLA-DQB2 HLA-DQB2
cg25306444 -0.023 2.58e-06 0.244 17 LINC00511 LINC00511
cg02919082 0.118 3.49e-06 0.255 6 HLA-DQA1 HLA-DQA1
cg21663668 -0.016 3.81e-06 0.255 2 ANTXR1 MIR3126
cg19301366 0.251 4.42e-06 0.255 6 HLA-DQB1 HLA-DQB1
cg07984380 0.145 5.68e-06 0.255 6 HLA-DRB5 HLA-DRB1
cg05608716 0.006 5.98e-06 0.255 16 MMP25 MMP25

aestimate of linear regression bFDR adjusted p-value cchromosome dtranscription start site

Figure 3.3: Quantile-quantile plot (A) and manhattan plot (B) of epigenome-wide asso-
ciation between the degree of T1D history in first degree relatives and methylation of
472968 CpGs. Cord blood analysis of 123 samples resulted in no statistical significant
association but elevated association in a region of the chromosome 6 (colored green).
The blue line is given as orientation, it represents Punadj=0.05.
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Figure 3.4: Boxplot showing methylation level (residual) by fdr category (0 = only one
fdr and 1= two or more fdr) for the six CpGs with the highest association. Nearly all
sites (exept F) are hypomethylated in children with more than 1 case of T1D in first
degree relatives in comparison to those with only one. Methylation levels for category
“1” samples show a larger variation than those of “0” and outliers are present in all
sites. The horizontal thick line denotes the median, the box itself the upper and lower
quantiles of the data. Dots represent samples.
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3.1.3 Birth Weight of Child

Methylation differences associated with the birth weight of children did not
reach statistical significance (PFDR < 0.05). Regression analysis using birth
weight percentiles (taking into account gestation week) resulted in even less
significance (results not shown) and is not further discussed.

Interestingly two CpG sites display a higher divergence from the expected p-
value than the rest (figure 3.6A). cg15681239 and cg05409131 both have a PFDR

of 0.07 and are located near the DLEC1 gene and in an intron of INHBA-AS1
as part of a small CpG island (<300bp), respectively (table 3.3). Methylation of
cg15681239 shows a negative correlation with birth weight (r=-0.46, figure 3.5A)
while methylation at cg05409131 is positively correlated (r=0.45, figure 3.5B).
The manhattan plot (figure 3.6B) shows a similar pattern in high p-value aggre-
gation in a region of chromosome 6 as seen in figure 3.3B. In contrast to genes in
the HLA region, 4 of the top 10 key sites on chromosome 6 are located in a CpG
island in the α subunit of the nuclear transcription factor NF-Y (NFYA). They
are in close proximity to the transcription start site of the adenylate cyclase 10
(Soluble) pseudogene 1 ADCY10P1 and all show an increase in methylation for
children with higher birth weight (table 3.3).

Figure 3.5: Scatterplot showing the directional association between methylation level
(residual) and birth weight for the three CpG sites with the lowest p-value. The less
associated site cg12831863 (r=0.41, PFDR ≈ 0.46) shows a larger dispersion around the
line of best fit than cg15681239 and cg00400614 (with correlation coefficient r = -0.46 and
0.45 and PFDR < 0.08). The blue line denotes the linear regression line. Dots represent
samples.
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Table 3.3: CpG sites with the highest genome-wide association (PFDR < 0.45) between
methylation level and birth weight (top). No methylation site reaches statistical signifi-
cance (PFDR < 0.05). Chromosome 6 shows an enrichment in CpGs located in the gene
NFYA on Chromosome 6. The top 10 sites are shown (bottom).

Est.a P-value FDRb Chr.c Gene TSSd

Genome
cg15681239 -6.06e-05 1.63e-07 0.071 3 DLEC1 DLEC1
cg00400614 7.72e-06 3.02e-07 0.071 7 INHBA-AS1 INHBA
On chr.c 6
cg12831863 1.12e-05 2.95e-06 0.46 6 GPX6 GPX6
cg03644281 9.77e-05 1.26e-05 0.479 6 NFYA ADCY10P1
cg09118053 1.69e-05 2.37e-05 0.561 6 LINC01016 LINC01016
cg27643910 -7.85e-06 3.27e-05 0.596 6 TNXB TNXB
cg04346459 1.06e-04 3.60e-05 0.607 6 NFYA ADCY10P1
cg25110423 8.74e-05 4.36e-05 0.607 6 NFYA ADCY10P1
cg18949415 2.12e-05 4.70e-05 0.607 6 C6orf223 C6orf223
cg05155704 -1.69e-05 4.97e-05 0.607 6 FAM83B FAM83B
cg02167203 6.22e-05 5.86e-05 0.613 6 NFYA ADCY10P1
cg26797676 -1.19e-05 6.56e-05 0.613 6 FLOT1 FLOT1

aestimate of linear regression bFDR adjusted p-value cchromosome dtranscription start site
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Figure 3.6: Quantile-quantile plot (A) and manhattan plot (B) of epigenome-wide as-
sociation between the birth weight of the child (in grams) and methylation of 472968
CpGs. Cord blood analysis of 123 samples resulted in no statistical significant associa-
tion. (A) The QQ plot shows minor inflation (λ=1.19) and notable lower p-values than
expected for 2 sites (indicated by red arrows in B). (B) Systematic aggregation of low p-
values indicating an association between methylation and birth weight on chromosome
6 (green). The blue line is given as orientation, it represents Punadj=0.05.
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3.1.4 Maternal Smoking

Influence of maternal smoking on in utero developmental programming and
methylation patterns has been reported by various studies [30, 31, 55]. Regres-
sion analysis of the BABYDIET cohort found no CpG site that fell below the
significance threshold (table 3.4, PFDR < 0.05). Smoking was coded as a bi-
nary variable, with “0” no smoking during the regarded period of time and “1”
smoking reported. Information on the extent of smoking (cigarettes per day)
was given but not included due to the very small fraction of smokers paired
with high discrepancies in their smoking habits (for example during pregnancy:
minimum 3 to maximum 15 cigarettes/day).

Table 3.4: CpG sites with the highest association between methylation level and mater-
nal smoking. The three highest associated sites are shown for the separately performed
analysis regarding smoking at conception and smoking during pregnancy. No methy-
lation site reaches statistical significance (PFDR < 0.05).

Est.a P-value FDRb Chr.c Gene TSSd

Conception
cg06864895 0.015 1.62e-07 0.077 12 SLC38A2 SLC38A2
cg05409131 -0.041 6.47e-07 0.153 3 ACPP ACPP
cg02762752 0.031 3.13e-06 0.295 16 ZCCHC14 ZCCHC14
Pregnancy
cg06864895 0.019 1.92e-06 0.425 12 SLC38A2 SLC38A2
cg01574787 0.009 2.59e-06 0.425 7 SLC4A2 SLC4A2
cg21207665 0.028 2.70e-06 0.425 14 PAX9 PAX9

aestimate of linear regression bFDR adjusted p-value cchromosome dtranscription start site

Two analyses were performed separately to determine effects on methyla-
tion in children whose mothers reported smoking at conception (n=22) and
whose mothers reported to have continued smoking throughout the pregnancy
(n=10). Although no site was significant after FDR correction (table 3.4), it is
notable that in both analysis the most significant difference in methylation was
reported for the CpG cg06864895 with PFDR ≈ 0.076 (smoking at conception)
and PFDR ≈ 0.43 (smoking during pregnancy). This site is located upstream
of the amino acid transporter SLC38A2 and displays increased methylation in
both analysis (figure 3.8 and figure 3.9 ). The distribution of -log10p-values in-
dicated higher significance for lower p-values for smoking at conception than
during pregnancy but also showed signs of a slightly higher inflation with a
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Figure 3.7: Quantile-quantile plot for the association between methylation level and
maternal smoking at conception (A) and during pregnancy (B). Cord blood analysis of
123 samples resulted in no statistical significant association. Slight genomic inflation
occures in both models, stronger in A with λ ≈ 1.22 than in B with λ ≈ 1.13.

genomic inflation factor of λ ≈ 1.22 (in contrast to smoking during pregnancy
with λ ≈ 1.13).

Smoking during conception is further associated with less methylation at
cg05409131 (PFDR ≈ 0.15), located in an intron of the prostatic acid phosphatase
ACPP and an increased methylation of cg02762752 (PFDR ≈ 0.29), located in
an intron of the zink finger domain ZCCHC14 (figure 3.8). Smoking during
pregnancy was additionally associated with higher methylation of cg01574787
(PFDR ≈ 0.43) which is located in a short CpG island (<300bp) in the intron
of the anion carrier SLC4A2 (cg01574787) and higher methylation of the PAX9
CpG cg21207665 (both PFDR ≈ 0.43). The boxplots of methylation residuals for
both analysis show a higher variability in children born to mothers that smoked
during pregnancy (larger boxes as seen in figure 3.9A and B) and the outliers
seen in figure 3.9C may be underlying a potentially significant association.
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Figure 3.8: Boxplot showing methylation level (residual) for maternal smoking at con-
ception (no = “0” and yes = “1”) for the most significant CpGs. A and C show an
increase in methylation while B is less methylated. All plots show outliers of which
none is extrem. The horizontal thick line denotes the median, the box itself the upper
and lower quantiles of the data. Dots represent samples.

Figure 3.9: Boxplot showing methylation level (residual) for maternal smoking during
pregnancy (no = “0” and yes = “1”) for the highest associated CpGs. All show an in-
crease in methylation for maternal smoking. The outliers seen in C may have influenced
regression, masking an even higher association at this site (green circle). The interquar-
tile region is very large for samples of category “yes” in both A and B. The horizontal
thick line denotes the median, the box itself the upper and lower quantiles of the data.
Dots represent samples.
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3.1.5 Future Event: Type 1 Diabetes

Regression analysis incorporating information on “future” events was also con-
ducted. Seroconversion and the onset of T1D are factors that cannot have di-
rectly impacted DNAm in utero because this event had not yet occurred at the
time when cord blood samples were extracted. However, with this informa-
tion it is possible to investigate if differences in methylation are observable in
children who will develop islet autoantibodies or progress to T1D compared to
healthy children. Such CpG sites would have great value for early diagnosis
and treatment of T1D.

The analysis of association between seroconversion and methylation levels
did not find any significant methylation patterns and is therefore not shown.
The results of the regression conducted with samples of 13 children diagnosed
with T1D and 110 healthy children can be seen in figure 3.10. After FDR cor-
rection cg15293181 reaches statistical significance (PFDR ≈ 0.025). In total three
CpG sites can be seen with differing observed to expected low p-values fig-
ure 3.10. The aforementioned significant site is located in the SNTG2 gene
with close proximity to the transcription start site of thyroid peroxidase (TPO).
SNTG2 encodes a protein that belongs to the syntrophin family which is com-
prised of cytoplasmic peripheral membrane proteins.

cg03153658 is part of a CpG island upstream of the zinc finger protein 470
(ZNF470) and cg10563643 is located near the parathyroid secretory protein
CHGA. Boxplots for all three sites show a high variability in the distribution
of residuals of methylation for children who develop T1D later in life in con-
trast to those who do not (figure 3.11). This may partially be attributed to the
very small fraction of reported T1D cases.

Table 3.5: CpG sites with the highest association (PFDR < 0.65) between methylation
level and future onset of T1D. The hypomethylation of cg15293181 in children with
diagnosed T1D reaches statistical significance (PFDR < 0.05).

Est.a P-value FDRb Chr.c Gene TSSd

cg15293181 -0.074 5.36e-08 0.025 2 SNTG2 TPO
cg03153658 0.009 6.97e-07 0.165 19 ZNF470 ZNF470
cg10563643 -0.020 1.67e-06 0.263 14 CHGA CHGA

aestimate of linear regression bFDR adjusted p-value cchromosome dtranscription start site
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3.1 Environmental Factors

Figure 3.10: Quantile-quantile plot (A) and manhattan plot (B) of epigenome-wide as-
sociation between methylation level and future T1D onset. Cord blood analysis of 110
children that are healthy (up to last doctor’s visit) and 13 children that developed T1D
resulted in one statistical significant association. This site and two other CpGs that did
not fall below the threshold, but also have low p-values are indicated by red arrows (B).

Figure 3.11: Boxplot showing methylation level (residual) by health state (0 = healthy
and 1 = has developed T1D) for the three CpG sites with the highest association be-
tween methylation and future T1D diagnosis. Methylation sites depicted in A and C
show less methylation in children with future T1D onset and the methylation of site
B marks an increase. The horizontal thick line denotes the median, the box itself the
upper and lower quantiles of the data. Dots represent samples.
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3 Results

3.2 Interaction between Environmental Factors

To investigate co-dependent influences of environmental factors on methyla-
tion marks, regression analysis was performed incorporating interaction terms.
Unfortunately many did not produce significant results, for example the effect
of maternal iron intake during pregnancy and later T1D onset or first degree
relatives with T1D and seroconversion. In other cases there were not enough
or no children to represent all scenarios. No child that developed T1D later in
life was exposed to maternal smoking during pregnancy, making the analysis
of interaction between T1D onset and smoking not applicable.

3.2.1 Maternal Smoking and Birth Weight of Child

Effects of maternal smoking on DNAm have been reported by various stud-
ies [30, 55] and it is also associated with a reduction in birth weight [56]. To
investigate the interaction between maternal smoking and birth weight in the
BABYDIET cohort, regression analysis with an interaction term incorporating
both variables (equation 2.6) was performed.

The mean birth weight for children exposed to maternal smoking during
pregnancy was slightly lower (3413.5 g) than the mean for children of non smok-
ing mothers (3454.954 g), coinciding with the a fore mentioned association (fig-
ure 3.13)[56]. The analysis of association between the interaction of smoking at

Table 3.6: CpG sites with statistically significant association between maternal smoking
during pregnancy, birth weight and methylation level (PFDR < 0.05).

Est.a P-value FDRb Chr.c Gene TSSd

cg06724462 -4.06e-05 4.93e-08 0.023 1 KCNQ4 KCNQ4
cg09856467 8.24e-05 4.42e-07 0.046 22 TPST2 MIR548J
cg19042497 -5.58e-05 4.91e-07 0.046 18 MYO5B MYO5B
cg23514537 -7.54e-05 5.98e-07 0.046 5 F12 F12
cg13158344 -9.17e-06 6.34e-07 0.046 6 ULBP1 ULBP1
cg19629818 -3.65e-05 7.91e-07 0.046 7 GPC2 GPC2
cg02331198 1.25e-04 8.11e-07 0.046 6 AIM1 AIM1
cg17208467 -4.38e-05 8.19e-07 0.046 8 TNFRSF10D TNFRSF10D
cg11217193 -1.07e-04 9.51e-07 0.046 1 VPS13D SNORA59B
cg05057515 5.36e-05 9.66e-07 0.046 16 CBFA2T3 CBFA2T3

aestimate of linear regression bFDR adjusted p-value cchromosome dtranscription start site
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3.2 Interaction between Environmental Factors

conception and birth weight on DNAm did not produce significant results but
when regarding smoking during pregnancy ten statistically significant methy-
lation sites were found (table 3.6, PFDR < 0.05).

In figure 3.13 scatter plots of the residuals of methylation can be seen for the
significantly associated CpG sites. Correlation between birth weight and level
of methylation varies but is overall stronger for samples with exposure to ma-
ternal smoking (colored red in figure 3.13). Samples without exposure are only
loosely distributed around the line of best fit and with little to no clear direction
of association (colored blue in figure 3.13). The depicted CpG sites are pre-
dominantly hypomethylated in children with higher birth weight and exposure
to smoking than lighter children (A,C-F). The plots indicate that the methyla-
tion level at these sites is normally not or only slightly associated with birth
weight. Maternal smoking establishes or reverses and intensifies this associa-
tion, leading to birth weight dependent hypo- or hypermethylation. Especially
cg06724462, located in the KCNQ3 gene (PFDR ≈ 0.023) and cg19629818, lo-
cated in the glypican 2 (GPC2) gene (PFDR ≈ 0.046) show very high correlation
(r=-0.93 and r=-0.94). Other sites that show a high correlation are cg17208467,
situated in proximity of the tumor necrosis factor receptor superfamily member
10D (TNFRSF10D) and cg11217193, located within the vacuolar protein sort-
ing 13 homolog D (VPS13D). On the contrary, for example cg23514537 and
cg02331198 seem to be strongly influenced by outlying samples (figure 3.13D,G)
challenging their meaningfulness.
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3 Results

Figure 3.12: (A) QQ plot of epigenome-wide association between methylation level and
interaction between maternal smoking during pregnancy and birth weight. A clear up-
ward trend for lower p-values is observable, partly due to genomic inflation (λ ≈ 1.99).
(B) Boxplot of the birth weight distribution in children without exposure to smoking
(mean 3454.954g) and maternal smoking during pregnancy (mean 3413.5g).
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3.2 Interaction between Environmental Factors

Figure 3.13: Scatterplot showing the directional association between methylation level
(residual) and birth weight for the ten statistically significant CpG sites. Blue dots rep-
resent children that were not exposed to smoking during pregnancy and red dots are
samples that were exposed to maternal smoking. In general the correlation of blue
dots is very low and the regression line shallow. In contrast to this, the correlation and
regression line of red samples is much higher and steeper. Direction of associations
are always opposite. The blue and red lines denote the linear regression lines for the
respective sample group.
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3.2.2 Birth Weight and Progression to T1D

The epigenome-wide association analysis regarding the interaction of birth
weight and progression to T1D in later life did not result in any statistically
significant findings, although CpG cg09488090 is very close to the threshold
with PFDR ≈ 0.053. This site is located within a non-protein coding RNA and is
in proximity of the polyamine modulated factor 1 binding protein 1 (PMFBP1).
Further inspection of the association between methylation residuals and birth
weight (figure 3.14) shows that the significance of this methylation site may be
falsely induced by outlying samples (circled green, figure 3.14).

Table 3.7: CpG site with the highest association between diagnosed T1D, birth weight
and methylation level. cg09488090 is very close to the significance threshold but not
significant(PFDR < 0.05). It is located in proximity of the polyamine modulated factor
1 binding protein 1 (PMFBP1).

Est.a P-value FDRb Chr.c Gene TSSd

cg09488090 0.0001 1.13e-07 0.05344949 16 PMFBP1 PMFBP1

aestimate of linear regression bFDR adjusted p-value cchromosome dtranscription start site
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3.2 Interaction between Environmental Factors

Figure 3.14: (A) Quantile-quantile plot of epigenome-wide association between methy-
lation level and birth weight in dependence of T1D onset in later life. (B) Scatter-
plot showing the directional association between methylation level (residual) and birth
weight for cg09488090. Blue dotes represent children that are currently healthy and
the red dots children that have been diagnosed with T1D. Correlation for the blue dots
is very low (r=22) and shows a slightly negative association. Red dots in contrast are
higher correlated and display a strong positive association which is most likely influ-
enced by outliers (circled green). The blue and red lines denote linear regression lines
for the respective sample group.
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4 Discussion

The following chapter will discuss the results presented in section 3 and elu-
cidate potential limitations and drawbacks of this study. The UCSC Human
Genome Browser [53] on Human Feb. 2009 (GRCh37/hg19) Assembly was used
to infer further information on the identified cytosine – guanine dinucleotide
(CpG) sites, utilizing information on CpG islands, transcription factor binding
sites and measured methylation profiles in different cell types. In this context
umbilical vein endothelial cells (HUVEC), embryonic stem cells (H1hESC) and
GM12878, a lymphoblastoid cell line provided further insight into cell specific
methylation patterns [53].

4.1 Effects of Environmental Factor on DNAm

The conducted epigenome wide association study of DNA methylation
(DNAm) patterns in newborns of the BABYDIET cohort observed statisti-
cally significant associations between methylation levels and environmental
factors. Although not all findings met the strict FDR significance threshold,
further investigation often revealed meaningful biological context. This is for
example illustrated by the multiple cytosine – guanine dinucleotides (CpGs)
highly associated with fdr within the human leukocyte antigen (HLA) region
on chromosome 6 (figure 3.3B). Various studies have shown that in this gene
complex many type 1 diabetes (T1D) susceptibility and resistance loci are lo-
cated [1]. Genetic inheritable susceptibility resides predominantly in HLA-DR
and HLA-DQ genotypes which correspond to the identified CpG sites pre-
sented in table 3.2. These findings indicate that children with more than one
first degree relative indeed have an increased genetic susceptibility for T1D.
This is in union with previous findings [5] and supports the decision to control
further regression analyses for familial history of T1D. Additionally, an overall
higher distribution of lower p-values than expected for the association be-
tween methylation levels and gender of the child gave evidence of sex-specific
patterns. Consequently further analyses were also adjusted for gender. The
CpG site cg03769704 (PFDR ≈ 0.016) , which is located in the in the promoter
region of SLFN5 (Schlafen family) showed a statistically significant associa-
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tion. However within the scope of this study, designated to find links between
environmental factors and DNAm, this finding will not further be discussed.

Various studies have investigated the influence of different cell proportions in
whole blood on epigenome-wide association studies [36, 37, 38]. Due to the fact
that blood is a heterogeneous mixture of different cell types which each have
unique DNAm patterns, it is essential to control for their concentrations [36].
These studies have shown that without consideration of the heterogeneity of
cell populations, strong confounding effects can be observed [36]. Therefore cell
concentrations were estimated with the method of Houseman et al. [8], which
has already found application in epigenome-wide association studies of cord
blood samples [28].

An increased birth weight is known to increase the risk of developing type 2
diabetes [57] and a weak link between birth weight and T1D susceptibility has
also been suggested [58]. Analysis regarding associations between birth weight
of children (in grams) and methylation levels in the BABYDIET cohort showed
increased methylation at cg00400614 in INHBA-ASI. The nearest transcription
start site is INHBA, which encodes the inhibin beta A subunit that has been
identified as a critical modulator of somatic growth and survival in mice [59].
Epigenetic modifications may influence expression levels of this gene and have
effects on fetal growth in humans. McMinn et al. studied the differential expres-
sion of genes in intrauterine growth restriction (IUGR)[60], which is a condition
characterized by insufficient fetal growth and low birth weights [61]. The study
found evidence of differential expression of INHBA between IUGR and non-
IUGR placentae [60], supporting the assumption that altered gene expression
through methylation of INHBA may play an important role in fetal growth.
Additionally, linear regression found associations of higher birth weight and
hypermethylation of CpG sites located in the NFYA gene on chromosome 6.
These sites are part of a CpG cluster overlapping the transcription start site of
the adenylate cyclase 10 pseudogene 1 (ADCY10P1). Furthermore, the most sig-
nificant of the CpG sites is located within a transcription factor binding motif
for YY1 (Yin and Yang 1). This multifunctional transcription factor YYI is in-
volved in many biological processes such as embryogenesis, differentiation and
replication [62] and can activate or inhibit transcription [62]. Animal studies in
rats have identified SNPs in YY1 as potential candidates for increased diabetes
susceptibility and suggested a possible role of YY1 in human type 1 diabetes
[63]. Even though the findings of Klöting et al. do not correspond to the chro-
mosomal region of cg03644281, a general role of YY1 in birth weight and T1D
susceptibility may be plausible but will need further investigation and valida-
tion.
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4.1 Effects of Environmental Factor on DNAm

Maternal smoking at conception showed higher associations in DNAm than
smoking throughout pregnancy. This is interesting because it would have been
expected to be directly opposite due to the fact that the time window for methy-
lation changes to occur during pregnancy is much bigger than the short window
of conception. Although in this context it is important to regard the fact that the
definition of conception is very unspecific as it will often not refer to the exact
time point of conception (pregnancy may have been discovered a few weeks
after conception). Tobi et al. found evidence suggesting that the early gestation
period (week 1-10) is a critical time window during which the maternal uter-
ine environment can influence methylation marks of the fetus [54]. This would
provide a potential explanation for the observed differences, as 22 women were
smoking before they knew they were pregnant and 12 of these stopped smoking
during pregnancy. These women reduced their cigarette consumption resulting
in an even lower exposure to nicotine and it has been suggested that not only
the duration, but also the intensity of smoking has an effect on methylation of
the epigenome in utero [55].

Despite different significance values, both analysis reported an increase of
methylation in cg06864895 in children exposed to maternal smoking. CpG
cg06864895 lies within a strong enhancer region in umbilical vein endothelial
cells (HUVEC) [64] which maps to the SLC38A2 gene. Increased methylation at
this site may inactivate or alter the enhancing abilities, leading to a decreased
expression of the gene. As the SLC38A2 gene, together with IGF, is involved
in regulation of placental nutrient transfer and fetal nutrient acquisition [65],
an altered expression may have effects on fetal development and growth. This
may provide an epigenetic mechanism linking reduced birth weight in children
with maternal smoking during pregnancy, which was observable in the BABY-
DIET cohort (figure 3.12) [56]. Smoking at conception was further associated
with a reduction in methylation level in ACPP, a prostatic acid phosphatase at
cg05409131 (PFDR ≈ 0.15) and an increase in methylation in the zink finger do-
main ZCCHC14 at cg02762752 (PFDR ≈ 0.29). Single nucleotide polymorphisms
(SNPs) in ZCCHC14 have previously been associated with nicotine dependence
[66]. Smoking during pregnancy was overall associated with less significance,
however the higher methylation of the PAX9 CpG cg21207665 ( PFDR ≈ 0.43)
in children that were exposed to smoking during pregnancy, shows influence
of two outliers (figure 3.9) that might be masking significance. PAX9 encodes a
gene of the paired box (PAX) family of transcription factors, which play critical
roles in fetal development.

The CpG cg15293181 is significantly associated (PFDR ≈0.023) with lower
methylation levels in children with future T1D onset and located in an intron
of the syntrophin gamma 2 (SNTG) gene. It is methylated in multiple cells
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lines (HUVEC, H1heSC, GM12878) and the decreased amount of methylation
may induce transcriptional changes if regulatory elements are affected. These
changes may control the transcription of TPO which flanks SNTG. TPO encodes
thyroid peroxidase , an enzyme that plays a major role in the biosynthesis of
thyroid hormones [67]. Studies have shown that the risk of thyroid dysfunction
is two to threefold higher in patients with T1D than in the general population,
especially in those with prevalence of positive TPO antibodies [68]. This obser-
vation could confirm an association between autoimmune thyroid dysfunction
and type 1 diabetes. The hypermethylation of cg15293181 in children who de-
velop T1D later in life may mirror this relationship and if true, present apriori
indication for increased susceptibility to thyroid diseases through high genetic
predisposition for T1D. But this is very speculative and will need further anal-
ysis in order to allow a profound assumption.

Two other CpGs showed increased but not significant association with T1D.
Hypomethylation of CpG site cg10563643, located in proximity of chromo-
granin A (CHGA) and hypermethylation of a CpG island upstream of the zinc
finger protein 470 (ZNF470) at cg03153658 was observed for children who de-
veloped T1D compared to healthy children. ZNF470 is associated with tran-
scriptional regulation and transcription factor activity. It is normally unmethy-
lated in cell lines such as HUVEC, H1hESC and GM12878 and has been iden-
tified as an active promoter region in HUVEC cells [53]. Methylation of pro-
moter regions can lead to inhibition or alterations of gene expression providing
a plausible mechanism for an epigenetic effect on T1D susceptibility. Further-
more CHGA has been identified as a novel autoantigene in T1D [G, 69], which
may be influenced in reactivity and association to disease by post-translational
modifications [70]. It is notable that CHGA also showed hypomethylation in
females compared to males (in the analysis of the association between gender
and methylation), though not at the same CpG site (cg18397726).

Analysis of the association between maternal smoking during pregnancy and
birthweight on methylation levels produced the most significant results.The ef-
fects on methylation levels were predominantly a decrease in methylation (seen
in figure 3.13) in children with higher birth weight and exposure to maternal
smoking. Four CpG sites showed the opposite effect but seemed largely in-
fluenced by outliers (figure 3.13B,D,G,J). cg06724462 and cg19629818 showed
a very high correlation of methylation residuals, indicating a strong linear as-
sociation of methylation levels and birth weight in children that were exposed
to maternal smoking table 3.4. Both sites show methylation in multiple cells
lines (HUVEC, H1hESC, GM12878) [53]. In children with exposure to smoking,
methylation is increased for infants with low birth weight and strongly reduced
for higher birth weights. Methylation levels in children without exposure show
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no or very weak association with birth weight figure 3.13. A study conducted
by Haworth et al. investigating the effects of maternal smoking on gene-specific
cord blood methylation and birth weight percentile, found that higher methy-
lation levels in APOB is associated with a higher risk of lower birth weight
percentiles. The CpG cg19629818 (PFDR ≈0.046) is located within the glypican 2
(GPC2) encoding gene which is reported to interact with APOB, thus potentially
linking both to the same pathway that alters fetal methylation patterns through
maternal smoking [71]. However, in this study we found no evidence of dif-
ferential methylation in APOB, contradicting the a fore mentioned relationship.
The highest association was reported for the cg06724462 (PFDR ≈0.023) which is
located in an intron region of a gene that codes for a potassium channel forming
protein (KCNQ4).

Type 1 diabetes in interaction with birth weight was found to be highly (but
not significantly) associated with the CpG site cg09488090 that is located in
proximity of PMFBP1 which encodes for a polyamine modulated factor 1 bind-
ing protein 1 (PFDR ≈0.053). However, the scatterplot of the residuals of methy-
lation depicted in figure 3.14 shows highly influencing outliers which is why
this site is not further discussed.

4.2 Limitations and Drawbacks

Even though this study presents insights into DNAm in utero, it was not able
to reproduce findings of previous studies. EWAS have been conducted find-
ing significant associations between DNAm in utero and birth weight [31] as
well as maternal smoking [30, 55]. Reasons for discrepancies in results can have
multiple causes. Firstly, and perhaps the greatest limitation of this study, the
BABYDIET cohort is comparatively small with only 123. For example Joubert et
al. [30] studied the effects of maternal smoking during pregnancy in 1062 cord
blood samples. It is also important to consider that this cohort was assembled
regarding familial T1D risk and therefore automatically represents a biased ge-
netic background. As the participating mothers were not chosen in respect of
for example smoking habits, some environmental factors are not equally dis-
tributed or do not have sufficient occurrences and therefore cannot ensure sig-
nificant and meaningful results (analysis of dose-dependent effects of smoking).
Secondly, many studies adjusted their regression model differently or used in-
formation that was not available for the children of this cohort (such as BMI, ma-
ternal age). In addition to these limitations in comparability, the question arises
if a significance threshold of PFDR< 0,05 may be to strict, as seen in the context
of first degree relative or maternal smoking (section 3). Another very impor-
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tant aspect is that cell-specific methylation was accounted for by estimating cell
component proportions using the method proposed by Houseman et al. which
was developed and validated for adult whole blood [37]. The correction for cell
proportions is very important for epigenome wide analyses of whole blood as
differences in cell proportions can devoid the outcome of regression analysis or
infer association between a factor and methylation that is solely attributable to
differential cell composition [36]. However if the estimated and observed pro-
portions do not coincide the results may also be falsified. This is why careful
interpretation of the presented findings is crucial.
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5 Summary and Outlook

Type 1 Diabetes (T1D) is an autoimmune disease caused by the destruction
of insulin-producing β-cells in the islets of Langerhans by autoantibodies. Its
prevalence in the population is rapidly increasing and the precise triggers and
underlying mechanisms of disease onset are still not fully understood. Patients
with a genetic predisposition do not necessarily develop T1D in later life as en-
vironmental factors play a crucial role in the initiation of β-cell autoimmunity.
Epigenetic modifications are heritable changes that do not effect the DNA se-
quence. One of the most extensively investigated epigenetic marks is the methy-
lation of cytosines in cytosine – guanine dinucleotides (CpGs). DNA methyla-
tion (DNAm) is an important mechanism in the control of gene expression and
can be determining for disease susceptibility. Due to technological advances it
is now possible to conduct large scale studies, investigating disease-associated
DNAm patterns.

The aim of this thesis was to identify DNAm patterns in umbilical cord blood
of children with a high familial risk of T1D in order to gain insight into develop-
mental programming in utero and potential influence of environmental factors
on susceptibility to T1D. This was achieved by incorporating different environ-
mental factors and information on future events (seroconversion, T1D onset)
into a multivariate regression model and analyzing umbilical cord blood sam-
ples of 123 children of the BABYDIET cohort.

Effects of gender and familial T1D history were assessed and subsequently in-
cluded in the regression model to prevent confounding effects. The model was
further adjusted with estimates of cell composition to account for differential
DNAm patterns across different cell types. Initial analyses showed that methy-
lation levels show great variability, making appropriate and flexible outlier de-
tection a crucial part of data preprocessing. A z-score based cutoff procedure
paired with principle component analysis was used to eliminate spurious sam-
ples and data points. Despite these efforts the potential influence of outlying
methylation data could not be excluded entirely.

The results of the regression analysis showed statistical significant associa-
tions between methylation levels and gender of child, future T1D progression
and the interaction between maternal smoking and birth weight. Although
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many findings did not meet the strict FDR significance threshold, meaningful
biological context could be inferred for the effect of fdr, birth weight and mater-
nal smoking on methylation. The findings discussed in this thesis support the
assumption, that methylation marks are heritable and can transfer disease sus-
ceptibility. For example differential methylation was detected in T1D associated
HLA genotypes for children with more than one affected first degree relative.
Further more, evidence for in utero fetal programming is presented and poten-
tial mechanisms of epigenetic influence on disease susceptibility proposed.

Although the results of this thesis present novel insight on the effect of envi-
ronmental factors on methylation patterns in utero, there are many aspects that
will need further exploration. For example interactions between environmental
factors that have not been analyzed in this study may play an important, yet
unidentified role in disease onset. This is especially problematic due to the fact
that we are exposed to a large variety of perceived and unperceived environ-
mental factors and to identify and model every combination is an impossible
task. Therefore the study of umbilical cord blood paired with close observa-
tions of maternal exposures seems to be a very promising approach for deter-
mining fundamental epigenetic mechanisms. Furthermore, more extensive re-
search and stricter studies exploring the dose-dependent association between
intake of dietary supplements and methylation patterns of the fetal epigenome
may help elucidate the process and extent of developmental programming in
utero.

The identified methylation patterns of key CpG sites throughout the genome
are yet to be verified by supporting evidence from animal models or indepen-
dent reproduction with a different cohort. However despite the limitations, this
thesis presents a comprehensive analysis of the fetal epigenome in children with
a familial risk of T1D. Findings were presented giving evidence of inheritable
methylation patterns as well as novel methylation sites that may help elucidate
the effects of environmental factors on epigenetic marks and disease suscepti-
bility.
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